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We investigate the radiative pT — 71+ decay in the framework of the
light cone QCD sum rules. We estimate the coupling constant g,.~ for this
decay and using this value of the coupling constant, we calculate the decay
width of the p™ — 77+ decay. Our result is in good agreement with the
experimental value.

PACS numbers: 12.38.Lg, 13.40.Hq, 14.40.Aq

The determination of the fundamental parameters of hadrons from exper-
imental data, in particular the coupling constants and form factors, requires
some information about the physics at large distances. However, such non-
perturbative information cannot be obtained directly from the fundamental
QCD Lagrangian. Therefore, one has to employ some specific nonpertur-
bative method for the determination of the parameters of hadrons. Among
the various nonperturbative methods, QCD sum rules [1] have proved to be
very useful in studying the properties of low-lying hadrons. In the tradi-
tional QCD sum rules method [1], hadronic parameters are connected with
the QCD parameters through a few condensates of the nontrivial QCD vac-
uum structure in a nonperturbative way. Further progress has been achieved
by an alternative method known as the QCD sum rules on the light cone.
The light cone QCD sum rules are based on the operator product expansion
on the light cone, which is an expansion over the twist of the operators rather
than dimensions as in the traditional QCD sum rules. In this expansion, the
main contribution comes from the lowest twist operators. The matrix ele-
ments of the nonlocal operators between a hadronic state and the vacuum
define the hadronic wave functions which are the principle nonperturbative
inputs into the sum rules. The applications of the light cone QCD sum rules
to study hadronic properties can be found in [2-5] and references therein.
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In the present work, we utilize the light cone QCD sum rules to study the
pt — 7wty decay which is described by magnetic dipole M1 transition am-
plitude [6].

The radiative transitions of the type V' — P~ where V and P belong to
the lowest multiplets of Vector (V') and Pseudoscalar (P) mesons and V P~y-
couplings have been a subject of continuous interest in low-energy hadron
physics [6]. The studies of these decays and V P-couplings were important
to establish the basis of the quark model and SU(3) symmetry as well as
to understand the symmetry-breaking effects [6]. On the other hand, V P~-
couplings also plays an important role in the photoproduction reactions of
vector mesons on nucleons. At sufficiently high energies and low momentum
transfers, electromagnetic production of vector mesons on nucleon targets
has been explained by Pomeron exchange models [7]. However, at low en-
ergies near threshold scalar and pseudoscalar meson exchange mechanisms
become important [8]. For the photoproduction of the p® meson, the effec-
tive coupling constant g, is among the physical inputs for the calculation
of the pseudoscalar exchange amplitude contributing to the photoproduction
of p® meson. This coupling constant is introduced by choosing an effective
Lagrangian describing the V Py-vertex, which also defines this coupling con-
stant, and it is then determined by using the experimental value of the decay
width I'(p® — 707) of the radiative p° — 7%y decay. However, in this decay
the four-momentum of 7° is time-like, p?> > 0, whereas in the pseudoscalar
exchange amplitude contributing to the photoproduction of p° meson it is
space-like, p? < 0. Therefore, it will be of interest to study the effective
coupling constant g, from another point of view as well. In this work,
we employ the light cone QCD sum rules to study the radiative p™ — 7ty
decay and using isospin invariance estimate the coupling constant g,.~.

In order to study the p — my coupling constant, we consider the two
point correlation function with photon

To(p.g) =i / dhzdtye oy (q) T{12(0)5 () }0) (1)

where jf; and j5 denote the interpolating currents for p* and 7 mesons.
We introduce these interpolating currents as [1]

jﬁ = Ea’)ﬁua 9
. —b.
g5 = diysul, (2)

where u,d are up and down quark fields, respectively, and a, b are the color
indices. The overlap amplitudes of these interpolating currents with the
meson states are defined as
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Olifle) = Apup,
(Olgs|m) = A, (3)

where u, is the polarization vector of p meson. The coupling constant g,
for the p — 7y decay is defined as follows:

afyd

. €
<7T7|:0> = 'Lm_gpfr'yg PaupqgyEs , (4)

p

where €, and ¢, are the polarization vector and momentum of the photon,
respectively, and e is the electric charge.

In accordance with the QCD sum rules method strategy, we evaluate the
two point correlation function both from a phenomenological point of view,
and also from a theoretical approach in terms of QCD degrees of freedom.
We then equate these two representations and construct the corresponding
sum rule for the coupling constant g,r-.

The theoretical part of the sum rule for the coupling constant g, is
obtained in terms of QCD degrees of freedom by calculating the two point
correlator in the deep Euclidean region where p? and (p + ¢)? are large
and negative. In this calculation the full light quark propagator with both
perturbative and nonperturbative contributions is used, and it is given as [9]

i5(x,0) = (0T {q(x)q(0)}0)

1
1
—igST /du{%owGW(um) - 4iui—§G“"(um)’yy} +...,(5)
0

where terms proportional to light quark mass m,, or mg are neglected. After
straightforward computation we obtain

Tu(p,q) = / d*zeP {~B(y(q)[a(z)yu75u(0)|0)

~3A [EapopTa +1TpGuo — iagup) (V(@)[W(2)0,5u(0)[0)}, (6)

. 2
whereA = 55— and B = — L (uu) — T3 (mu)z?. In order to evaluate
the two point correlation function further, we need the matrix elements

(7(9)|7vay59]0) and (y(q)|Goapq|0). These matrix elements are defined in
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terms of the photon wave functions [10-12]

1

_ f o UqT
(Y(q)|@7a759/0) = Zeqeeaﬂpaeﬁq”ﬂc due™ ) (u) ,
0

1
(7(@)[Goapal0) = ieq(qq) / et
0

x{(€aqs — €80a) [xP(u) + 2°[g1(u) — g2 (u)]]
+[qz(€ars — €57a) + €x(Taqs — TGa)] g2(uw)}, (7)

where the parameter y is the magnetic susceptibility of the quark condensate
and e, is the quark charge, ¢(u) and ¢(u) stand for the leading twist-2
photon wave functions, while g;(u) and go(u) are the two-particle photon
wave functions of twist-4. The dimensional constant f is for normalization
purposes [10]. In further analysis the path ordered gauge factor is omitted
since we work in the fixed point gauge [13].

