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SELECTION OF PHOTON GLUONFUSION EVENTS IN DISKatarzyna Kowalik, Ewa RondioThe A. Soltan Institute for Nulear StudiesyHo»a 69, 00-681 Warsaw, PolandRobert Sulej, and Krzysztof ZarembaWarsaw University of TehnologyzKoszykowa 75, 00-662 Warsaw, Poland(Reeived July 24, 2001; revised version reeived September 25, 2001)A seletion of the Photon Gluon Fusion (PGF) proess with light quarksfor deep inelasti sattering events is presented. This proess is diretly sen-sitive to gluon polarization and our goal is to �nd out the most e�etiveseletion on a sample of events simulated for the SMC experiment. Weompare two general multi-lass lassi�ation methods � Bayes methodand neural network with a onventional seletion proedure. The neuralnetwork algorithm presented here is a modi�ation of method belonging tothe family of diretional minimization algorithms. This method is onve-nient and e�etive for photon gluon fusion seletion and determination ofgluon polarization. Finally we present the estimation for preision of gluonpolarization for neural network method.PACS numbers: 13.10.+q, 13.85.Fb, 07.05.Mh1. IntrodutionThe spin struture of the nuleon has been studied in polarized DeepInelasti lepton�nuleon Sattering (DIS) for quite a long time. The ex-perimental observation by EMC [1℄, that a surprisingly small fration of thenuleon spin is arried by quarks has had major in�uene on the more reenty This work was supported in part by the Polish State Committee for Sienti� Researh(KBN) SPUB Nr621/E-78/SPUB-M/CERN/P-03/DZ298/2000 and grant Nr 2 P03B113 19.z Supported by the Polish State Committee for Sienti� Researh (KBN) SPUBNr134/E-365/SPUB-M/CERN/P-03/DZ299/2000.(2929)



2930 K. Kowalik et al.spin physis. Many experiments were performed to on�rm this result [2�7℄and hek it on di�erent targets. More measurements are in progress andin preparation [8�10℄. Several theoretial ideas were proposed [11℄ to ex-plain this observation. They were based either on large negative sea quarkpolarization or on ontribution from polarized gluon and orbital angularmomentum of quarks and gluons.To hek whih of them is responsible for making up the nuleon spinone should determine a fration of nuleon spin arried by gluons. Informa-tion about this quantity an be obtained indiretly from the dependene ofthe struture funtion g1 on four-momentum transfer squared, Q2. In thisanalysis parton distributions (quarks (q) and gluons (G)) are �tted usingQCD evolution to the measurements of the spin dependent struture fun-tion g1 [12,13℄. However, due to the large number of theoretial assumptionsin this method, a diret measurement of gluon polarization seems to be thebest way of verifying the spin struture of the nuleon.The �rst measurement of the polarized gluon density was performed byE704 experiment at Fermilab but unfortunately the results did not allow todistinguish between di�erent theoretial models. The Hermes experiment atDESY also has measured gluon polarization. In their ase the preision isseverely limited and the interpretation is not lear due to low momentumtransfer. The experiments STAR/PHENIX at RHIC , COMPASS at CERNand E161 at SLAC are planned to take data next years. Their preision onÆ(�G=G) will be better than indiret measurements. Also the possibilityof using olliding polarized proton and eletron beam at HERA has beendisussed.
Fig. 1. Lowest order diagrams for DIS �N sattering: a) virtual photo-absorption(LO), b) gluon radiation (Compton diagram), ) photon gluon fusion (PGF).In DIS the leading order proess, the virtual photo-absorption, does notallow diret aess to the gluon distribution, sine the virtual photon doesnot ouple diretly to the gluon. Hene the observation of higher orderproesses is an alternative solution to get gluon distribution ompared tothe indiret method based on QCD evolution.Suh a diret measurement is possible via the Photon Gluon Fusion(PGF) proess. The Feynman diagram of this proess is presented in Fig. 1()



