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GENERALIZATION OF THE DICK MODELM. �lusarzyky and A. Wereszzy«skizInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Reeived July 18, 2001)We disuss a model with a massless salar �eld oupled to the Yang�Mills SU(2) gauge �eld in four-dimensional spae-time. The solutions fromstati, pointlike olor soure are given. There exists not only solutions with�nite energy but also a singular one whih desribes on�nement. Theon�ning potential depends on the Æ parameter of our model. The regularmagneti monopole solutions as well as the singular dyon on�gurationsare also obtained. We �t the Æ parameter to the experimental data.PACS numbers: 11.15.K, 11.10.Ef1. The modelReently it has been pointed that in massless [1℄ and massive [2℄ salar�eld theories with a dilaton oupling to a gauge �eld exist on�ning solutions.The potential of the gauge �eld from stati, pointlike olor soure is in thisase singular in the spatial in�nity and grows linearly as r !1. However,due to some phenomenologial [3, 4℄ as well as theoretial arguments [5℄one may also expet that the potential of on�nement is not linear. In ourwork we disuss a lass of models whih produes relatively wide spetrumof on�ning potentials.In the present paper we would like to fous on a model desribed by theation: S = Z d4x"�14 ����8Æ F a��F a�� + 12������# ; (1)where Æ > 0, � is a dimensional onstant, � is the massless salar �eldoupled to the gauge �eld Aa� and F a�� is de�ned in the standard manner.The ation we onsider emerges from the Dik model [2℄ with more generaly mslus�alphas.if.uj.edu.plz wereszz�alphas.if.uj.edu.pl (2911)



2912 M. �lusarzyk, A. Wereszzy«skioupling between the salar and the gauge �elds. In the ontradistintion tothe Dik model our salar �eld is massless and there is no simple onnetionbetween solutions of these models. One an add a potential or a mass termto the ation but as far as we do not know how to hoose the ground statefor the salar �eld it seems to be better and more general to onsider themodel without potential. Beause of the fat that we are interested in thelong range behavior of the �elds i.e. in the small energy limit, we negletthe denominator whih is present in the original oupling. However, it ispossible to onsider the full model with the denominator. Then the solutionswill ontain a well-known part orresponding to the standard Yang�Millsequations.The �eld equations for (1) take the form:D� "����8Æ F a��# = ja� ; (2)����� = �2ÆF a��F a�� �8Æ�1�8Æ ; (3)where ja� is the external olor urrent density.2. The eletri setorIn this setion we disuss the Coulomb solution in our model. In theother words we �nd the solution of the �eld equations generated by thestati, pointlike olor soure:ja� = 4�qÆ(r)CaÆ�0 ; (4)where 1 � a � N2 � 1 is an su(N) Lie algebra index and Ca is the expe-tation value of the su(N) generator for a normalized spinor in olor spae(see e.g. [1℄). The �eld equations (2), (3) take then the form:"r2����8Æ Ea#0 = 4�qCaÆ(r) ; (5)r2r� = �4ÆE2a �8Æ�1�8Æ ; (6)where we use the standard de�nition Eai = �F a0i. Eqs (5), (6) have thefollowing solutions parametrized by �0 > 0:� = A�� 1�r + 1�0� 11+4Æ ; (7)



