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An alternative equation, resumming of the In? 1 /x terms for the polar-
ized nonsinglet structure function ¢S at small z is presented. Construc-
tion of the DGLAP-like formula for the auxiliary function, corresponding to
the g\ at rescaled Q? variable is shown. Predictions of this approach for
the ¢gi¥° function at small  in a case of a flat as well as a dynamical input
are given. The role of the fixed coupling constant and the running one is
also discussed.

PACS numbers: 12.38 Bx

1. Introduction

Our knowledge about the structure functions of the nucleon is still incom-
plete because of lack of understanding how these structure functions behave
in the small Bjgrken z region. Neither present experimental data nor the
theoretical QCD description give a full and unique picture of an exact shape
of the quark and gluon distributions in the nucleon. Perturbative QCD anal-
ysis, based on the DGLAP evolution equations [1] is in good agreement with
experimental measurements. This agreement concerns unpolarized [2,3] and
polarized [4] structure functions of the nucleon within NLO approximation
in the large and moderately small Bjgrken z region. Unfortunately, the lack
of experimental data in the small = region (z < 10~?) makes the satisfac-
tory determination of the Bjorken and Ellis—Jaffe sum rules [5] practically
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impossible. This causes e.g. that the question “how is the spin of the nu-
cleon made of partons?” remains still open. From recent papers [6,7] we
know that the small 2 behavior of both unpolarized and polarized structure
functions is controlled by the double logarithmic terms a, In? 1/z. However,
this singular behavior of the structure functions at low x is better visible
in the spin dependent case. For the unpolarized, nonsinglet structure func-
tion F'5(x, Q%) = Ff(z,Q%) — F(z,Q?%) the QCD singular behavior at
small z is overridden by the leading Regge contribution [8]. Next in the
unpolarized, singlet case, the structure function at low z is driven by BFKL
pomeron [9] because gluons play the dominant role. Thus the growth of
structure functions of the nucleon, governed by leading double logarithmic
terms o In?"(z) becomes best visible for spin dependent functions. There-
fore, the polarized structure functions of the nucleon may be a sensitive
test of the perturbative QCD analysis in the small z region. The double
logarithmic In?z effects for spin dependent structure functions within the
renormalization group approach have been discussed in [10]. The double
logarithmic In? z effects go beyond the standard LO or even NLO QCD evo-
lution of parton distributions and correspond to the ladder diagrams with
quark and gluon exchanges along the ladder [11]. One has also to take
into account nonladder diagrams [11] but in the nonsinglet case they may
be neglected as nonleading [6,7]. Thus the nonsinglet, polarized structure
function ¢)5(z, Q%) = ¢¥(r, Q%) — g7(z,Q?) is a convenient function both
for QCD analysis (because of its simplicity) and future experimental tests at
HERA [12] concerning the determination of the Bjgrken sum rule. The small
x behavior of the nonsinglet polarized as well as the spin-averaged structure
functions and the running coupling effects in the corresponding evolution
equations have been recently presented in [13]. Theoretical predictions for
g%\ls at small z, incorporating the double In?z effects have been also pre-
sented in [7,14-16|. In these papers the perturbative QCD analysis is based
on the unintegrated spin dependent quark distributions f(z,k?). It means
that the sum of double logarithmic In? z terms is represented by a appropri-
ate integral equation for the unintegrated structure function f(z,k?).

In this paper we present an alternative approach of the double In? z re-
summation for g} at small z. Our formalism is based on the usual quark
distribution functions (and not on f(z, k%) function) and moreover generates
the In? z terms via DGLAP-like evolution equation for the rescaled quark
transverse momentum squared p? = k?/x. The purpose of this paper is
to compare these two methods of the double In? z resummation for the po-
larized nonsinglet structure function ¢)° at low z. In the next section we
briefly recall the origin of the double logarithmic In? z effects at low z, incor-
porating the evolution equation based on the unintegrated function f(z, k?).
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In Section 3 we introduce alternative formalism, in which after rescaling
the kinematic variable p? = k?/z we get DGLAP-like evolution equation
in 2. This equation for the polarized quark distributions (and hence for
the ¢g'> function) generates the double logarithmic In? 2 terms. Section 4
contains numerical results for the spin dependent nonsinglet structure func-
tion g\5(x,@?) in our approach. We compare the both mentioned above
methods and also compare their predictions for g%\ls with SMC 1997 small x
data. Finally in Section 5 we summarize our results.

