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GENERALIZATION OF THE DICK MODELM. �lusar
zyky and A. Weresz
zy«skizInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland(Re
eived July 18, 2001)We dis
uss a model with a massless s
alar �eld 
oupled to the Yang�Mills SU(2) gauge �eld in four-dimensional spa
e-time. The solutions fromstati
, pointlike 
olor sour
e are given. There exists not only solutions with�nite energy but also a singular one whi
h des
ribes 
on�nement. The
on�ning potential depends on the Æ parameter of our model. The regularmagneti
 monopole solutions as well as the singular dyon 
on�gurationsare also obtained. We �t the Æ parameter to the experimental data.PACS numbers: 11.15.K
, 11.10.Ef1. The modelRe
ently it has been pointed that in massless [1℄ and massive [2℄ s
alar�eld theories with a dilaton 
oupling to a gauge �eld exist 
on�ning solutions.The potential of the gauge �eld from stati
, pointlike 
olor sour
e is in this
ase singular in the spatial in�nity and grows linearly as r !1. However,due to some phenomenologi
al [3, 4℄ as well as theoreti
al arguments [5℄one may also expe
t that the potential of 
on�nement is not linear. In ourwork we dis
uss a 
lass of models whi
h produ
es relatively wide spe
trumof 
on�ning potentials.In the present paper we would like to fo
us on a model des
ribed by thea
tion: S = Z d4x"�14 ����8Æ F a��F a�� + 12������# ; (1)where Æ > 0, � is a dimensional 
onstant, � is the massless s
alar �eld
oupled to the gauge �eld Aa� and F a�� is de�ned in the standard manner.The a
tion we 
onsider emerges from the Di
k model [2℄ with more generaly mslus�alphas.if.uj.edu.plz weresz
z�alphas.if.uj.edu.pl (2911)
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oupling between the s
alar and the gauge �elds. In the 
ontradistin
tion tothe Di
k model our s
alar �eld is massless and there is no simple 
onne
tionbetween solutions of these models. One 
an add a potential or a mass termto the a
tion but as far as we do not know how to 
hoose the ground statefor the s
alar �eld it seems to be better and more general to 
onsider themodel without potential. Be
ause of the fa
t that we are interested in thelong range behavior of the �elds i.e. in the small energy limit, we negle
tthe denominator whi
h is present in the original 
oupling. However, it ispossible to 
onsider the full model with the denominator. Then the solutionswill 
ontain a well-known part 
orresponding to the standard Yang�Millsequations.The �eld equations for (1) take the form:D� "����8Æ F a��# = ja� ; (2)����� = �2ÆF a��F a�� �8Æ�1�8Æ ; (3)where ja� is the external 
olor 
urrent density.2. The ele
tri
 se
torIn this se
tion we dis
uss the Coulomb solution in our model. In theother words we �nd the solution of the �eld equations generated by thestati
, pointlike 
olor sour
e:ja� = 4�qÆ(r)CaÆ�0 ; (4)where 1 � a � N2
 � 1 is an su(N
) Lie algebra index and Ca is the expe
-tation value of the su(N
) generator for a normalized spinor in 
olor spa
e(see e.g. [1℄). The �eld equations (2), (3) take then the form:"r2����8Æ Ea#0 = 4�qCaÆ(r) ; (5)r2r� = �4ÆE2a �8Æ�1�8Æ ; (6)where we use the standard de�nition Eai = �F a0i. Eqs (5), (6) have thefollowing solutions parametrized by �0 > 0:� = A�� 1�r + 1�0� 11+4Æ ; (7)



