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LOW x DOUBLE ln2(1=x) RESUMMATION EFFECTSAT THE SUM RULES FOR NUCLEON STRUCTUREFUNCTION g1B. ZiajaDepartment of Theoretial PhysisH. Niewodniza«ski Institute of Nulear PhysisRadzikowskiego 152, 31-342 Craow, PolandandHigh Energy Physis, Uppsala UniversityP.O. Box 535, 75121 Uppsala, Swedene-mail: beataz�solaris.ifj.edu.pl(Reeived June 29, 2001; Revised version reeived July 16, 2001)We have estimated the ontributions to the moments of polarized nu-leon struture funtion g1(x;Q2) oming from the region of the very low x(10�5 < x). Our approah uses the nuleon struture funtion extrapolatedto the region of low x by the means of the double ln2(1=x) resummation.The Q2 evolution of g1 was desribed by the uni�ed evolution equationsinorporating both the leading order Altarelli�Parisi evolution at large andmoderate x, and the double ln2(1=x) resummation at small x. The mo-ments were obtained by integrating out the extrapolated nuleon struturefuntion in the region 10�5 < x < 1.PACS numbers: 13.60.�r 1. IntrodutionThe sum rules whih are expeted to be satis�ed by the spin-dependentstruture funtion g1 of the nuleon play a very important role in the theoryof the spin-dependent deep inelasti lepton sattering [1℄. The sum rulesinvolve (�rst) moments of the spin-dependent struture funtions, and themoment integrals require knowledge of those struture funtions in the entireregion 0 < x < 1 where, as usual, x denotes the Bjorken variable. Presentlyavailable experiments over only the region of large and moderately smallvalues of x (x > 5�10�3) for reasonably large values of the photon virtualityQ2 (Q2 > 5 GeV2). Hene, a reliable theoretial estimate of the ontribu-tions to the moment integrals oming from the unmeasured small x regionis important for the analysis of the sum rules.(2863)



2864 B. ZiajaIn this paper we propose an extrapolation of the spin-dependent partondistributions and of the polarized nuleon struture funtions into the low xregion. The extrapolation is based on the double ln2(1=x) resummation [2,3℄.After integrating out the parton distributions or struture funtions, one ob-tains the low x ontribution to the orresponding moments. The integrationinterval extends from x � 10�5 to x = 1. It is assumed here that the small xbehaviour of g1 is ontrolled by the double ln2(1=x) resummation. The fullanalysis of the double ln2(1=x) resummation e�ets was performed in detailin Ref. [2℄. The dominant ontribution generating the double logarithmiterms is given by the ladder diagrams with the quark (antiquark) and gluonexhanges along the ladder. The very transparent way of resumming theseterms is provided by the formalism of the unintegrated (spin-dependent) par-ton distributions whih satisfy the orresponding integral equations. In [4℄we extended this formalism so as to inlude the non-ladder bremsstrahlungterms by adding the suitable higher order orretions to the kernels of theorresponding integral equations. We also inorporated the omplete Lead-ing Order (LO) Altarelli�Parisi (AP) evolution within this sheme, thusobtaining the uni�ed system of equations able to analyse simultaneously theparton distributions in the large and small x regions. In partiular, thisformalism allows us to extrapolate dynamially the spin-dependent stru-ture funtions from the region of large and moderately small values of x,where they are onstrained by the presently available data to the very smallx domain whih an possibly be probed at the polarized HERA [5℄.This paper is organized as follows. In Setion 2 we reall brie�y Bjorkenand Ellis�Ja�e sum rules for nuleon struture funtions. In Setion 3 theuni�ed evolution equations for g1(x;Q2) [4℄ whih embody both ompleteLO AP evolution at large values of x and the full (ladder and non-ladder)double ln2(1=x) resummation at small x are disussed in the ontext of thepartoni moment onservation. It is shown that in the non-singlet setorthe �rst moments of both baryoni isovetor gNS1 (x;Q2) and baryoni otetg(8)1 (x;Q2) are onserved, i.e. they are independent of Q2. It is also shownthat there is no �rst moment onservation in the singlet setor. It should berealled that the �rst moments of the non-singlet and otet struture fun-tions aquire their Q2 dependene only as the result of the Next-to-LeadingOrder (NLO) quantum hromodynamis (QCD) e�ets. Our formalism ex-tends the LO AP formalism by inluding the small x resummation, yet itdoes not a�et the onservation of the �rst moments of struture funtions.In Setion 4 our preditions for Bjorken and Ellis�Ja�e sum rules ob-tained after numerial integration of the respetive nuleon omponents inthe region extending from very low x (10�5 < x) are presented. First mo-ments of nuleon struture funtions are alulated and ompared with ex-perimental data [6�14℄. In order to estimate the impat of the low x region