Seletion of Photon Gluon Fusion Events in DIS 2931together with leading order (Fig. 1(a)) and gluon radiation � Compton dia-grams (Fig. 1(b)). Both PGF and Compton proesses are of the same orderin strong oupling onstant, �S , so they have lower ontribution to DIS rosssetion then leading order diagram.Sine the frequeny of PGF is small in omparison to all proesses, �nd-ing a signature to tag this proess is very important. The most straight-forward way of searhing for PGF is harm prodution signalled either bydetetion of harmed partiles (espeially D0) or by prodution of J= . Forsuh proesses the ontribution from leading order diagram is small beauseontents of the harm quark in the nuleon is pratially negligible. Due tothe large mass of the harm quark the ontribution via the fragmentationproesses is also low. For the same reason harm pair prodution in PGFis suppressed. Therefore it is important to �nd a method whih allows toidentify PGF in ase of light quarks prodution. Tagging the PGF proessby observation of hadrons with large transverse momentum (pT) in the �nalstate gives suh possibility. The pT is alulated with respet to the virtualphoton diretion.In the leading order proess the ontributions to hadrons pT are theintrinsi kT of quarks in the nuleon [14℄ and the fragmentation proess.Thus most hadrons have small transverse momentum. The opposite situa-tion ours for Compton and PGF where hadrons mainly aquire transversemomentum from primary produed partons. For this reason the requirementof observation of two hadrons with large transverse momentum an enhanethe ontribution of the PGF proess in the seleted sample. This idea hasbeen reently disussed in [15℄. It was applied to determine the gluon po-larization from photoprodution data in the Hermes experiment [16℄.In this paper we present di�erent approahes to the seletion of PGFwith light quark prodution. In Setion 2 a short theoretial desriptionof the determination of gluon polarization is presented. Methods based onBayes lassi�ation and the neural network are disussed in Setion 3. TheMonte Carlo sample used in the tests is desribed in Setion 4. In Setion 5we ompare results obtained in di�erent methods:1. Bayes lassi�ation,2. the neural network,3. traditional uts on kinemati variables.For the best lassi�ation method we determine the onditions providing theoptimal preision on the gluon polarization determination.



2932 K. Kowalik et al.2. FormalismThe experimentally measured quantity is the spin ross setion asymme-try de�ned as the ratio of polarized and unpolarized ross setions:AlN = ��2� = �"# � �""�"# + �"" ; (2.1)where �"# and �"" are the ross setions with antiparallel and parallel ori-entation of beam and target polarizations, respetively. The measured AlNasymmetry is related to the polarized distribution of quarks � q = (q"�q#)and gluons �G = (G" � G#). Here, the arrows orrespond to antiparalleland parallel on�guration of parton and nuleon spin.The unpolarized ross setion an be expressed as:� = F 
 �̂ 
D (2.2)and the polarized one as: �� = �F 
��̂ 
D ; (2.3)where F and �F are unpolarized and polarized quark or gluon distributionfuntions. The �̂ and ��̂ symbols are, respetively, the spin-independentand spin-dependent partoni hard-sattering ross setions. The funtionD desribes the fragmentation of partons into hadrons and the symbol 
stands for onvolution.The full expression to alulate unpolarized (�) and polarized (��) rosssetions of inlusive prodution of two hadrons with large pT in the �nal stateonsists of three terms sine all proesses shown in Fig. 1 should be takeninto aount.We an extrat the gluon polarization �GG by inserting the full expressionfor � and �� into Eq. (2.1). The �nal expression reads:�GG hâLLi�G!q�qRPGF =A1hâLLi�q!qRLO +A1hâLLi�q!qGRCompton �AlN!hhX ; (2.4)where hâLLi = ��̂̂� is the partoni asymmetry for the hard sattering pro-esses, the ratios R refer to the ontribution of eah proess shown in Fig. 1to the total ross setion, AlN!hhX is the measured asymmetry for the se-leted events and A1 is the virtual photo-absorption asymmetry whih iswell known from inlusive experiments.The values of hâLLi are alulated for eah event using the matrix elementfor partoni proesses in the program POLDIS [17℄. Their behavior as the



Seletion of Photon Gluon Fusion Events in DIS 2933funtion of sattering angle in the parton�photon .m. signi�antly dependson the type of proess. For the Compton proess the asymmetry hâLLi�q!qGis positive in ontrast to the one for PGF � haLLi�G!q�q whih is negativeand almost two times bigger in the relevant kinemati region.As an be seen from Eq. (2.4) the preision of the gluon polarizationdetermination depends on the statistial preision of the measured asym-metry AlN!hhX and on the ontribution of bakground proesses (RLO andRCompton) to the �nal sample. Sine the bakground ontribution intro-dues the major systemati unertainty in the evaluation of �GG , the goalof the seletion is to obtain a sample with maximal number of PGF eventsand minimal ontributions of bakground proesses. The average value ofhâLLi and the ratios R for the �nal sample are estimated from Monte Carlosimulations.The riteria to judge the seletion are based on two numbers: purity,whih is the fration of wanted PGF events in the �nally seleted sample, ande�ieny de�ned as the fration of PGF events from input whih survivesthe seletion. 3. Classi�ation tehniquesConventional approahes, based on uts on event and hadron variables,have two serious weak points. The �rst one is the laborious searh for theoptimal set of uts, often done with a trial and error tehnique. The se-ond disadvantage is treating parameters independently, even when obviousorrelations do our. Also, there is no possibility of ontinuous balanebetween seletion e�ieny and sample purity when using uts.We show two alternative tehniques of seleting PGF events: neuralnetwork and, for omparison, a pure statistial tehnique based on the Bayestheorem, whih is known as a �lose to optimum� standard in multi-lasslassi�ation problems. 3.1. Bayesian approahThis tehnique onsists in omputing the onditional probability, withwhih a given event belongs to the distribution of the proess of interest (allother proesses are treated as bakground). This probability is given by theexpression: P (GnjX = (x1; : : : ; xk)) = gn(x1; : : : ; xk) pnPmi=1 gi(x1; : : : ; xk) pi ; (3.1)where: Gn � is the proess of interest; X � the event feature vetor;gi(X) � the i-th proess distribution; pi � the a priori probability of i-thproess; m � the total number of proesses.