Generalization of the Di
k Model 2913E(r) = A�8Æ qr2 � 1�r + 1�0�� 8Æ1+4Æ ; (8)where A = [q(1 + 4Æ)℄ 11+4Æ and ~Ea(r) = CaE(r)r̂. One 
an de�ne additionalnumbers for the s
alar and ele
tri
 �eld in the standard manner (see [1, 10℄).They are given in the following form:Q = r2E(r)jr!1 = A�8Æq� 8Æ1+4Æ0 ; (9)D = �r2d�dr jr!1 = A1 + 4Æ � 4Æ1+4Æ0 : (10)It is possible to regard the numbers as some e�e
tive 
harges of the s
alarand ele
tri
 �eld. These numbers are not independent and they satisfy thefollowing 
ondition: D2Q = q: (11)The values of D and Q are �nite for ea
h �nite �0. The existen
e of the e�e
-tive 
harges is rather mysterious but it 
an be understood from symmetriespoint of view. Namely, using equation (5) we 
an eliminate the ele
tri
 �eldin (6). It is easy to noti
e that after rewriting this equation in terms of thevariable x = 1r a new symmetry appears. This symmetry is the translationalsymmetry of the variable x,x �! x0 = x+ x0 �(x) �! �0(x0) = �(x): (12)The generator of the symmetry has the form: D̂x = � ddx , or, in the oldvariable r: D̂r = r2 ddr : (13)In the natural way we de�ne the e�e
tive s
alar 
harge using the generator(13), D = �D̂r�(r) jr!1 whi
h means that the s
alar 
harge emerges fromthe symmetry (12). It is possible to break the symmetry by adding somenew terms to the a
tion. In the simplest 
ase one 
an introdu
e a potentialfor the s
alar �eld. Moreover, this potential �xes asymptoti
 behavior ofthe s
alar �eld i.e. the value of the parameter �0 as well as the e�e
tives
alar 
harge. However, in our work we do not break the symmetry and a
ontinuous spe
trum of the solution survives.The energy density for the solutions (7) , (8) takes the form:" = A�8Æ q2r4 � 1�r + 1�0�� 8Æ1+4Æ : (14)
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zy«skiThus we may 
on
lude that the energy of 
on�guration (7), (8) is �nite for0 < �0 <1 only if the parameter Æ > 14 . In this 
ase one �nds:EN = Z "r2dr = �4Æ + 14Æ � 1A�8Æq2� 4Æ�14Æ+10 : (15)From the full spe
trum of Coulomb solutions the family with �nite energyand 
harges (9), (10) 
an be then separated. As the energy depends on theparameter �0 it 
an a
hieve any positive value. On the other hand thereexists the singular solution�(r) = A�� 1�r� 11+4Æ ; (16)E(r) = A�8Æq�2� 1�r� 21+4Æ ; (17)whi
h des
ribes the 
on�ning se
tor of our theory. The 
olor-ele
tri
 poten-tial has the following form:V (r) = ( 4Æ+14Æ�1A�8Æq� 4Æ4Æ+1 � r 4Æ�14Æ+1 Æ > 14�A�8Æq ln�r Æ = 14 : (18)The asymptoti
 behavior of V (r) 
hanges from log r for Æ = 14 to the linearpotential in the limit Æ ! 1. Obviously, the limit Æ ! 1 
annot be im-plemented on the Lagrangian level. It is not possible to realize the linear�ux-tube but it may be approximated with arbitrary a