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2865on the sum rule integrals and moments, partial ontributions from very lowx region 10�5 < x < 10�3 are alulated expliitly. In our approah we use asimple semi-phenomenologial parametrization of the non-perturbative partof the spin-dependent parton distributions.In Setion 5 the summary of our results is given.2. Sum rules for g1(x;Q2)The sum rules for polarized nuleon struture funtions are derived fromthe spae-time representation of sattering amplitudes T aik(x) in terms ofurrent ommutators [15, 16℄:ImTik(x) = 14 hp; s j [ji; jk℄antisym: j p; si : (1)In the light one limit x2 ! 0, x0 ! 0, whih orresponds to parton modelkinematis, they redue to:limx0!0 ImTik(x) = �"iklhp; s j 13 �j35l(0) +q13j85l(0)�+ 29 j05l(0) j p; si : (2)The isospin symmetry determines the proton matrix element of the isove-tor urrent j35l(0), and results in the Bjorken sum rule for the non-singletomponent of the nuleon struture funtions gp;n1 (x;Q2) whih in LO ap-proximation reads: 1Z0 gBj1 (x;Q2) = gA6 ; (3)where gBj1 (x;Q2) � gp1(x;Q2) � gn1 (x;Q2), gp1 , gn1 are proton and neutronstruture funtions respetively, and gA � 1:257 is the neutron �-deayaxial oupling onstant. It should be stated learly that the Bjorken sum ruleaquires also orretions beyond the LO approximation. Sine the formalismof the uni�ed evolution equations we use heneforth inludes only the LOAP evolution, we neglet the NLO orretion terms both for the Bjorkenand the Ellis�Ja�e sum rule.The Ellis�Ja�e sum rule for baryoni otet follows, if SU(3) �avour sym-metry for otet �-deays is assumed:1Z0 g81(x;Q2) = 3F �D24 ; (4)where g81(x;Q2) = �u+�d� 2�s24 ; (5)



2866 B. Ziajaand F , D are otet �-deay axial oupling onstants [15℄ ful�lling the relation(3F �D)=24 � 0:0241. Distributions �u, �d, �s denote quark omponentsof the polarized nuleon.3. Moments of g1(x;Q2) and double ln2(1=x) resummationLow x behaviour of polarized nuleon struture funtion is in�uened bydouble logarithmi ln2(1=x) ontributions, i.e. by those terms of the per-turbative expansion, whih orrespond to the powers of ln2(1=x) at eahorder of the expansion [17, 18℄. In what follows we will apply the doubleln2(1=x) resummation sheme based on the unintegrated parton distribu-tions [2,19,20℄. Conventional integrated spin-dependent parton distributions�pl(x;Q2) (p = q; g) are related to the unintegrated parton distributionsfl(x0; k2) in the following way:�pl(x;Q2) = �p(0)l (x) + W 2Zk20 dk2k2 fl�x0 = x�1 + k2Q2� ; k2� ; (6)where �p(0)l (x) is the nonperturbative part of the distribution, k2 denotesthe transverse momentum squared of the probed parton, W 2 is the totalenergy in the enter of mass W 2 = Q2 ((1=x) � 1), and index l spei�es theparton �avour. The parameter k20 is the infrared ut-o�, whih will be setequal to 1 GeV2. The nonperturbative part �p(0)l (x) an be viewed upon asoriginating from the integration over non-perturbative region k2 < k20 , i.e.�p(0)l (x) = k20Z0 dk2k2 fl �x; k2� : (7)The nuleon struture funtion g1(x;Q2) is related in a standard way tothe (integrated) parton distributions desribing the parton ontent of thepolarized nuleon:gp1(x;Q2) = he2i2 hgS1 (x;Q2) + gNS;p1 (x;Q2)i ; (8)gn1 (x;Q2) = he2i2 hgS1 (x;Q2) + gNS;n1 (x;Q2)i ; (9)where Nf denotes the number of ative �avours (Nf = 3) and hemi =1Nf NfXl=1(el)m. For onveniene we have introdued in (8), (9) the non-singlet



