
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 10
RESUMMATION OF DOUBLE LOGARITHMIC TERMSln2(1=x) IN THE POLARIZED NONSINGLETSTRUCTURE FUNCTION g1 AT SMALL x VIADGLAP-LIKE APPROACHDorota KotlorzDepartment of Physis, Tehnial University of OpoleOzimska 75, 45-370 Opole, Polande-mail: dstrozik�po.opole.pland Andrzej KotlorzDepartment of Mathematis, Tehnial University of OpoleLuboszyka 3, 45-036 Opole, Poland(Reeived July 2, 2001)An alternative equation, resumming of the ln2 1=x terms for the polar-ized nonsinglet struture funtion gNS1 at small x is presented. Constru-tion of the DGLAP-like formula for the auxiliary funtion, orresponding tothe gNS1 at resaled Q2 variable is shown. Preditions of this approah forthe gNS1 funtion at small x in a ase of a �at as well as a dynamial inputare given. The role of the �xed oupling onstant and the running one isalso disussed.PACS numbers: 12.38 Bx 1. IntrodutionOur knowledge about the struture funtions of the nuleon is still inom-plete beause of lak of understanding how these struture funtions behavein the small Bjørken x region. Neither present experimental data nor thetheoretial QCD desription give a full and unique piture of an exat shapeof the quark and gluon distributions in the nuleon. Perturbative QCD anal-ysis, based on the DGLAP evolution equations [1℄ is in good agreement withexperimental measurements. This agreement onerns unpolarized [2,3℄ andpolarized [4℄ struture funtions of the nuleon within NLO approximationin the large and moderately small Bjørken x region. Unfortunately, the lakof experimental data in the small x region (x < 10�3) makes the satisfa-tory determination of the Bjørken and Ellis�Ja�e sum rules [5℄ pratially(2883)



2884 D. Kotlorz, A. Kotlorzimpossible. This auses e.g. that the question �how is the spin of the nu-leon made of partons?� remains still open. From reent papers [6, 7℄ weknow that the small x behavior of both unpolarized and polarized struturefuntions is ontrolled by the double logarithmi terms �s ln2 1=x. However,this singular behavior of the struture funtions at low x is better visiblein the spin dependent ase. For the unpolarized, nonsinglet struture fun-tion FNS2 (x;Q2) = F p2 (x;Q2) � F n2 (x;Q2) the QCD singular behavior atsmall x is overridden by the leading Regge ontribution [8℄. Next in theunpolarized, singlet ase, the struture funtion at low x is driven by BFKLpomeron [9℄ beause gluons play the dominant role. Thus the growth ofstruture funtions of the nuleon, governed by leading double logarithmiterms �ns ln2n(x) beomes best visible for spin dependent funtions. There-fore, the polarized struture funtions of the nuleon may be a sensitivetest of the perturbative QCD analysis in the small x region. The doublelogarithmi ln2 x e�ets for spin dependent struture funtions within therenormalization group approah have been disussed in [10℄. The doublelogarithmi ln2 x e�ets go beyond the standard LO or even NLO QCD evo-lution of parton distributions and orrespond to the ladder diagrams withquark and gluon exhanges along the ladder [11℄. One has also to takeinto aount nonladder diagrams [11℄ but in the nonsinglet ase they maybe negleted as nonleading [6, 7℄. Thus the nonsinglet, polarized struturefuntion gNS1 (x;Q2) = gp1(x;Q2) � gn1 (x;Q2) is a onvenient funtion bothfor QCD analysis (beause of its simpliity) and future experimental tests atHERA [12℄ onerning the determination of the Bjørken sum rule. The smallx behavior of the nonsinglet polarized as well as the spin-averaged struturefuntions and the running oupling e�ets in the orresponding evolutionequations have been reently presented in [13℄. Theoretial preditions forgNS1 at small x, inorporating the double ln2 x e�ets have been also pre-sented in [7,14�16℄. In these papers the perturbative QCD analysis is basedon the unintegrated spin dependent quark distributions f(x; k2). It meansthat the sum of double logarithmi ln2 x terms is represented by a appropri-ate integral equation for the unintegrated struture funtion f(x; k2).In this paper we present an alternative approah of the double ln2 x re-summation for gNS1 at small x. Our formalism is based on the usual quarkdistribution funtions (and not on f(x; k2) funtion) and moreover generatesthe ln2 x terms via DGLAP-like evolution equation for the resaled quarktransverse momentum squared �2 = k2=x. The purpose of this paper isto ompare these two methods of the double ln2 x resummation for the po-larized nonsinglet struture funtion gNS1 at low x. In the next setion webrie�y reall the origin of the double logarithmi ln2 x e�ets at low x, inor-porating the evolution equation based on the unintegrated funtion f(x; k2).



