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We discuss a model with a massless scalar field coupled to the Yang-
Mills SU(2) gauge field in four-dimensional space-time. The solutions from
static, pointlike color source are given. There exists not only solutions with
finite energy but also a singular one which describes confinement. The
confining potential depends on the ¢ parameter of our model. The regular
magnetic monopole solutions as well as the singular dyon configurations
are also obtained. We fit the § parameter to the experimental data.

PACS numbers: 11.15.Kc, 11.10.Ef

1. The model

Recently it has been pointed that in massless [1] and massive [2] scalar
field theories with a dilaton coupling to a gauge field exist confining solutions.
The potential of the gauge field from static, pointlike color source is in this
case singular in the spatial infinity and grows linearly as r — oo. However,
due to some phenomenological [3, 4] as well as theoretical arguments [5]
one may also expect that the potential of confinement is not linear. In our
work we discuss a class of models which produces relatively wide spectrum
of confining potentials.

In the present paper we would like to focus on a model described by the
action:

84
S = /d4x [—i <%) Fo, P + %8@8% : (1)

where § > 0, A is a dimensional constant, ¢ is the massless scalar field
coupled to the gauge field Aj and F}j, is defined in the standard manner.
The action we consider emerges from the Dick model [2] with more general
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coupling between the scalar and the gauge fields. In the contradistinction to
the Dick model our scalar field is massless and there is no simple connection
between solutions of these models. One can add a potential or a mass term
to the action but as far as we do not know how to choose the ground state
for the scalar field it seems to be better and more general to consider the
model without potential. Because of the fact that we are interested in the
long range behavior of the fields i.e. in the small energy limit, we neglect
the denominator which is present in the original coupling. However, it is
possible to consider the full model with the denominator. Then the solutions
will contain a well-known part corresponding to the standard Yang-Mills
equations.
The field equations for (1) take the form:

80
o [(2)" P

0,0"p = —20F0, P

85—1
L 3

where j* is the external color current density.

2. The electric sector

In this section we discuss the Coulomb solution in our model. In the
other words we find the solution of the field equations generated by the
static, pointlike color source:

U = 4mqé(r)C8H, (4)

where 1 < a < N2 — 1 is an su(N,) Lie algebra index and C is the expec-
tation value of the su(N;) generator for a normalized spinor in color space
(see e.g. [1]). The field equations (2), (3) take then the form:

é 80 !
r? <Z> E*| = 47wqC(r), (5)
) ) ¢8(571
VTQS == —4(5an, (6)

where we use the standard definition E% = —F®  Egs (5), (6) have the
following solutions parametrized by £y > O:

1 1\©=®
¢:AA<A—T+%) , (7)
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85
1 1\ 1+4
By = a9 (L, 1 :

(’r) TQ /1’!' + ,80 ? ( )
where A = [q(1 + 49)] i+35 and E(r) = C*E(r)#. One can define additional

numbers for the scalar and electric field in the standard manner (see [1, 10]).
They are given in the following form:

85
Q=7"E(r)r e = A™qB7" (9)
dg A
D=— 297 — 1+45 1
T T T4 (10)

It is possible to regard the numbers as some effective charges of the scalar
and electric field. These numbers are not independent and they satisfy the
following condition:
D2
0 (11)

The values of D and @) are finite for each finite 8y. The existence of the effec-
tive charges is rather mysterious but it can be understood from symmetries
point of view. Namely, using equation (5) we can eliminate the electric field
in (6). It is easy to notice that after rewriting this equation in terms of the
variable z = % a new symmetry appears. This symmetry is the translational
symmetry of the variable x,

r— 1 =x+mz9 dlz) — ¢ (2') = (). (12)

The generator of the symmetry has the form: D, = —%, or, in the old
variable r: J

D, = r2% (13)
In the natural way we define the effective scalar charge using the generator
(13), D = =D, ¢(r) |r—oc0 which means that the scalar charge emerges from
the symmetry (12). It is possible to break the symmetry by adding some
new terms to the action. In the simplest case one can introduce a potential
for the scalar field. Moreover, this potential fixes asymptotic behavior of
the scalar field i.e. the value of the parameter [y as well as the effective
scalar charge. However, in our work we do not break the symmetry and a
continuous spectrum of the solution survives.