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2867and singlet ombinations of the spin-dependent quark and antiquark distri-butions de�ned for proton and neutron as:gNS;p(n)1 (x;Q2) = NfXl=1 � e2lhe2i � 1� (�qp(n)l (x;Q2) +�qp(n)l (x;Q2)); (10)gS1 (x;Q2) = NfXl=1(�ql (x;Q2) +�ql (x;Q2)) : (11)In order to onsider the Ellis�Ja�e sum rule we shall also analize the baryonotet struture funtion g8(x;Q2), de�ned by equation (5).The full ontribution to the double ln2(1=x) resummation omes from theladder diagrams with quark and gluon exhanges along the ladder (f. Fig. 1)and the non-ladder bremsstrahlung diagrams [21, 22℄. The latter ones areobtained from the ladder diagrams by adding to them soft bremsstrahlunggluons or soft quarks [17, 18, 21, 22℄. They generate the infrared orretionsto the ladder ontribution.
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2868 B. ZiajaThe struture of the orresponding integral equations desribing uninte-grated distributions fNS(x0; k2); fS(x0; k2) and fg(x0; k2) for ladder diagramontribution read [2℄:fNS(x0; k2) = f (0)NS (x0; k2) + �S2��Pqq(0) 1Zx0 dzz k2=zZk20 dk02k02 fNS�x0z ; k02�; (12)fS(x0; k2) = f (0)S (x0; k2) + �S2� 1Zx0 dzz k2=zZk20 dk02k02 ��Pqq(0)fS �x0z ; k02�+ �Pqg(0) fg �x0z ; k02�� ;fg(x0; k2) = f (0)g (x0; k2) + �S2� 1Zx0 dzz k2=zZk20 dk02k02 ��Pgq(0)fS �x0z ; k02�+ �Pgg(0) fg �x0z ; k02�� (13)with splitting funtions �Pij(0) � �Pij(z = 0) equal to:�P (0) � � �Pqq(0) �Pqg(0)�Pgq(0) �Pgg(0) � =  N2C�12NC �NFN2C�1NC 4NC ! ; (14)where �S denotes the QCD oupling, whih at the moment is treated asa �xed parameter. The variables k2(k02) denote the transverse momentasquared of the quarks (gluons), exhanged along the ladder. For the partondistributions in a hadron the inhomogeneous driving terms f (0)l (x0; k2) areentirely determined by the non-perturbative parts �p(0)i (x0) of the spin-dependent parton distributions.Besides the ladder diagrams ontributions, the double logarithmi resum-mation does also aquire orretions from the non-ladder bremsstrahlungontributions. It has been shown in Ref. [2℄ that these ontributions an beinluded by adding the higher order terms to the kernels of integral equa-tions (12), (13). These terms an be obtained from the matrix:h ~F 8=!2i(z)G0,where h ~F 8=!2i (z) denote the inverse Mellin transform of the otet partialwave matrix (divided by !2), and the matrix G0 readsG0 =  N2�12N 00 N ! : (15)



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2869Following Ref. [2℄, we shall use the Born approximation for the otet matrix:" ~FBorn8!2 #(z) = 4�2�SM8 ln2(z); (16)where M 8 is the splitting funtions matrix in the olour otet t-hannel:M8 = � � 12N �NF2N 2N � : (17)In the region of large values of x the integral equations (12), (13) de-sribing pure double logarithmi resummation ln2(1=x), even ompleted byinluding non-ladder ontributions, are inaurate. In this region one shoulduse the onventional AP equations [25�27℄ with the omplete splitting fun-tions �Pij(z) and not restrit oneself to the e�et generated by their z ! 0part. Following Refs. [2, 19℄, we do, therefore, extend equations (12), (13),and add to their right-hand-side(s) the ontributions oming from the re-maining parts of the splitting funtions �Pij(z). We also allow oupling �Sto run, setting k2 as the relevant sale. In this way we obtain uni�ed systemof equations, whih ontain both the omplete leading order AP evolutionand the double logarithmi ln2(1=x) e�ets at low x. These equations arelisted in Appendix A. 3.1. Conservation of momentsIn order to get information about the moments of spin struture fun-tions, we will follow the tehnique proposed in [19℄. First we integrate theintegrated parton distributions (6) over x:1Z0 dx�pl(x;Q2) = 1Z0 dx�p(0)l (x) + 1Zk20 dk2k2 �1 + k2Q2� 1Z0 dx fl(x; k2): (18)Let us denote �pl(Q2) � R 10 dx�pl(x;Q2), and respetively f l(k2) �R 10 dx fl(x; k2). Sine struture funtions gNS (S)1 (x;Q2) (10), (11) are lin-ear ombinations of (6), their moments may be obtained as:gNS1 (Q2) = gNS;(0)1 + 1Zk20 dk2k2 �1 + k2Q2�fNS(k2) ; (19)gS1(Q2) = gS;(0)1 + 1Zk20 dk2k2 �1 + k2Q2�fS(k2) ; (20)