Resummation of Double Logarithmi Terms : : : 2885In Setion 3 we introdue alternative formalism, in whih after resalingthe kinemati variable �2 = k2=x we get DGLAP-like evolution equationin �2. This equation for the polarized quark distributions (and hene forthe gNS1 funtion) generates the double logarithmi ln2 x terms. Setion 4ontains numerial results for the spin dependent nonsinglet struture fun-tion gNS1 (x;Q2) in our approah. We ompare the both mentioned abovemethods and also ompare their preditions for gNS1 with SMC 1997 small xdata. Finally in Setion 5 we summarize our results.2. Double logarithmi ln2 x resummation for the nonsinglet,polarized struture funtion gNS1 (x;Q2) usingthe unintegrated funtion f(x; k2)It has been notied lately [6,7℄ that the spin dependent struture funtiong1 in the small x region is dominated by ln2(1=x) terms. This singular be-havior, implied by QCD, is for the polarized struture funtions the leadingone. Comparatively, for unpolarized, nonsinglet struture funtions of thenuleon, the QCD evolution behavior at small x is sreened by the leadingRegge ontribution. The Regge theory [17℄, whih onerns the Regge limit:x! 0 predits the following behavior of parton distributions at small x andQ2 � 1GeV2: x� � onst: (Pomeron) ;qNS � x�0:5 (Reggeon A2 : �� !) ;��; �qNS � x0 � x0:5 (Reggeon A1) ; (2.1)where �, qNS, ��, �qNS denote, respetively, singlet unpolarized, nonsin-glet unpolarized, singlet polarized, nonsinglet polarized quark distributions.The shape of all spin dependent distributions ��, �qNS is mostly governedby QCD evolutions with dominating ln2 x terms at small x. The full ontri-bution to the double ln2 x resummation omes from the ladder diagram withquark and gluon exhanges along the ladder � f. Fig. 1 and the nonladderbremsstrahlung diagrams [11℄. In ontrast to the singlet polarized funtion,for the nonsinglet one the ontribution of nonladder diagrams is negligible.Thus examining the polarized, nonsinglet struture funtion gNS1 (x;Q2), weshould onsider only mentioned above ladder diagrams. The nonsinglet partof the spin dependent struture funtion has the form:gNS1 (x;Q2) = gp1(x;Q2)� gn1 (x;Q2) ; (2.2)
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Fig. 1. A ladder diagram generating double logarithmi ln2(1=x) terms in the non-singlet spin struture funtion g1.where gp1 and gn1 are spin dependent struture funtions of proton and neu-tron, respetively. Let us remind the meaning of g1. In the Bjørken limitg1(x) = 12 Xi=u;d;s;:: e2i�qi(x) ; (2.3)�qi(x) = qi+(x)� qi�(x) ; (2.4)where ei is a harge of the i-�avor quark, qi+(x) (qi�(x)) is the densitydistribution funtion of the i-quark with the spin parallel (antiparallel) tothe parent nuleon. Funtion g1(x;Q2) is onneted with the heliity of thenuleon (i.e. spin projetion on the momentum diretion). Thus the integralh�qii = 1Z0 �qi(x)dx (2.5)is simply a part of the nuleon heliity, arried by a quark of i-�avor(i = u; d; s; : : :). Polarized distribution funtions of quarks are de�ned as:�q = �qval +�qsea : (2.6)