The energy density for the solutions (7), (8) takes the form:

A (L 1)TTE (14)
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Thus we may conclude that the energy of configuration (7), (8) is finite for
0 < Bp < oo only if the parameter § > %. In this case one finds:

45 +1
EN:/ET2d7' A +

6_ 1A 86§ 2/845+1 (15)

From the full spectrum of Coulomb solutions the family with finite energy
and charges (9), (10) can be then separated. As the energy depends on the
parameter (g it can achieve any positive value. On the other hand there
exists the singular solution

o) = an(£) (1
E(r) = A™%gA? <A%)l+4& : (17)

which describes the confining sector of our theory. The color-electric poten-
tial has the following form:

45 46—1
Vir) = { Y VLI C
6=

18
AA=3gIn Ar (18)

*N“MH

The asymptotic behavior of V(r) changes from logr for § = % to the linear
potential in the limit § — oc. Obviously, the limit § — oo cannot be im-
plemented on the Lagrangian level. It is not possible to realize the linear
flux-tube but it may be approximated with arbitrary accuracy taking suffi-
ciently large value of §. The energy density for the singular solution may be
obtained from (14) in the limit Sy — oo. It should be stressed that on the
contrary to the standard Coulomb potential the singularity of energy and
charges is caused by the behavior in the spatial infinity. In fact the energy
density is singular at » = 0 but this singularity is integrable for § > i.

Elimination of single charge states from the physical spectrum theory
is not sufficient to have confinement-like sector in our model. One have to
check that a state with two opposite color charges has a finite energy. In
that case we shall consider a dipole-like external charge

o = g [5 <z + g) . <z - g)] 5(2)8(3) 093510, (19)

We restrict consideration to Abelian sector of the theory. Because of non-
linearity of the equations of motion we are not able to solve them analyti-
cally. However, as it was presented in [6—9] some numerical methods can be
applied.
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It is convenient to define the dual potential C:
D=VxC, (20)

where D = (%)8‘5[@" is the dielectric induction. After introduction of the
cylindrical coordinates (p, «, z) we assume that the dual potential has the
form:

= (8%

where & is the unit vector tangent to the o coordinate line and @ is a scalar
flux function. Then the equations of motion can be rewritten as:

1 ¢ —80
v (E <Z) vqs) =0, (22)
—80
2 2 T yep -
V¢+45<A) p|VQ5| = 0. (23)
Following [6, 7] we fix boundary conditions as:
(24)

Moreover, we put that & — 0, ¢ — 0 for p? + 22 — oo. This set of equations
can be solved numerically. Fig. 1 presents the flux function @ computed for
900 x 900 mesh, 6 = 0.75 and ¢ = 1.1 (for detailed description of the applied
numerical procedure see |7, 9]).

It is possible to construct examples of the flux and the scalar functions
which obey the boundary condition and have finite energy:

_q z+R/2 B z—R/2
"o <\/p2 TG R P R/2)2> ¥

1 o 1 s
¢ =AA — AA .
(Np? Tt R/2>2> (AW - R/2)2>
(26)
As it was mentioned in [9], in spite of the fact that these functions do not

obey Egs (22), (23) they give an upper bound for the total field energy for
the charges ¢, —g. One can check that

Ey ~ Risti . (27)
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Fig.1. The flux function @ for § = 0.75 and R = 10.

3. The magnetic sector

Let us now consider purely magnetic, non-Abelian content of our model.
We use typical, spherically-symmetric Ansatz:
:L‘k
A7 = oz lg—1), A5 =0, (25)

where g(r) is a function of radial coordinate only. Inserting the Ansatz (28)
into Eq. (2), (3) we get:

;488
%] + Q;—Qg (1-¢°) =0, (29)
1 , 85—1 9 12 2 1 2
- (%) +45¢A85 [52 L = ) ] — 0. (30)

The vacuum state corresponds to ¢ = 0 and arbitrary value of the gauge
field or to ¢ = +1 and ¢ = ¢, where ¢y is an arbitrary constant. The
standard magnetic monopole solution may be constructed by taking g = 0.
Then the scalar field is given by a family of solutions parametrized by (y:

() = BA <Air + %) s (31)
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where B = (1 — 45)ﬁ. The energy density reads:

B2 1/1 1\i®
R S . 2
c (1 —46)%r4 <A7’ + ,80) (32)

It is easy to check that for each 0 < By < oo and ¢ > % the energy for such
a configuration is finite.