2870 B. Ziajawhere (i =NS,S): gi1 = 1Z0 dx gi1(x); (21)gi;(0)1 = 1Z0 dx gi;(0)1 (x): (22)Furthermore, for non-singlet setor it was proven [19℄ (see Appendix B)that the moments of f (0)NS (x0; k2) (34) vanish independently of the inputgNS(0)1 (x): f (0)NS(k2) = 0 : (23)Therefore the uni�ed equation for moments fNS(k2), obtained from equation(31) after integration over x, redues to the integral equation with inhomo-geneous term equal to 0. Its solution then reads:fNS(k2) = 0 : (24)For the singlet setor the situation gets more ompliated. Although thequark singlet moment: f (0)S (k2) = 0 (25)vanishes again (see Appendix C), the moment of the input gluon distributionf (0)g (k2) takes a non-zero value whih reads:f (0)g (k2) = �S(k2)2� �2 gS;(0)1 +�112 � NF3 ��p(0)g � : (26)Hene, the uni�ed equations for quark singlet and gluon moments, obtainedfrom the oupled equations (32), (33) get a non-zero inhomogeneous termin the gluon setor, and the moment fS(k2) is non-vanishing as well.The properties of partoni moments resulting from the uni�ed equa-tions (31)�(33) after transforming them into the moment spae have learimpliations for Bjorken and Ellis�Ja�e sum rules. Both Bjorken and Ellis�Ja�e sum rules (3), (4) onern evolution in the non-singlet setor. Hene, ifone assumes input distributions gBj;(0)1 and g8;(0)1 ful�lling the requirements(3), (4), it follows from relations (19), (24) thatgBj1 (Q2) = gBj;(0)1 = onst. ; (27)g81(Q2) = g8;(0)1 = onst. (28)are onserved throughout whole Q2 evolution.