Resummation of Double Logarithmi Terms : : : 2887Finally, gNS1 = 16(�uval ��dval) = 16(�u��d) : (2.7)Solutions of the equation for the unintegrated polarized nonsinglet stru-ture funtion fNS(x;Q2), whih gives the ln2 x resummation are presented in[7,14�16℄. ln2 x as the only ontribution at small x behavior of gNS1 is exam-ined in [7℄ while in [14�16℄ the uni�ed desription of gNS1 inorporating boththe DGLAP evolution and ln2 x e�ets is presented. These all approahesare based on the unintegrated distribution funtion f(x;Q2), whih is relatedto the g1(x;Q2) viag1 �x;Q2� = g(0)1 (x) + Q2(1=x�1)Zk20 dk2k2 f �x�1 + k2Q2� ; k2� ; (2.8)where g(0)1 (x) = k20Z0 dk2k2 f �x; k2� : (2.9)Let us reall from [14℄ that the resummation of the double logarithmi termsln2 x in the limit of a very small x (x! 0) is given in the ase of the polarized,nonsinglet struture funtion byfNS �x; k2�=f (0)NS �x; k2�+�s(k2)2� 1Zx dzz k2=zZk20 dk02k02 �P (0)qq (z)fNS �xz ; k02� :(2.10)The soure of the double logarithmi terms ln2 x in g1 �x;Q2� is the doubleintegration in the formula for funtion f �x; k2�:f(x; k2) � �s2� 1Zx dzz k2=zZk20 dk02k02 ; (2.11)where the upper limit in the integral over the transverse momentum k02is z-dependent (= k2=z). Thus, double logarithmi terms ome from theintegration over the longitudinal momentum fration z together with theintegration over k02 with z-dependent upper limit:f(x; k2) � ln2�1x� = ln2 x : (2.12)



2888 D. Kotlorz, A. KotlorzThe analytial solution of (2.10) in the ase of the �xed oupling onstant�s [15℄ shows the singular small x behavior of the polarized, nonsingletstruture funtion g1 i.e. : gNS1 �x;Q2� � x��NS ; (2.13)�NS = 2r�s2��P (0)qq (x) ; (2.14)where �P (0)qq (x) is the splitting funtion and in the limit x ! 0 is equalto 4=3. Hene for the �xed �s = 0:18, �NS = 0:39 and as it has beenalready mentioned above, the singular small x shape of gNS1 , implied byQCD, dominates the REGGE behavior:REGGE : gNS1 (x;Q2) � x��NS(0) �NS(0) � 0 ; (2.15)QCD: gNS1 (x;Q2) � x��NS �NS � 0:5 : (2.16)In the ase of the running oupling onstant, numerial results for gNS1 , basedon the Regge �at input parametrization gNS1 (x;Q20 = 1GeV2) are given in[7,14,15℄. In [16℄ the same method is used for dynamial input parametriza-tion, where in ontrast to Regge �at parametrizations, gNS1 (x;Q20 = 1GeV2)is singular for small x. The generation of the double logarithmi ln2 x termsis also possible via DGLAP-like evolution equation for g1 funtion with theresaled transverse momentum squared. This alternative method is pre-sented in the next setion.3. DGLAP-like evolution equation for gNS1 , generatingln2 x terms at low xWe study the origin of the double logarithmi ln2 x terms in gNS1 (x;Q2)using a simple resaling of Q2 variable: Q2 ! �2 = Q2=x, what leads to theDGLAP-like equation for gNS1 with evolution in a new sale �2. We fous onthe small x region so our initial equation for further investigations is thatwhih ontains only dominating ln2 x part. First let us onsider the asewith a �xed oupling ��s = onst:, where��s = 2�s3� : (3.1)Thus the starting equation is:fNS �x; k2� = f (0)NS �x; k2�+ ��s 1Zx dzz k2=zZk20 dk02k02 fNS �xz ; k02� : (3.2)



Resummation of Double Logarithmi Terms : : : 2889After a simple substitution�2 = k2x ; x0 = xz ; �02 = k02x0 ; (3.3)equation (3.2) takes the form:fNS �x; x�2� = f (0)NS �x; x�2�+ ��s 1Zx dzz �2Zk20 zx d�02�02 fNS �xz ; xz �02� : (3.4)After introdution an auxiliary funtion ' �x; �2�' �x; �2� � fNS �x; x�2� (3.5)and applying Heaviside's � funtion:�(t) = n 1 for t > 00 for t � 0 (3.6)we get:' �x; �2� = '(0) �x; �2�+ ��s 1Zx dzz �2Zk20 d�02�02 � ��02 � k20 zx�'�xz ; �02� ; (3.7)or '� �x; �2� = '(0)� �x; �2�+ ��s 1Zx dzz �2Zk20 d�02�02 '� �xz ; �02� ; (3.8)where '� �x; �2� � ���2 � k20x �' �x; �2� : (3.9)Equation (3.8) has an exat form of the DGLAP Q2 evolution formula for theunintegrated distribution funtion f(x;Q2). The mentioned DGLAP evolu-tion equation for polarized nonsinglet quark distributions �p (and hene forgNS1 funtion too) in the small x region is given by:��p �x;Q2�� lnQ2 = ��s 1Zx dzz �p �xz ;Q2� : (3.10)