40 -1 1
EN —AmB&s 2/846 1 . (33)

The effective scalar charge takes the value:

B i

Of course, there exists also the infinity energy solution, namely:

4(r) = BA GT)‘; . (35)

In the magnetic case, for § > L, the asymptotic divergence of the singular
solution is much stronger than in the electric case. Because of that the
magnetic singular monopole cannot form finite energy bound states. The
electric Coulomb sector as well as the magnetic one are related to each other
by the duality transformation [10]:

80
Fi, — ¢>F., 66— —0. (36)
4. The dyon

Let us now consider generalization of Ansatz (28) with electric field:
A =Lp. (37)
T

The field equations take then the form:

86§
6991 = L lota? — 1) +r2h%). (33)
[T2¢86hl]l — 2¢86hg2, (39)
_L gy +45¢85 ) Aty o Y. IO

r2 A80 7'2 rd r2
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The dyon solution is given by the formulae:

-85
gzO,h'zG(%) lg, (41)

where G is an arbitrary constant and ¢ satisfies the equation:

—160 1
1"4 -G <%) 7'_4] =0 42

The dyon solution can be interpreted as the standard magnetic monopole
surrounded by color electric field. From Eq. (42) one easily gets:

d 46 —45
h_ () g (2)" -
dx A A

There exist only a few values of parameter ¢ for which Eq. (43) can by solved

analytically. Otherwise only numerical estimations are known. For example
choosing ¢ = % the solution reads:

¢86 1

1

P(r) = A\/G + (go — 1)er . (44)

Here gq is a constant and the charges are,

—90 G
D= ——, = —. 45
vG+ go @ G+ g0 (45)
Analogously for § = % one gets:
1 1

arctan% - arcth% =2 < ﬁo) (46)

It is easy to show that energy for all dyon solutions is infinite. Unfortunately,
singularity of the energy emerges for r = 0 and there is no chance for two-
dyons finite energy solutions.

5. Conclusions

The main result of our work is that the electric singular solutions can
form the dipole-like finite energy states i.e. something like a confining sector
of the model emerges: the static solutions with non-vanishing total charge
are excluded from the physical spectrum while the g, —q dipoles can appear.
For the discussed model one can find, in the Coulomb sector of the theory,
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the energy of confinement (27). The behavior of the energy depends on the
model parameter §. Taking into account the form of confining potential
which is suggested by phenomenological arguments (see e.g. [3]) the param-
eter § can be fixed. For Ey ~ VR one finds § = %. On the other hand,
there is continuous spectrum of finite energy solutions. Because of the fact
that these solutions describe a source with a fixed charge it can be possible
to look at them as screening (see e.g. [11, 12]).

For the magnetic, sourceless part of the model, it is also possible to
separate the finite as well as the infinite energy sector. One can interpret
spherically-symmetric, sourceless solutions with finite energy, which form
the finite energy sector, as classical glueballs [13]. On the contrary to the
electric part the magnetic singular monopoles can not form finite energy
bound states. So in the sense, magnetic part of the theory does not provide
the confinement.

The confinement sector has its equivalent in the Pagels—Tomboulis model
[5, 9]. Our scalar field plays the same role as the dielectric function in the
effective action [5]. Of course, the models are not identical. For example
there is not (probably) any screening sector in Pagels—Tomboulis model.

As we see the model (1) posses two phases: confinement and screening-
(or glueball)-like. The phases refer to different, asymptotic values of the
scalar field, zero or non-zero, respectively. The asymptotic value of the
scalar field can be fixed by a potential term. Then the confinement phase
could be understood as the symmetric phase whereas the screening sector
as the phase with broken symmetry. Unfortunately, we do not know the
form of the potential. However, color dielectric models [14]| can give some
hints [15].

We would like to thank Professor H. Arodz for reading the manuscript
and for many stimulating discussions.
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