In order to construct the phenomenological part of the two point correla-
tion function in Eq. (1), we note that the two point function T, (p, ¢) satisfies
a dispersion relation and we saturate this dispersion relation by inserting a
complete set of one hadron states into the correlation function and obtain

(%117) (ol210)(0js})
D+ a)? —m? —md) T ®)

where the contributions from the higher states and the continuum starting
from some threshold sy are denoted by dots. In order to take these contri-
butions into account we invoke the quark-hadron duality prescription and
replace the hadron spectral density with the spectral density calculated in
QCD.

After evaluating the Fourier transform for the M1 structure and then
performing the double Borel transformation with respect to the variables
Q? = —p? and Q2 = —(p + ¢)?, we finally obtain the following sum rule for
the coupling constant g,.,

Tu(p,q) =

Smp(eu + ea) (@) m2 a2 ma /a3

Jpmy = M hn
x { =x¢(uo) M fo(so/M?) + 4 (g1 (uo) — g2(uo)) } 9)

where the function fo(so/M?2) =1 — e 50/M” ig the factor used to subtract
the continuum, s¢ being the continuum threshold, and



Radiative p* — 7t~ Decay ... 2925

M¢ 2 _ _MPMZ

1 =1 = 10
M+ G M+ M7 (10)

uy =

with M? and M2 are the Borel parameters.
For the numerical evaluation of the sum rule we use the values (uu) =
—0.014 GeV? [14], m, = 0.770 GeV, m; = 0.140 GeV [15], and x =
—3.3 GeV 2 [10]. The overlap amplitude A, for the m meson state is

given by the relation A, = f,,m g [16]. We use the experimental value
fr = 0.132 GeV and m, + mgq = 0.014 GeV, and obtain this amplitude
as Ar = 0.18 GeVZ. We note that neglecting the electron mass the ete™

decay width of p® meson is given as I'(p? — ete™) = 47’30‘ m% Then using
the value obtained from the experimental leptonic decay width of p® [15],
we obtain the value A, = 0.118 GeV? for the overlap amplitude of the p°
meson. By isospin invariance we obtain the overlap amplitude for p™ meson
as A, = 0.17 GeV2. In order to analyze the dependence of the coupling
constant g, on the Borel parameters M2 and M2, we study independent
variations of M? and MZ. We find that the sum rule is quite stable for
M? = 0.5 GeV? and for 0.6 GeV? < M3 < 1.4 GeV?. These limits on M3
determine the allowed interval for the vector channel [17]. Moreover, we
study the dependence of the sum rule on the threshold parameter sq. The
variation of the coupling constant g,r, as a function of Borel parameters
M2 for different values of so for M7 = 0.5 GeV? is shown in Fig. 1 from
which we conclude that the variation is very stable. The sources contribut-
ing to the uncertainty in the coupling constant are those due to variations
in M2, M2, s and the uncertainties in the estimated values of the vacuum
condensate and the magnetic susceptibility. If we take these uncertainties
into account by a conservative estimate, we obtain the coupling constant
Gpry S Gpry = 0.64 £0.05. This value of the coupling constant is consistent
with its value used in the analysis of p° photoproduction reactions through
pseudoscalar exchange amplitude which is g,r, = 0.54 [18]. If we use (y7|p)
amplitude given in Eq. (2), then the decay width for p™ — 7"+ is obtained
as

(m2 — m2)?3
Ppt s aty)=Sp "m0 2 11

Therefore, from our analysis we determine I'(p*™ — 7+) decay widths for
pT mesons as I'(p* — nFy) = (86414) KeV. Our result is in good agreement
with the measured decay width [15], which is I'(p™ — 7Fy) = (684+7) KeV.

In our analysis, we use the values for the overlap amplitudes A\, and A,
the values we obtain by relating these to the experimentally measured quan-
tities. However, a QCD sum rule analysis [16] for these amplitudes yield the
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Fig.1. The coupling constant g, as a function of the Borel parameter M3 for
different values of the threshold parameters sq with M2=0.5 GeV?.

result \,=0.17 GeV2, A;=0.17 GeV? which are very close to the values we
obtain. Moreover, an independent phenomenological analysis [19] gives the
values \,=0.17 GeV2, A;=0.20 GeV? for these amplitudes. If we use these
latter values for the overlap amplitudes in our analysis, we then obtain for
the coupling constant and the decay width the values g,r, = 0.58 & 0.04
and I'(p* — 7ty) = (71 £ 10) KeV. We note that the electromagnetic
decays V' — P~ of vector mesons in the flavor SU(3) sector was studied
previously [16] by employing the method of QCD sum rules in the pres-
ence of the external electromagnetic field, and the results g,r, = 0.59 and
I'(pT — mFv) = 68 KeV were obtained. The values obtained in our analysis
are consistent with these results. Therefore, our results which are obtained
utilizing the light cone QCD sum rules supplements the study of this decay
using QCD sum rules in external field method.

We like to thank T.M. Aliev for suggesting this investigation to us and
for helpful discussions during the course of our work.
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