2890 D. Kotlorz, A. KotlorzRelation between �p(x;Q2) and the unintegrated distribution fp �x;Q2� isas usual: fp �x;Q2� = ��p �x;Q2�� lnQ2 ; (3.11)what implies: �p �x;Q2� = �p0(x) + Q2ZQ20 dQ02Q02 fp �x;Q02� ; (3.12)where �p0(x) is a nonperturbative part of �p�p0(x) = Q20Z0 dQ02Q02 fp �x;Q02� (3.13)and Q20 = 1GeV2 is the low sale of perturbative QCD. Hene the evolutionequation (3.10) written for the unintegrated distribution funtion fp �x;Q2�takes the form:fp �x;Q2� = f (0)p �x;Q2�+ ��s 1Zx dzz Q2ZQ20 dQ02Q02 fp �xz ;Q02� (3.14)and f (0)p �x;Q2� = ��s 1Zx dzz �p0 �xz � : (3.15)One an see from (3.8) and (3.14) that the double ln2 x resummation equa-tion written for '� �x; �2� funtion is a DGLAP �2 evolution equation. Theauxiliary funtion '� �x; �2� may be, similarly as in (3.11), represented byan integrated funtion u �x; �2�:'� �x; �2� = �u �x; �2�� ln�2 (3.16)and onversely u �x; �2� = u0(x) + �2Zk20 d�02�02 '� �x; �02� : (3.17)



Resummation of Double Logarithmi Terms : : : 2891Thus equation (3.8), generating double ln2 x e�ets an be rewritten as:�u �x; �2�� ln�2 = ��s 1Zx dzz u�xz ; �2� : (3.18)Relation between the nonsinglet polarized struture funtion gNS1 �x;Q2� andthe auxiliary funtion u �x; �2� is as follows:gNS1 �x;Q2 = x�2� = u �x; �2� : (3.19)In this way the problem of produing the ln2 x terms for gNS1 �x;Q2� in thesmall x region via equation (2.10) has been redued to the DGLAP evolu-tion to the momentum sale �2 = Q2=x. It is not astonishing: appearing ofthe new evolution sale Q2=x has its origin in the upper limit k2=z of theintegration over the transverse momentum in (2.10). This logarithmi inte-gration over the transverse momentum up to the z�dependent limit k2=ztogether with the logarithmi integration over the longitudinal momentumfration z give double logarithmi ln2 x terms. The mehanism of appearingof the ln2 x e�ets in gNS1 from DGLAP-like equations (3.18)�(3.19) is wellvisible just in a ase of the �xed oupling onstant ��s = onst: Then theEq. (3.18) an be solved analytially. Using standard Mellin's method onean get the solution of Eq. (3.18) in the form (see Appendix A):u �x; �2� � 1Xk=0 � ��s ln 1x ln �2k20 �kk!k! (3.20)and hene:gNS1 �x;Q2� = u�x; Q2x � � 1Xk=0 h ��s ln 1x �ln 1x + ln Q2k20 �ikk!k! ; (3.21)what gives approximately the leading small x behavior:gNS1 �x;Q2� � x�2p ��s : (3.22)



2892 D. Kotlorz, A. KotlorzTaking into aount parton interations through the introdution of therunning oupling onstant one an get from (3.18) an equation whih inor-porates the running ouplings e�ets ��s ! ��s(Q2):�u �x; �2�� ln�2 = ��s �x�2� 1Zx dzz u �xz ; �2� : (3.23)However, more justi�ed theoretially seems to be the introdution of therunning oupling by the substitution ��s ! ��s �Q2=z�, what gives:�u �x; �2�� ln�2 = 1Zx dzz ��s�x�2z �u�xz ; �2� : (3.24)Our numerial analysis presented in the next setion ontains both the above�running oupling� presriptions and the onstant ��s ase as well.4. Numerial preditions for gNS1 (x;Q2) based on theDGLAP-like equation, resumming the ln2 x termsWe solve numerially equations (3.18), (3.23) and (3.24) whih areDGLAP �2 evolution equations for the auxiliary funtion u �x; �2�. The rela-tion between u �x; �2� and the physial polarized nonsinglet struture fun-tion gNS1 (x;Q2) (2.7) is given by (3.19). In this way one an get the small xbehavior of gNS1 governed by the double logarithmi ln2 x e�ets. We om-pare our preditions with those, reeived in the unintegrated f(x;Q2) ap-proah (2.10) and desribed in [7℄. Solving the DGLAP equations (3.18),(3.23) and (3.24) one should have an input parametrization of the u fun-tion at the low sale k20. Beause u(x;Q2) has a meaning of the physial gNS1funtion for the resaled Q2 variable as it is shown in (3.19), one an alsowrite: u �x; k20� = gNS1 �x; xk20� : (4.1)The low sale k20 introdued in (3.7) is equal to the usually used QCD ut-o�parameter k20 = 1GeV2. The dependene on z=x of the lower limit in theintegration (3.4): Q20 = zxk20 (4.2)beame �shifted� to the de�nition of '� �x; �2� via (3.9). It means thatfor running oupling ases one should take into aount in the evolutionequations (3.23) and (3.24) the ut-o� fator �(�2 � k20=x). Otherwise, the