2. Double logarithmic In? z resummation for the nonsinglet,
polarized structure function glNS(:B, Q?) using
the unintegrated function f(x,k?)

It has been noticed lately [6,7] that the spin dependent structure function
g1 in the small z region is dominated by In?(1/z) terms. This singular be-
havior, implied by QCD, is for the polarized structure functions the leading
one. Comparatively, for unpolarized, nonsinglet structure functions of the
nucleon, the QCD evolution behavior at small x is screened by the leading
Regge contribution. The Regge theory [17], which concerns the Regge limit:
x — 0 predicts the following behavior of parton distributions at small z and
Q? < 1GeV?:

xX ~ const. (Pomeron),
gns ~ 2790 (Reggeon Ao : p —w),
A, Agns ~ z° + 2% (Reggeon A,), (2.1)

where X, gng, AX, Agns denote, respectively, singlet unpolarized, nonsin-
glet unpolarized, singlet polarized, nonsinglet polarized quark distributions.
The shape of all spin dependent distributions AX, Agng is mostly governed
by QCD evolutions with dominating In? z terms at small . The full contri-
bution to the double In? & resummation comes from the ladder diagram with
quark and gluon exchanges along the ladder — c¢f. Fig. 1 and the nonladder
bremsstrahlung diagrams [11]. In contrast to the singlet polarized function,
for the nonsinglet one the contribution of nonladder diagrams is negligible.
Thus examining the polarized, nonsinglet structure function g\¥>(x, Q?), we
should consider only mentioned above ladder diagrams. The nonsinglet part
of the spin dependent structure function has the form:

glNS(IaQQ) :gzlj(maQ?) _g?(l‘aQ2)a (22)
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Fig.1. A ladder diagram generating double logarithmic In?(1/z) terms in the non-
singlet, spin structure function g .

where g} and g} are spin dependent structure functions of proton and neu-
tron, respectively. Let us remind the meaning of g;. In the Bjgrken limit

a) =5 O dg), 239
i=u,d,s,..
Agi(7) = git(z) — ¢i—(2) , (24)

where e; is a charge of the i-flavor quark, ¢;(x) (¢;—(z)) is the density
distribution function of the i-quark with the spin parallel (antiparallel) to
the parent nucleon. Function g;(x, Q?) is connected with the helicity of the
nucleon (i.e. spin projection on the momentum direction). Thus the integral

1
(Agy) = / Ags(z)de (2.5)
0

is simply a part of the nucleon helicity, carried by a quark of i-flavor
(1 = u,d,s,...). Polarized distribution functions of quarks are defined as:

Aq = Aqya) + Agsea - (2'6)
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Finally,
1 1
g = 5 (Atvar = Adar) = £(Au — Ad). (2.7)

Solutions of the equation for the unintegrated polarized nonsinglet struc-
ture function fNS(z, Q?), which gives the In? & resummation are presented in
[7,14-16]. In®z as the only contribution at small z behavior of g% is exam-
ined in [7] while in [14-16] the unified description of g)> incorporating both
the DGLAP evolution and In? z effects is presented. These all approaches
are based on the unintegrated distribution function f(z, Q?), which is related
to the g1(z, Q?) via

692(1/I—1)dk2 2
g1 (x,QQ) = g§°) (z) + / ?f <x <1 + QQ) k2) (2.8)
kg
where

k2 )

dk
9" (@) = / =R (z,k%) . (2.9)

0

Let us recall from [14] that the resummation of the double logarithmic terms
In? z in the limit of a very small z (x — 0) is given in the case of the polarized,
nonsinglet structure function by

s (k)= 18 (1) 4 20 | ‘”/ T ar s (£47).