Generalization of the Dik Model 2913E(r) = A�8Æ qr2 � 1�r + 1�0�� 8Æ1+4Æ ; (8)where A = [q(1 + 4Æ)℄ 11+4Æ and ~Ea(r) = CaE(r)r̂. One an de�ne additionalnumbers for the salar and eletri �eld in the standard manner (see [1, 10℄).They are given in the following form:Q = r2E(r)jr!1 = A�8Æq� 8Æ1+4Æ0 ; (9)D = �r2d�dr jr!1 = A1 + 4Æ � 4Æ1+4Æ0 : (10)It is possible to regard the numbers as some e�etive harges of the salarand eletri �eld. These numbers are not independent and they satisfy thefollowing ondition: D2Q = q: (11)The values of D and Q are �nite for eah �nite �0. The existene of the e�e-tive harges is rather mysterious but it an be understood from symmetriespoint of view. Namely, using equation (5) we an eliminate the eletri �eldin (6). It is easy to notie that after rewriting this equation in terms of thevariable x = 1r a new symmetry appears. This symmetry is the translationalsymmetry of the variable x,x �! x0 = x+ x0 �(x) �! �0(x0) = �(x): (12)The generator of the symmetry has the form: D̂x = � ddx , or, in the oldvariable r: D̂r = r2 ddr : (13)In the natural way we de�ne the e�etive salar harge using the generator(13), D = �D̂r�(r) jr!1 whih means that the salar harge emerges fromthe symmetry (12). It is possible to break the symmetry by adding somenew terms to the ation. In the simplest ase one an introdue a potentialfor the salar �eld. Moreover, this potential �xes asymptoti behavior ofthe salar �eld i.e. the value of the parameter �0 as well as the e�etivesalar harge. However, in our work we do not break the symmetry and aontinuous spetrum of the solution survives.The energy density for the solutions (7) , (8) takes the form:" = A�8Æ q2r4 � 1�r + 1�0�� 8Æ1+4Æ : (14)



2914 M. �lusarzyk, A. Wereszzy«skiThus we may onlude that the energy of on�guration (7), (8) is �nite for0 < �0 <1 only if the parameter Æ > 14 . In this ase one �nds:EN = Z "r2dr = �4Æ + 14Æ � 1A�8Æq2� 4Æ�14Æ+10 : (15)From the full spetrum of Coulomb solutions the family with �nite energyand harges (9), (10) an be then separated. As the energy depends on theparameter �0 it an ahieve any positive value. On the other hand thereexists the singular solution�(r) = A�� 1�r� 11+4Æ ; (16)E(r) = A�8Æq�2� 1�r� 21+4Æ ; (17)whih desribes the on�ning setor of our theory. The olor-eletri poten-tial has the following form:V (r) = ( 4Æ+14Æ�1A�8Æq� 4Æ4Æ+1 � r 4Æ�14Æ+1 Æ > 14�A�8Æq ln�r Æ = 14 : (18)The asymptoti behavior of V (r) hanges from log r for Æ = 14 to the linearpotential in the limit Æ ! 1. Obviously, the limit Æ ! 1 annot be im-plemented on the Lagrangian level. It is not possible to realize the linear�ux-tube but it may be approximated with arbitrary auray taking su�-iently large value of Æ. The energy density for the singular solution may beobtained from (14) in the limit �0 ! 1. It should be stressed that on theontrary to the standard Coulomb potential the singularity of energy andharges is aused by the behavior in the spatial in�nity. In fat the energydensity is singular at r = 0 but this singularity is integrable for Æ > 14 .Elimination of single harge states from the physial spetrum theoryis not su�ient to have on�nement-like setor in our model. One have tohek that a state with two opposite olor harges has a �nite energy. Inthat ase we shall onsider a dipole-like external hargeja� = q �Æ�z + R2 �� Æ�z � R2 �� Æ(x)Æ(y)Æa3Æ�0: (19)We restrit onsideration to Abelian setor of the theory. Beause of non-linearity of the equations of motion we are not able to solve them analyti-ally. However, as it was presented in [6�9℄ some numerial methods an beapplied.