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2871The non-vanishing unintegrated gluon input (26) implies that there is noexpliit onservation of gS1(Q2) (and ��g(Q2) ) duringQ2 evolution. However,the onservation may be ahieved impliitly by imposing the negative inputgluon distribution �p(0)g to ful�ll the requirement2 gS;(0)1 +�112 � NF3 ��p(0)g = 0 : (29)This is not a physial ase but this shows that the moments are very sensitiveto the gluon input whih, in fat, has not an established phenomenologialparametrization beause of the lak of experimental data. Therefore, thereis still possible to in�uene the Q2 evolution of gS;(0)1 and heneforth, theevolution of � 1;p;n(Q2) by manipulating the input gluon distribution.4. Numerial results for sum rulesWe solved the uni�ed equations (31), (32), (33), assuming the followingsimple parametrization of the input distributions:�p(0)i (x) = Ni(1� x)�i (30)with �uv = �dv = 3; �u = �s = 7 and �g = 5. The normalisation onstantsNi were determined by imposing the Bjorken sum rule for �u(0)v � �d(0)vand requiring that the �rst moments of all other distributions are the sameas those determined from the reent QCD analysis [28℄. All distributions�p(0)i (x) behave as x0 in the limit x ! 0 that orresponds to the impliitassumption that the Regge poles whih should ontrol the small x behaviourof g(0)1 have their interept equal to 0.It was heked that the parametrization (30) ombined with equations(6), (10), (11), (31)�(33) gives reasonable desription of the reent SMC dataon gBj1 (x;Q2) and on gp1(x;Q2) [11℄. After integrating out the respetiveparton distributions, we found that the moments gBj1 (Q2) and g81(Q2) areonserved during Q2 evolution with a good auray (not shown). TheBjorken sum rule is onserved expliitly, due to the hoie of the input(gBj;(0)1 (Q2) � 0:2095). For the g81(Q2) moment, the input was hosen togive g8;(0)1 (Q2) � 0:016, whih was impliitly in disagreement with hyperon�-deay data (5).We also investigated the Q2 evolution of the �rst moments of gp;n1 (x;Q2)and ompared them with experimental data (see Figs. 2, 3). First mo-ments of gp1(x;Q2) agree well with the available experimental data both formoments obtained after performing LO AP evolution of non-perturbative
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Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2873input and for moments obtained after solving the uni�ed evolution equation(f. Fig. 2). On the ontrary, our preditions for the �rst moments of po-larized neutron struture funtion gn1 (x;Q2) obtained from both the uni�edand the AP evolution are below the experimental data (f. Fig. 3). The dis-repany may be due to the fat that we onsider only the LO AP evolutionof the partoni moments. Also the Bjorken sum rule is onsidered at LOauray. Sine the AP evolution dominates in the region of moderate andlarge x, applying it with the leading order (parton model) auray may benot su�ient to reprodue the experimental data.Moreover, we estimated the magnitude of ontribution from the very lowx region (10�5 < x < 10�3) to the moments of polarized nuleon struturefuntion. It was ahieved by omparing the partial ontributions with thetotal moments obtained after integrating gp;n1 over x extending from 10�5to 1. The alulated ratios, Ri � gi;L1 (Q2)=gi1(Q2) (i =BJ,8; p; n), wheregi;L1 (Q2) � Z 10�310�5 dx gi1(x;Q2), are plotted in Figs. 4�7. For Bjorken in-tegral (BJ) (3) the maximal j RBj j is � 0:02, and for baryoni otet (8),j R8 j� 0:01. For proton (p) the maximal ontribution of low x region tothe �rst moment of the proton struture funtion is j Rp j� 0:02, and forneutron (n), j Rn j� 0:08.
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2876 B. ZiajaThis implies that the ontribution of low x region enters the momentsof polarized nuleon struture funtion at the level of 10 % at most. Theontribution inreases with inreasing Q2. We expet that the improvementsof the model needed to desribe aurately the neutron data will possiblya�et only the normalization of the orresponding integrals, and they willnot hange signi�antly the estimate of the relative ontributions omingfrom the low x region. Appendix AThe orresponding system of equations reads:fNS(x0; k2) = f (0)NS (x0; k2) + �S(k2)2� 43 1Zx0 dzz k2=zZk20 dk02k02 fNS�x0z ; k02�(Ladder)+�S(k2)2� k2Zk20 dk02k02 43 1Zx0 dzz (z + z2)fNS(x0z ; k02)� 2zfNS(x0; k02)1� z+�S(k2)2� k2Zk20 dk02k02 �2 + 83 ln(1� x0)� fNS(x0; k02)(Altarelli�Parisi)� �S(k2)2� 1Zx0 dzz  " ~F 8!2 #(z)G02�2!qq k2Zk20 dk02k02 fNS�x0z ; k02�� �S(k2)2� 1Zx0 dzz k2=zZk2 dk02k02  " ~F 8!2 # k02k2 z!G02�2!qqfNS�x0z ; k02� ;(Non-ladder) (31)



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2877
fS(x0; k2) = f (0)S (x0; k2) + �S(k2)2� 1Zx0 dzz k2=zZk20 dk02k02 43fS�x0z ; k02���S(k2)2� 1Zx0 dzz k2=zZk20 NF dk02k02 fg �x0z ; k02�(Ladder)+�S(k2)2� k2Zk20 dk02k02 43 1Zx0 dzz (z + z2)fS(x0z ; k02)� 2zfS(x0; k02)1� z+�S(k2)2� k2Zk20 dk02k02 �2 + 83 ln(1� x0)� fS(x0; k02)+�S(k2)2� k2Zk20 dk02k02 1Zx0 dzz 2zNF fg �x0z ; k02�(Altarelli�Parisi)��S(k2)2� 1Zx0 dzz  " ~F 8!2 #(z)G02�2!qq k2Zk20 dk02k02 fS�x0z ; k02���S(k2)2� 1Zx0 dzz k2=zZk2 dk02k02  " ~F 8!2 # k02k2 z!G02�2!qgfg �x0z ; k02� ;(Non-ladder) (32)fg(x0; k2) = f (0)g (x0; k2) + �S(k2)2� 1Zx0 dzz k2=zZk20 dk02k02 83fS�x0z ; k02�+�S(k2)2� 1Zx0 dzz k2=zZk20 dk02k02 12fg �x0z ; k02�(Ladder)