(2.10)
The source of the double logarithmic terms Inz in g (ac, QQ) is the double
integration in the formula for function f (.’L‘, k2):

1
dz [ dk”
Fz,k2) ~ / Z/ T (2.11)

where the upper limit in the integral over the transverse momentum k'
is z-dependent (= k?/z). Thus, double logarithmic terms come from the
integration over the longitudinal momentum fraction z together with the
integration over k"2 with z-dependent upper limit:

f(z,k*) ~ In? <1> =In’z. (2.12)

x
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The analytical solution of (2.10) in the case of the fixed coupling constant
as [15] shows the singular small z behavior of the polarized, nonsinglet
structure function g¢; i.e. :

V5 (2,Q%) ~ xS | (2.13)
Ang = 2 ;‘—;qu(? (z), (2.14)

where APq(g) (x) is the splitting function and in the limit z — 0 is equal
to 4/3. Hence for the fixed a; = 0.18, Axg = 0.39 and as it has been
already mentioned above, the singular small z shape of glNS, implied by
QCD, dominates the REGGE behavior:

REGGE : ¢Y5(z, Q%) ~ 270 axg(0) <0, (2.15)
QCD: ¢{5(z,Q*) ~z™™s  Ayg~0.5. (2.16)

In the case of the running coupling constant, numerical results for g}'>, based
on the Regge flat input parametrization ¢ (z, Q2 = 1 GeV?) are given in
[7,14,15]. In [16] the same method is used for dynamical input parametriza-
tion, where in contrast to Regge flat parametrizations, ¢)°(z, Q=1 GeV?)
is singular for small z. The generation of the double logarithmic In? z terms
is also possible via DGLAP-like evolution equation for g; function with the
rescaled transverse momentum squared. This alternative method is pre-
sented in the next section.

3. DGLAP-like evolution equation for glNS, generating
In? 2 terms at low

We study the origin of the double logarithmic In? z terms in g)°(z, Q?)
using a simple rescaling of Q2 variable: Q? — u? = Q?/z, what leads to the
DGLAP-like equation for glNS with evolution in a new scale 2. We focus on
the small z region so our initial equation for further investigations is that
which contains only dominating In?z part. First let us consider the case
with a fixed coupling as = const., where

_ 200
Qg — .
s 3

(3.1)

Thus the starting equation is:

1
2
fxs (2, 52) :f(o (2, k2) + /dz / Czﬁj? fNS k/Q) (3.2)
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After a simple substitution

equation (3.2) takes the form:

1
fNS (xa'xMQ) = flSIOS) (55737/12) + Qs / - D) fNS (Ea E/LQ) . (34)

After introduction an auxiliary function ¢ (x, u2)

© (m,;ﬁ) = fxs (:E,x,ug) (3.5)

and applying Heaviside’s @ function:

k2 !
or
/ d qu 2
z T
Yo (:L‘HUQ) - ()0(@) (I,,U,2) + as / 7/ 52 Yo <_a,ul2> ) (3 8)
T kﬁ
where
2 2 k(Q) 2
¢9($,M)59<M —;)w(:ﬂ,u)- (3.9)

Equation (3.8) has an exact form of the DGLAP Q? evolution formula for the
unintegrated distribution function f(z,Q?). The mentioned DGLAP evolu-
tion equation for polarized nonsinglet quark distributions Ap (and hence for
g8 function too) in the small = region is given by:

1

(9Ap _ dz x
aan2 = d, / : Ap 2). (3.10)
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Relation between Ap(z,Q?) and the unintegrated distribution f, (ac, QQ) is

as usual: oA ( QQ)
P \T,
what implies:
2 Q" 2
Ap (2.0°) = Amle) + [ G fy (2.Q7) (3.12)
Q%
where Apg(z) is a nonperturbative part of Ap
dQI?
Apg(z) = 0" —fp (z ( ,Q' ) (3.13)

and Q2 =1 GeV? is the low scale of perturbative QCD. Hence the evolution
equation (3.10) written for the unintegrated distribution function f, (x, QQ)
takes the form:

fo (2,Q%) = £ ( /dz / dg/f fp ) (3.14)
and
£ (2,Q%) = as = —4Apo (I) (3.15)

One can see from (3.8) and (3.14) that the double In? z resummation equa-
tion written for g (.’L‘, ,ug) function is a DGLAP p? evolution equation. The
auxiliary function g (z,?) may be, similarly as in (3.11), represented by
an integrated function u (x, u2):

o (z,1%) = %’:j) (3.16)
and conversely
MQ 12
w (o) = wo(e) + [ <o (.47) (3.17)
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Thus equation (3.8), generating double In? z effects can be rewritten as:

1

ou (z, p? d
agT:?) =o75/7zu (f,;ﬂ). (3.18)

xT

Relation between the nonsinglet polarized structure function glNS (ac, QQ) and
the auxiliary function (.’L‘, ,ug) is as follows:

s (z, Q%= x;f) =u (x,;f) . (3.19)

In this way the problem of producing the In?z terms for g%\ls (ac, QQ) in the
small = region via equation (2.10) has been reduced to the DGLAP evolu-
tion to the momentum scale u? = Q?/z. It is not astonishing: appearing of
the new evolution scale Q2/z has its origin in the upper limit k?/z of the
integration over the transverse momentum in (2.10). This logarithmic inte-
gration over the transverse momentum up to the z—dependent limit k?/z
together with the logarithmic integration over the longitudinal momentum
fraction z give double logarithmic In? z terms. The mechanism of appearing
of the In? z effects in ¢S from DGLAP-like equations (3.18)—(3.19) is well
visible just in a case of the fixed coupling constant &; = const. Then the
Eq. (3.18) can be solved analytically. Using standard Mellin’s method one
can get the solution of Eq. (3.18) in the form (see Appendix A):

1 2\
oo (o?slngln‘lg—g)

Tkl (3.20)

u (2, 5?) ~
k=0

and hence:

2 o0 o?sln% ln%—{—an—.2 g

k=0

what gives approximately the leading small 2 behavior:

glNS (x,QQ) ~ T2V (3.22)
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Taking into account parton interactions through the introduction of the
running coupling constant one can get from (3.18) an equation which incor-
porates the running couplings effects a; — a;(Q?):

1

ou (m,;ﬂ) s 9 dz T 4

However, more justified theoretically seems to be the introduction of the
running coupling by the substitution @; — &, (Q2 / z), what gives:

1
ou (z, pu?) dz [ zp? T
g - | % <—) w(5oe) (3:24)

x

Our numerical analysis presented in the next section contains both the above
“running coupling” prescriptions and the constant @&, case as well.

4. Numerical predictions for g)¥S(z, Q?) based on the
DGLAP-like equation, resumming the In% z terms

We solve numerically equations (3.18), (3.23) and (3.24) which are
DGLAP 42 evolution equations for the auxiliary function u (.’L‘, ,ug). The rela-
tion between u (ac, u2) and the physical polarized nonsinglet structure func-
tion ¢)5(x, Q?) (2.7) is given by (3.19). In this way one can get the small z
behavior of gN% governed by the double logarithmic In? z effects. We com-
pare our predictions with those, received in the unintegrated f(z,Q?) ap-
proach (2.10) and described in [7]. Solving the DGLAP equations (3.18),
(3.23) and (3.24) one should have an input parametrization of the u func-
tion at the low scale kZ. Because u(x, @?) has a meaning of the physical g1
function for the rescaled Q2 variable as it is shown in (3.19), one can also

write:
u (z,k§) = g (z,zk]) . (4.1)

The low scale kg introduced in (3.7) is equal to the usually used QCD cut-off
parameter k% = 1GeV2. The dependence on z/z of the lower limit in the
integration (3.4):

Q= h (42)
T
became “shifted” to the definition of g (z,4?) via (3.9). It means that

for running coupling cases one should take into account in the evolution
equations (3.23) and (3.24) the cut-off factor ©(u? — k3 /x). Otherwise, the
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running variable zu? in the coupling ay becomes less than the low scale of
QCD evolution k3 = 1 GeV? what is definitely incorrect. There is no such
a constraint in the fixed coupling constant. Taking into account that for
perturbative QCD analysis the low cut-off parameter k% = 1GeV? we put
this value for the input scale of the u function too. This implies that for
small 7 the input parametrizations u(z, k3) corresponds to the gi¥S at the
very low scale zk2. We assume, that below the k2 = 1GeV? the behavior
of the quark distributions is the same as at kg. Therefore, we apply the
standard parametrizations of the valence quarks (and hence of g\®) for the
auxiliary function u:

u(z,k§) = gs (z.k3) . ki =1GeVZ (4.3)

There are two basic kinds of input parametrizations of g%\ls (x, kg): the Regge
one, which is flat at small z and the singular one, which behaves like z7¢
(@ ~ 0.3) at small z. In our numerical calculations we use two different
input parametrizations: the Regge one, which is given by

REGGE: u(z,k}) = ggA(l — )% =0.838(1 — z)?, (4.4)

where g4 = 1.257 is the axial vector coupling and the dynamical input
GRSV [18]:

GRSV : u(z,kj) = 0.327270267
X (1 — 0.5832%17 4 1.723 + 3.436.753/2) (1 — g)3486

+0.0272700% (141.1952%% 46.1643+2.7262%/2 ) (1- )21
(4.5)

For details about these parametrizations see also [16]. In all calculations
Aqep = 232MeV. Our numerical results are presented in Figs. 2-5.