ura
y taking su�-
iently large value of Æ. The energy density for the singular solution may beobtained from (14) in the limit �0 ! 1. It should be stressed that on the
ontrary to the standard Coulomb potential the singularity of energy and
harges is 
aused by the behavior in the spatial in�nity. In fa
t the energydensity is singular at r = 0 but this singularity is integrable for Æ > 14 .Elimination of single 
harge states from the physi
al spe
trum theoryis not su�
ient to have 
on�nement-like se
tor in our model. One have to
he
k that a state with two opposite 
olor 
harges has a �nite energy. Inthat 
ase we shall 
onsider a dipole-like external 
hargeja� = q �Æ�z + R2 �� Æ�z � R2 �� Æ(x)Æ(y)Æa3Æ�0: (19)We restri
t 
onsideration to Abelian se
tor of the theory. Be
ause of non-linearity of the equations of motion we are not able to solve them analyti-
ally. However, as it was presented in [6�9℄ some numeri
al methods 
an beapplied.
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k Model 2915It is 
onvenient to de�ne the dual potential ~C:~D = r� ~C ; (20)where ~D = ( ��)8Æ ~E is the diele
tri
 indu
tion. After introdu
tion of the
ylindri
al 
oordinates (�; �; z) we assume that the dual potential has theform: ~C = �̂2���(�; z) ; (21)where �̂ is the unit ve
tor tangent to the � 
oordinate line and � is a s
alar�ux fun
tion. Then the equations of motion 
an be rewritten as:r 1� �����8Ær�! = 0 ; (22)r2�+ 4Æ�����8Æ �� j r� j2 = 0: (23)Following [6, 7℄ we �x boundary 
onditions as:� = 0 � = 0; j z j> R=2 ;� = q � = 0; j z j< R=2 : (24)Moreover, we put that �! 0; �! 0 for �2+ z2 !1. This set of equations
an be solved numeri
ally. Fig. 1 presents the �ux fun
tion � 
omputed for900�900 mesh, Æ = 0:75 and q = 1:1 (for detailed des
ription of the appliednumeri
al pro
edure see [7, 9℄).It is possible to 
onstru
t examples of the �ux and the s
alar fun
tionswhi
h obey the boundary 
ondition and have �nite energy:� = q2  z +R=2p�2 + (z +R=2)2 � z �R=2p�2 + (z �R=2)2! ; (25)� = A� 1�p�2 + (z +R=2)2! 11+4Æ �A� 1�p�2 � (z �R=2)2! 11+4Æ :(26)As it was mentioned in [9℄, in spite of the fa
t that these fun
tions do notobey Eqs (22), (23) they give an upper bound for the total �eld energy forthe 
harges q;�q. One 
an 
he
k thatEN � R 4Æ�14Æ+1 : (27)



2916 M. �lusar
zyk, A. Weresz
zy«ski

-10

0

10

z 10

0

10

r

0

0.25

0.5

0.75

1

Phi

-10

0

10

zFig. 1. The �ux fun
tion � for Æ = 0:75 and R = 10.3. The magneti
 se
torLet us now 
onsider purely magneti
, non-Abelian 
ontent of our model.We use typi
al, spheri
ally-symmetri
 Ansatz:Aai = "aik xkr2 (g � 1); Aa0 = 0 ; (28)where g(r) is a fun
tion of radial 
oordinate only. Inserting the Ansatz (28)into Eq. (2), (3) we get: h�8Æg0i0 + �8Ær2 g �1� g2� = 0 ; (29)� 1r2 �r2�0�0 + 4Æ�8Æ�1�8Æ �2g02r2 + (g2 � 1)2r4 � = 0 : (30)The va
uum state 
orresponds to � = 0 and arbitrary value of the gauge�eld or to g = �1 and � = �0, where �0 is an arbitrary 
onstant. Thestandard magneti
 monopole solution may be 
onstru
ted by taking g = 0.Then the s
alar �eld is given by a family of solutions parametrized by �0:�(r) = B�� 1�r + 1�0� 11�4Æ ; (31)



Generalization of the Di
k Model 2917where B = (1� 4Æ) 11�4Æ . The energy density reads:" = B2(1� 4Æ)2 1r4 � 1�r + 1�0� 8Æ1�4Æ : (32)It is easy to 
he
k that for ea
h 0 < �0 <1 and Æ > 14 the energy for su
ha 
on�guration is �nite.EN = �4Æ � 14Æ + 1B8Æq2� 4Æ+14Æ�10 : (33)The e�e
tive s
alar 
harge takes the value:D = B1� 4Æ � �4Æ1�4Æ0 : (34)Of 
ourse, there exists also the in�nity energy solution, namely:�(r) = B�� 1�r� 11�4Æ : (35)In the magneti
 
ase, for Æ � 14 , the asymptoti
 divergen
e of the singularsolution is mu
h stronger than in the ele
tri
 