2878 B. Ziaja+�S(k2)2� k2Zk20 dk02k02 1Zx0 dzz (�43)zfS�x0z ; k02�+�S(k2)2� k2Zk20 dk02k02 1Zx0 dzz 6z24fg�x0z ; k02��fg(x0; k02)1�z � 2fg �x0z ; k02�35+�S(k2)2� k2Zk20 dk02k02 �112 � NF3 + 6 ln(1� x0)� fg(x0; k02)(Altarelli�Parisi)��S(k2)2� 1Zx0 dzz  " ~F 8!2 #(z)G02�2!gq k2Zk20 dk02k02 fS�x0z ; k02���S(k2)2� 1Zx0 dzz k2=zZk2 dk02k02  " ~F 8!2 # k02k2 z!G02�2!ggfg �x0z ; k02� :(Non-ladder) (33)In equations (31)�(33) we group separately: terms orresponding to theladder diagram ontributions to the double ln2(1=x) resummation, ontri-butions from the non-singular parts of the AP splitting funtions, and �nallyontributions from the non-ladder bremsstrahlung diagrams. We label thosethree ontributions as �ladder�, �Altarelli�Parisi� and �non-ladder�, respe-tively.Inhomogeneous terms f (0)i (x0; k2) (i =NS,S, g), as stated above, may beexpressed as:f (0)NS (x0; k2) = �S(k2)2� 43 1Zx0 dzz (1 + z2)gNS(0)1 (x0z )� 2zgNS(0)1 (x0)1� z+�S(k2)2� �2 + 83 ln(1� x0)� gNS(0)1 (x0) ; (34)



Low x Double ln2(1=x) Resummation E�ets at the Sum Rules : : : 2879
f (0)S (x0; k2) = +�S(k2)2� 43 1Zx0 dzz (1 + z2)gS(0)1 (x0z )� 2zgS(0)1 (x0)1� z+�S(k2)2� (2 + 83 ln(1� x0))gS(0)1 (x0)+�S(k2)2� NF 1Zx0 dzz (1� 2z)�g(0) �x0z � ;f (0)g (x0; k2) = +�S(k2)2� 43 1Zx0 dzz (2� z)gS(0)1 �x0z �+�S(k2)2� �112 � NF3 + 6 ln(1� x0)��g(0) �x0�+�S(k2)2� 6 1Zx0 dzz "�g(0)(x0z )�z�g(0)(x0)1�z +(1�2z)�g(0)�x0z�#:(35)Equations (31)�(33) together with (34), (35) and (6) redue to the LOAP evolution equations for nuleon struture funtion with starting (inte-grated) distributions gi;(0)1 (x) (i =NS,S) and �g(0)(x) after we set the upperintegration limit over k02 equal to k2 in all terms in equations (31)�(33),neglet the higher order terms in the kernels, and set Q2 in plae of W 2 asthe upper integration limit of the integral in Eq. (6).Appendix BWe prove that (23) holds. After integrating both sides of (34) over x inthe interval x = (0; 1) one arrives at:f (0)NS(k2) = �S(k2)2� 43 1Z0 dx gNS;(0)1 (x)24 xZ0 dz 1+z21�z + 1Zx dz�1+z21�z � 21�z�35+2 �S(k2)2� gNS;(0)1 + �S(k2)2� 83 1Z0 dx ln(1� x) gNS;(0)1 (x) : (36)



2880 B. ZiajaPerforming the integrals over z, one obtains:f (0)NS(k2) = �S(k2)2� 43 24�2 1Z0 dx ln(1� x) gNS;(0)1 (x)� 32 gNS;(0)1 35+2 �S(k2)2� gNS;(0)1 + �S(k2)2� 83 1Z0 dx ln(1� x) gNS;(0)1 (x):(37)This implies: f (0)NS(k2) = 0 : (38)Appendix CWe prove that (25), (26) hold. After integrating both sides of (35) overx = (0; 1) one arrives at:f (0)S (k2) = �S(k2)2� 43 1Z0 dx gS;(0)1 (x)24 xZ0 dz 1+z21�z + 1Zx dz�1+z21�z � 21�z�35+2 �S(k2)2� gS;(0) + �S(k2)2� 83 1Z0 dx ln(1� x) gS;(0)1 (x)+�S(k2)2� NF 1Z0 dxx2 �p(0)g (x) xZ0 dz (x� 2z) : (39)Using (37) and performing integral over z in the last term, one obtains:f (0)S (k2) = 0 : (40)In the gluon setor integration of (35) over x yields:f (0)g (k2) = �S(k2)2� 43 1Z0 dxx2 gS;(0)1 (x) xZ0 dz (2x� z)+�S(k2)2� 6 1Z0 dx�p(0)g (x)24 1Z0 dz� 11�z+1�2z�� 1Zx dz 11�z35+�S(k2)2� �112 �NF3 ��p(0)g +�S(k2)2� 6 1Z0 dx ln(1�x)�p(0)g (x):(41)
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