In Fig. 2 the predictions for g)'> at small 2, based on the Eq. (3.18) for
Regge and GRSV inputs, respectively, are shown. We use two different val-
ues of fixed coupling: a; = 0.18 and az = 0.12. The input parametrizations
are also plotted. In Fig. 3 we confront the fixed coupling results of Eq. (3.18)
for as = 0.18 with those, based on Egs. (3.23), (3.24), taking into account
running coupling effects. Two groups of lines correspond to different inputs:
Regge and GRSV. The effective slope Axg determined from (2.16) as

d1n g)'s
8ln%

Axg ~ (4.6)
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Fig.2. The nonsinglet spin structure function of the proton gN°(z,Q?) received
from (3.18). Solid lines correspond to Regge input, dashed lines — to GRSV
input. In each group of lines (Regge or GRSV) the lowest (for small z) line is the
input at k3 =1 GeV?, the middle one concerns the fixed coupling o, = 0.12 and
the upper one is for o, = 0.18. Evolution scale @ = 10 GeV>.
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Fig.3. The nonsinglet spin structure function of the proton ¢g(z, Q% = 10 GeV?).
Solid lines correspond to Regge input, dashed lines — to GRSV input. In each
group of plots (Regge or GRSV) the lowest line concerns the running coupling
as(Q?/z) case (3.24), the middle one corresponds to a,(Q?) case (3.23) while the
upper plot is for fixed coupling oy = const. = 0.18 (3.18).
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Fig.4. Slope Axs defined in (4.6) for different inputs (Regge — solid, GRSV —
dashed) and different a;;. For each group of lines (Regge or GRSV) the upper plot
corresponds to fixed a; = 0.18, in the middle lies line for the running as(Q?), and
the lowest plot is for the “more running” case: a,(Q?/z), @* = 10 GeV?.
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Fig.5. Comparison of gN® predictions based on DGLAP-like Eq. (3.23) — solid
with that based on f(z, Q%) approach (2.10) — dashed at Q? = 10 GeV?. Triangles
show the recent small  SMC data 1997 [4].
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for both input parametrizations and all mentioned above «a, cases:
as = const. = 0.18, as(Q?), as(Q?/z) is presented in Fig. 4. The compari-
son of small z predictions for ¢S based on the DGLAP-like In? 2 approach
with those based on the unintegrated function f(z,@?) and Eq. (2.10) is
shown in Fig. 5. Both parametrizations are used. The running coupling
effects ag(Q?) are included. We also plot few small z recent SMC 1997
data [4]. Tn all plots Q% = 10 GeV?.

From Figs. 2-5 one can read the following conclusions:

1. The In? z resummation gives steep growth of the structure function in
the small z region. Tt is well known effect [6,7] that for 2 < 1072 the Inz
terms dominate over the LO (or even NLO) evolution.

2. The growth of the structure function in the small z region is, of
course, much steeper for the dynamical parametrization than for the flat
one. Singular inputs at k3 intensify the QCD evolution effects while in
the case of flat parametrizations the singular small z behavior of structure
functions is completely and only generated by QCD evolution.

3. The effective slope Ang (4.6) is contained between 0.14 for the non-
singular input and the running coupling a,(Q?/z) and 0.6 for the singular
input and the fixed coupling as = 0.18. This shows apart from the above
conclusion in the point 2 that for the running coupling constant a(Q?), Axs
is smaller than for the fixed one. Besides, introduction of the o, = as(Q?/2)
causes the slope Ang still smaller:

Ans (s =const. =0.18) > Axs (s =a, (Q%)) > Axs <a5 =y (Q—2)> . (4.7)

z

For comparison, the Regge theory predicts in the small z region a4, (0) <0

0)

and ¢g)S behaves as %41 ~ const.