ase. Be
ause of that themagneti
 singular monopole 
annot form �nite energy bound states. Theele
tri
 Coulomb se
tor as well as the magneti
 one are related to ea
h otherby the duality transformation [10℄:F a�� ! �8ÆF �a�� ; Æ ! �Æ : (36)4. The dyonLet us now 
onsider generalization of Ansatz (28) with ele
tri
 �eld:Aa0 = xar h : (37)The �eld equations take then the form:[�8Æg0℄0 = �8Ær2 [g(g2 � 1) + r2h2g℄ ; (38)[r2�8Æh0℄0 = 2�8Æhg2 ; (39)� 1r2 (r2�0)0 + 4Æ�8Æ�1�8Æ �2g02r2 + (g2 � 1)2r4 � 2h2g2r2 � h02� = 0 : (40)
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zyk, A. Weresz
zy«skiThe dyon solution is given by the formulae:g = 0; h0 = G�����8Æ 1r2 ; (41)where G is an arbitrary 
onstant and � satis�es the equation:� 1r2 �r2�0�0 + 4Æ�8Æ�1�8Æ " 1r4 �G2�����16Æ 1r4# = 0 : (42)The dyon solution 
an be interpreted as the standard magneti
 monopolesurrounded by 
olor ele
tri
 �eld. From Eq. (42) one easily gets:d�dx = ����4Æ �G�����4Æ : (43)There exist only a few values of parameter Æ for whi
h Eq. (43) 
an by solvedanalyti
ally. Otherwise only numeri
al estimations are known. For example
hoosing Æ = 14 the solution reads:�(r) = �qG+ (g0 � 1)e 2�r : (44)Here g0 is a 
onstant and the 
harges are,D = �g0pG+ g0 ; Q = GG+ g0 : (45)Analogously for Æ = 12 one gets:ar
tan �� � ar
th�� = 2� 1�r + 1�0� : (46)It is easy to show that energy for all dyon solutions is in�nite. Unfortunately,singularity of the energy emerges for r = 0 and there is no 
han
e for two-dyons �nite energy solutions.5. Con
lusionsThe main result of our work is that the ele
tri
 singular solutions 
anform the dipole-like �nite energy states i.e. something like a 
on�ning se
torof the model emerges: the stati
 solutions with non-vanishing total 
hargeare ex
luded from the physi
al spe
trum while the q;�q dipoles 
an appear.For the dis
ussed model one 
an �nd, in the Coulomb se
tor of the theory,
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k Model 2919the energy of 
on�nement (27). The behavior of the energy depends on themodel parameter Æ. Taking into a

ount the form of 
on�ning potentialwhi
h is suggested by phenomenologi
al arguments (see e.g. [3℄) the param-eter Æ 
an be �xed. For EN � pR one �nds Æ = 34 . On the other hand,there is 
ontinuous spe
trum of �nite energy solutions. Be
ause of the fa
tthat these solutions des
ribe a sour
e with a �xed 
harge it 
an be possibleto look at them as s
reening (see e.g. [11, 12℄).For the magneti
, sour
eless part of the model, it is also possible toseparate the �nite as well as the in�nite energy se
tor. One 
an interpretspheri
ally-symmetri
, sour
eless solutions with �nite energy, whi
h formthe �nite energy se
tor, as 
lassi
al glueballs [13℄. On the 
ontrary to theele
tri
 part the magneti
 singular monopoles 
an not form �nite energybound states. So in the sense, magneti
 part of the theory does not providethe 
on�nement.The 
on�nement se
tor has its equivalent in the Pagels�Tomboulis model[5, 9℄. Our s
alar �eld plays the same role as the diele
tri
 fun
tion in thee�e
tive a
tion [5℄. Of 
ourse, the models are not identi
al. For examplethere is not (probably) any s
reening se
tor in Pagels�Tomboulis model.As we see the model (1) posses two phases: 
on�nement and s
reening-(or glueball)-like. The phases refer to di�erent, asymptoti
 values of thes
alar �eld, zero or non-zero, respe
tively. The asymptoti
 value of thes
alar �eld 
an be �xed by a potential term. Then the 
on�nement phase
ould be understood as the symmetri
 phase whereas the s
reening se
toras the phase with broken symmetry. Unfortunately, we do not know theform of the potential. However, 
olor diele
tri
 models [14℄ 
an give somehints [15℄.We would like to thank Professor H. Arod¹ for reading the manus
riptand for many stimulating dis
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