Generalization of the Dik Model 2915It is onvenient to de�ne the dual potential ~C:~D = r� ~C ; (20)where ~D = ( ��)8Æ ~E is the dieletri indution. After introdution of theylindrial oordinates (�; �; z) we assume that the dual potential has theform: ~C = �̂2���(�; z) ; (21)where �̂ is the unit vetor tangent to the � oordinate line and � is a salar�ux funtion. Then the equations of motion an be rewritten as:r 1� �����8Ær�! = 0 ; (22)r2�+ 4Æ�����8Æ �� j r� j2 = 0: (23)Following [6, 7℄ we �x boundary onditions as:� = 0 � = 0; j z j> R=2 ;� = q � = 0; j z j< R=2 : (24)Moreover, we put that �! 0; �! 0 for �2+ z2 !1. This set of equationsan be solved numerially. Fig. 1 presents the �ux funtion � omputed for900�900 mesh, Æ = 0:75 and q = 1:1 (for detailed desription of the appliednumerial proedure see [7, 9℄).It is possible to onstrut examples of the �ux and the salar funtionswhih obey the boundary ondition and have �nite energy:� = q2  z +R=2p�2 + (z +R=2)2 � z �R=2p�2 + (z �R=2)2! ; (25)� = A� 1�p�2 + (z +R=2)2! 11+4Æ �A� 1�p�2 � (z �R=2)2! 11+4Æ :(26)As it was mentioned in [9℄, in spite of the fat that these funtions do notobey Eqs (22), (23) they give an upper bound for the total �eld energy forthe harges q;�q. One an hek thatEN � R 4Æ�14Æ+1 : (27)
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zFig. 1. The �ux funtion � for Æ = 0:75 and R = 10.3. The magneti setorLet us now onsider purely magneti, non-Abelian ontent of our model.We use typial, spherially-symmetri Ansatz:Aai = "aik xkr2 (g � 1); Aa0 = 0 ; (28)where g(r) is a funtion of radial oordinate only. Inserting the Ansatz (28)into Eq. (2), (3) we get: h�8Æg0i0 + �8Ær2 g �1� g2� = 0 ; (29)� 1r2 �r2�0�0 + 4Æ�8Æ�1�8Æ �2g02r2 + (g2 � 1)2r4 � = 0 : (30)The vauum state orresponds to � = 0 and arbitrary value of the gauge�eld or to g = �1 and � = �0, where �0 is an arbitrary onstant. Thestandard magneti monopole solution may be onstruted by taking g = 0.Then the salar �eld is given by a family of solutions parametrized by �0:�(r) = B�� 1�r + 1�0� 11�4Æ ; (31)



Generalization of the Dik Model 2917where B = (1� 4Æ) 11�4Æ . The energy density reads:" = B2(1� 4Æ)2 1r4 � 1�r + 1�0� 8Æ1�4Æ : (32)It is easy to hek that for eah 0 < �0 <1 and Æ > 14 the energy for suha on�guration is �nite.EN = �4Æ � 14Æ + 1B8Æq2� 4Æ+14Æ�10 : (33)The e�etive salar harge takes the value:D = B1� 4Æ � �4Æ1�4Æ0 : (34)Of ourse, there exists also the in�nity energy solution, namely:�(r) = B�� 1�r� 11�4Æ : (35)In the magneti ase, for Æ � 14 , the asymptoti divergene of the singularsolution is muh stronger than in the eletri ase. Beause of that themagneti singular monopole annot form �nite energy bound states. Theeletri Coulomb setor as well as the magneti one are related to eah otherby the duality transformation [10℄:F a�� ! �8ÆF �a�� ; Æ ! �Æ : (36)4. The dyonLet us now onsider generalization of Ansatz (28) with eletri �eld:Aa0 = xar h : (37)The �eld equations take then the form:[�8Æg0℄0 = �8Ær2 [g(g2 � 1) + r2h2g℄ ; (38)[r2�8Æh0℄0 = 2�8Æhg2 ; (39)� 1r2 (r2�0)0 + 4Æ�8Æ�1�8Æ �2g02r2 + (g2 � 1)2r4 � 2h2g2r2 � h02� = 0 : (40)