4. Comparing our results with those, based on the unintegrated func-
tion f(z,Q?) and the equation (2.10) one can see agreement of these two
approaches. It is not astonishing because both the methods concern in fact
the same problem: resummation of the double logarithmic terms In? z for
the ¢S function in the small z region. Our approach based on the DGLAP-
like equation (3.18) enables us to keep the constance upper scale of evolution
u? instead of Q2/z like in (2.10). In this way this approach becomes similar
to the standard DGLAP Q? evolution and we can adopt the methods used
in it to get new — In? z effects.

5. SMC recent data [4] for very small z (3 points shown in Fig. 5) confirm
the growth of the polarized nonsinglet structure function ¢g}'° in the small z
region. It seems that the singular inputs make possible the better agreement
of theoretical predictions with experimental data.
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5. Summary and conclusions

In this paper we have presented the double logarithmic In? z terms re-
summation for the spin dependent nonsinglet structure function g%\ls. In our
approach we have solved the DGLAP-like equation for the auxiliary function
U (x,/ﬂ) which corresponds to the physical function g%\ls (x,Q2 = qu) at
the rescaled 2 variable. Our calculations have been performed for the sim-
ple nonsingular Regge parametrization and for the dynamical one as well.
Apart from the fixed coupling constant case, the running coupling effects
have been taken into account. Besides the effective slope, controlling the
small 2 behavior of g1'> has been estimated. Its value has been found to lie
between 0.14 for the nonsingular input and the running coupling (Q2 / z),
and 0.6 for the singular input and the fixed coupling a; = 0.18. We found
that the In? z effects govern the small z increase of the structure function
g%\ls (.’L‘, Q2). This growth is larger in the case of the fixed coupling constant
than for the running one and, of course, is larger for the singular input
g¥s (x,kg) than for the flat (e.g. Regge) one. The equation we have con-
sidered is not applicable for the large z (z > 102) region. Our formalism
is, however, correct in the very interesting small = region. Presented results
confirm that the In?z effects are very significant for < 10~2. The spin
dependent structure functions of the nucleon are a sensitive test of the per-
turbative QCD analysis in the small z region. However, lack of experimental
data in the very low x region (x < 10*3) causes the satisfactory verification
of the theoretical QCD predictions impossible in this region. Also the pre-
dictions incorporating the double logarithmic In?z effects in g\'S are still
awaiting for their crucial probe.

We are grateful to Jan Kwiecinigki for help in preparing this paper.

Appendix A

Analytical solution of the DGLAP-like evolution equation for g%\ls
generating double logarithmic In® z effects at small x

We solve the equation (3.18) with the fixed coupling a5 = 0.038 using the
standard Mellin method. The Mellin transformation defines the n-moment
of u (m, ,ug) function by:

1
u™ (1u?) /m"lu (z,1?) dz. (A1)
0
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Thus in moment space the evolution equation for small z (3.18) is simply

given by
dln p? n '
The solution of (A.2) is straightforward

n 2\ _,n M_Q e/
u ('u ) =Yg k2 ’
0

where uf} is the n-moment of the input u (z, k%) function:

1
/x xkod
0

For the nonsingular input parametrization
U (x, k:g) ~ const. ,

ug has a form:

Employing the inverse Mellin transformation:

1 c+ioco
u (z, p ) 97 x "u" (,u2) dn ,
c—100

which gives
c+i00

const. z " [ p? da/n
0

271 n

c—100
One can get the solution u (x, u2) of the form:
k
s (073 In % In ‘]:—j)
0

U (m,;ﬂ) = const. Z k]
k=0 o

(A.2)

(A4)
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Going back to the function g\ (.’L‘,Q2 = am?), one can find from (A.9)
through (3.19) the following expression:

ASzQ) =u Q—2 = const. Jy | 2 ofslnlln—2 (A.10)
L T z zkd )’

where Jy(y) denotes modified Bessel function:

)2k

Jo(y) =Y (k!k! . (A.11)

k=0

IS

This In? z terms resummation (A.10) gives in the small z region the effective
behavior of gi'>:
9o (x, Q%) =z (A.12)

where

ANS ~ 24/ - (A.13)
For the fixed a; = 0.038 the effective slope Axg is equal to 0.39.
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