Resummation of Double Logarithmi Terms : : : 2893running variable x�2 in the oupling �s beomes less than the low sale ofQCD evolution k20 = 1GeV2 what is de�nitely inorret. There is no suha onstraint in the �xed oupling onstant. Taking into aount that forperturbative QCD analysis the low ut-o� parameter k20 = 1GeV2 we putthis value for the input sale of the u funtion too. This implies that forsmall x the input parametrizations u(x; k20) orresponds to the gNS1 at thevery low sale xk20. We assume, that below the k20 = 1GeV2 the behaviorof the quark distributions is the same as at k20. Therefore, we apply thestandard parametrizations of the valene quarks (and hene of gNS1 ) for theauxiliary funtion u:u �x; k20� = gNS1 �x; k20� ; k20 = 1GeV2: (4.3)There are two basi kinds of input parametrizations of gNS1 �x; k20�: the Reggeone, whih is �at at small x and the singular one, whih behaves like x�a(a � 0:3) at small x. In our numerial alulations we use two di�erentinput parametrizations: the Regge one, whih is given byREGGE : u �x; k20� = 23 gA(1� x)3 = 0:838(1 � x)3 ; (4.4)where gA = 1:257 is the axial vetor oupling and the dynamial inputGRSV [18℄:GRSV : u �x; k20� = 0:327x�0:267��1� 0:583x0:175 + 1:723x + 3:436x3=2� (1� x)3:486+0:027x�0:624 �1+1:195x0:529+6:164x+2:726x3=2� (1�x)4:215:(4.5)For details about these parametrizations see also [16℄. In all alulations�QCD = 232MeV. Our numerial results are presented in Figs. 2�5.In Fig. 2 the preditions for gNS1 at small x, based on the Eq. (3.18) forRegge and GRSV inputs, respetively, are shown. We use two di�erent val-ues of �xed oupling: �s = 0:18 and �s = 0:12. The input parametrizationsare also plotted. In Fig. 3 we onfront the �xed oupling results of Eq. (3.18)for �s = 0:18 with those, based on Eqs. (3.23), (3.24), taking into aountrunning oupling e�ets. Two groups of lines orrespond to di�erent inputs:Regge and GRSV. The e�etive slope �NS determined from (2.16) as�NS � � ln gNS1� ln 1x (4.6)
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2896 D. Kotlorz, A. Kotlorzfor both input parametrizations and all mentioned above �s ases:�s = onst: = 0:18, �s(Q2), �s(Q2=z) is presented in Fig. 4. The ompari-son of small x preditions for gNS1 based on the DGLAP-like ln2 x approahwith those based on the unintegrated funtion f(x;Q2) and Eq. (2.10) isshown in Fig. 5. Both parametrizations are used. The running ouplinge�ets �s(Q2) are inluded. We also plot few small x reent SMC 1997data [4℄. In all plots Q2 = 10GeV2.From Figs. 2�5 one an read the following onlusions:1. The ln2 x resummation gives steep growth of the struture funtion inthe small x region. It is well known e�et [6, 7℄ that for x � 10�2 the ln2 xterms dominate over the LO (or even NLO) evolution.2. The growth of the struture funtion in the small x region is, ofourse, muh steeper for the dynamial parametrization than for the �atone. Singular inputs at k20 intensify the QCD evolution e�ets while inthe ase of �at parametrizations the singular small x behavior of struturefuntions is ompletely and only generated by QCD evolution.3. The e�etive slope �NS (4.6) is ontained between 0.14 for the non-singular input and the running oupling �s(Q2=z) and 0.6 for the singularinput and the �xed oupling �s = 0:18. This shows apart from the aboveonlusion in the point 2 that for the running oupling onstant �s(Q2), �NSis smaller than for the �xed one. Besides, introdution of the �s = �s(Q2=z)auses the slope �NS still smaller:�NS(�s=onst:=0:18)>�NS ��s=�s �Q2��>�NS��s=�s�Q2z �� : (4.7)For omparison, the Regge theory predits in the small x region �A1(0) � 0and gNS1 behaves as x��A1 (0) � onst:4. Comparing our results with those, based on the unintegrated fun-tion f(x;Q2) and the equation (2.10) one an see agreement of these twoapproahes. It is not astonishing beause both the methods onern in fatthe same problem: resummation of the double logarithmi terms ln2 x forthe gNS1 funtion in the small x region. Our approah based on the DGLAP-like equation (3.18) enables us to keep the onstane upper sale of evolution�2 instead of Q2=z like in (2.10). In this way this approah beomes similarto the standard DGLAP Q2 evolution and we an adopt the methods usedin it to get new � ln2 x e�ets.5. SMC reent data [4℄ for very small x (3 points shown in Fig. 5) on�rmthe growth of the polarized nonsinglet struture funtion gNS1 in the small xregion. It seems that the singular inputs make possible the better agreementof theoretial preditions with experimental data.