2918 M. �lusarzyk, A. Wereszzy«skiThe dyon solution is given by the formulae:g = 0; h0 = G�����8Æ 1r2 ; (41)where G is an arbitrary onstant and � satis�es the equation:� 1r2 �r2�0�0 + 4Æ�8Æ�1�8Æ " 1r4 �G2�����16Æ 1r4# = 0 : (42)The dyon solution an be interpreted as the standard magneti monopolesurrounded by olor eletri �eld. From Eq. (42) one easily gets:d�dx = ����4Æ �G�����4Æ : (43)There exist only a few values of parameter Æ for whih Eq. (43) an by solvedanalytially. Otherwise only numerial estimations are known. For examplehoosing Æ = 14 the solution reads:�(r) = �qG+ (g0 � 1)e 2�r : (44)Here g0 is a onstant and the harges are,D = �g0pG+ g0 ; Q = GG+ g0 : (45)Analogously for Æ = 12 one gets:artan �� � arth�� = 2� 1�r + 1�0� : (46)It is easy to show that energy for all dyon solutions is in�nite. Unfortunately,singularity of the energy emerges for r = 0 and there is no hane for two-dyons �nite energy solutions.5. ConlusionsThe main result of our work is that the eletri singular solutions anform the dipole-like �nite energy states i.e. something like a on�ning setorof the model emerges: the stati solutions with non-vanishing total hargeare exluded from the physial spetrum while the q;�q dipoles an appear.For the disussed model one an �nd, in the Coulomb setor of the theory,



Generalization of the Dik Model 2919the energy of on�nement (27). The behavior of the energy depends on themodel parameter Æ. Taking into aount the form of on�ning potentialwhih is suggested by phenomenologial arguments (see e.g. [3℄) the param-eter Æ an be �xed. For EN � pR one �nds Æ = 34 . On the other hand,there is ontinuous spetrum of �nite energy solutions. Beause of the fatthat these solutions desribe a soure with a �xed harge it an be possibleto look at them as sreening (see e.g. [11, 12℄).For the magneti, soureless part of the model, it is also possible toseparate the �nite as well as the in�nite energy setor. One an interpretspherially-symmetri, soureless solutions with �nite energy, whih formthe �nite energy setor, as lassial glueballs [13℄. On the ontrary to theeletri part the magneti singular monopoles an not form �nite energybound states. So in the sense, magneti part of the theory does not providethe on�nement.The on�nement setor has its equivalent in the Pagels�Tomboulis model[5, 9℄. Our salar �eld plays the same role as the dieletri funtion in thee�etive ation [5℄. Of ourse, the models are not idential. For examplethere is not (probably) any sreening setor in Pagels�Tomboulis model.As we see the model (1) posses two phases: on�nement and sreening-(or glueball)-like. The phases refer to di�erent, asymptoti values of thesalar �eld, zero or non-zero, respetively. The asymptoti value of thesalar �eld an be �xed by a potential term. Then the on�nement phaseould be understood as the symmetri phase whereas the sreening setoras the phase with broken symmetry. Unfortunately, we do not know theform of the potential. However, olor dieletri models [14℄ an give somehints [15℄.We would like to thank Professor H. Arod¹ for reading the manusriptand for many stimulating disussions.REFERENCES[1℄ R.Dik, Phys. Lett. B397, 193 (1996); R.Dik Phys. Lett B409, 321 (1997).[2℄ R. Dik, Eur. Phys. J. C6, 701 (1999); M. Chabab, R. Markazi, E.H. Saidi,Eur. Phys. J. C13, 543 (2000).[3℄ L. Motyka, K. Zalewski, Z. Phys. C69, 343 (1996).[4℄ K. Zalewski, Ata Phys. Pol. B29, 2535 (1998).[5℄ H. Pagels, E. Tomboulis, Nul. Phys. B43, 485 (1978).[6℄ S. L. Adler, T. Piran, Rev. Mod. Phys. 56, 1 (1985).[7℄ S. L. Adler, Phys. Rev. D20, 3273 (1981).
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