Resummation of Double Logarithmi Terms : : : 28975. Summary and onlusionsIn this paper we have presented the double logarithmi ln2 x terms re-summation for the spin dependent nonsinglet struture funtion gNS1 . In ourapproah we have solved the DGLAP-like equation for the auxiliary funtionu �x; �2� whih orresponds to the physial funtion gNS1 �x;Q2 = x�2� atthe resaled �2 variable. Our alulations have been performed for the sim-ple nonsingular Regge parametrization and for the dynamial one as well.Apart from the �xed oupling onstant ase, the running oupling e�etshave been taken into aount. Besides the e�etive slope, ontrolling thesmall x behavior of gNS1 has been estimated. Its value has been found to liebetween 0.14 for the nonsingular input and the running oupling �s �Q2=z�,and 0.6 for the singular input and the �xed oupling �s = 0:18. We foundthat the ln2 x e�ets govern the small x inrease of the struture funtiongNS1 �x;Q2�. This growth is larger in the ase of the �xed oupling onstantthan for the running one and, of ourse, is larger for the singular inputgNS1 �x; k20� than for the �at (e.g. Regge) one. The equation we have on-sidered is not appliable for the large x (x > 10�2) region. Our formalismis, however, orret in the very interesting small x region. Presented resultson�rm that the ln2 x e�ets are very signi�ant for x � 10�2. The spindependent struture funtions of the nuleon are a sensitive test of the per-turbative QCD analysis in the small x region. However, lak of experimentaldata in the very low x region �x � 10�3� auses the satisfatory veri�ationof the theoretial QCD preditions impossible in this region. Also the pre-ditions inorporating the double logarithmi ln2 x e�ets in gNS1 are stillawaiting for their ruial probe.We are grateful to Jan Kwiei«ski for help in preparing this paper.Appendix AAnalytial solution of the DGLAP-like evolution equation for gNS1generating double logarithmi ln2 x e�ets at small xWe solve the equation (3.18) with the �xed oupling ��s = 0:038 using thestandard Mellin method. The Mellin transformation de�nes the n-momentof u �x; �2� funtion by:un ��2� � 1Z0 xn�1u �x; �2� dx : (A.1)



2898 D. Kotlorz, A. KotlorzThus in moment spae the evolution equation for small x (3.18) is simplygiven by dun ��2�d ln�2 = ��sn un ��2� : (A.2)The solution of (A.2) is straightforwardun ��2� = un0 ��2k20 � ��s=n; (A.3)where un0 is the n-moment of the input u �x; k20� funtion:un0 = 1Z0 xn�1u �x; k20� dx : (A.4)For the nonsingular input parametrizationu �x; k20� � onst: ; (A.5)un0 has a form: un0 = onst:n : (A.6)Employing the inverse Mellin transformation:u �x; �2� = 12�i +i1Z�i1 x�nun ��2� dn ; (A.7)whih gives u �x; �2� = onst:2�i +i1Z�i1 x�nn ��2k20 � ��s=n dn : (A.8)One an get the solution u �x; �2� of the form:u �x; �2� = onst: 1Xk=0 � ��s ln 1x ln �2k20 �kk!k! (A.9)
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