2934 K. Kowalik et al.The bayesian lassi�ation desribed in this setion an be applied forthe PGF proess seletion. An event is lassi�ed as PGF if the obtainedprobability exeeds a �xed threshold Tr: P (PGFjX) > Tr . Changing thisthreshold allows us to inrease the seletion purity at the ost of lassi�edset's statistis, or, on the other hand, we an get higher seletion e�ienywith lower purity of lassi�ed sample.This tehnique would give an optimal solution on one ondition: it isneessary to know the real probability distributions and the `a priori' prob-abilities for all proesses in the experiment. This is not true in our ase andwe an only estimate their values from a limited set of events (alled later�a training set�); see [18℄ for more details on this tehnique.A good estimator of g(X) p for a given proess (onvergent to the realvalue with growing number of events in the training set) is the sum of fun-tions attahed to eah event orresponding to this proess in the trainingset. These funtions (alled also �potential funtions�, [19℄) should havea maximum at the point with oordinates equal to the feature vetor ofa given event and their values should derease with growing distane fromthat point, so that the event has strong in�uene on the estimator value onlyin its lose surrounding. Gaussoid funtions omply with these requirementsquite well. The estimator de�ned in this way takes the form:ĝi(X) p̂i = niXj=1 exp��1rd(X ;Y j)2� ; (3.2)where ni is the number of events of the i-th proess in the training set; r �is the Gaussian funtion width; d(X ; Y j) � indiates the distane betweenthe feature vetor X and the feature vetor Y j of the j-th event from thetraining set (orresponding to the i-th proess): d =qXTY j. In Eq. (3.1)we alulate ratios of g(X) � p values so there is no need to normalize theestimator values.The Gaussoid funtion width (parameter r) determines the radius of in-�uene of a single event on the estimator shape. It is optimized with analgorithm that minimizes the Mean Squared Error (MSE). This error is al-ulated on a testing set of events as the mean value of the squared deviationbetween orret answer and Bayes probabilities obtained with Eq. (3.1):MSE = 1n nXj=1[dj � P (PGFjXj)℄2 ; (3.3)where dj is a orret answer for event Xj from a testing set of n events(dj = 1 for PGF proess, dj = 0 for bakground proess). In pratie,



Seletion of Photon Gluon Fusion Events in DIS 2935a good algorithm (quikly onvergent to optimum value of r) is the one thatassumes a paraboli dependene MSE(r) in minimum surroundings.Beause of the very long alulation time in the seletion of the PGFproess, it was neessary to make a simpli�ation: the Gaussoid funtionwidth r was assumed to be the same in all diretions of a feature spae.Aording to this simpli�ation, data in the training set were normalized toget similar numerial values of all parameters i.e. to prevent features withlarge standard deviation from dominating the r optimization proess.A serious and important problem in bayesian lassi�ation is the om-plexity of alulations. Distribution's estimator values have to be omputedeah time we lassify an event from the testing set, during both optimizationand lassi�ation proesses. It means, aording to Eq. (3.2), that about(N m) multipliation and aumulation operations and N alulations ofexponential funtion should be done to lassify one event for a training setonsisting of N events desribed with m parameters. The value of m givesthe number of omponents of the feature vetor and depends on the numberof variables used to desribe an event (in our ase m = 3). The number ofevents in the training set (N) is hosen as a ompromise between the qualityof estimator (statistis of proesses) and the alulation time. The requiredvalue of N dramatially inreases when new variables appear in a featurevetor, whih makes this tehnique very time-onsuming.3.2. Neural networkThe neural network appliation is an alternative method of event lassi-�ation. A simple network, in feed-forward on�guration (Fig. 2), was usedin the projet.Neural networks onsist of multiple, simple proessing units (arti�ialneurons) interonneted by large number of weighted onnetions. In thefeed-forward on�guration neurons are arranged in a few layers and data�ow is stritly feed-forward i.e. from the �rst (input) layer, through thenumber of hidden layers to the output.Eah neuron reeives an input signal whih is a sum of signals onnetedto its inputs multiplied by onnetion weights and generates an output signalwhih is a ertain funtion of the input. A so-alled sigmoid funtion is usedin most of ases. Eq. (3.4) desribes the neuron operations shown in Fig. 3.out = 1[1 + exp[�w0 �Pni=1 xiwi℄℄ : (3.4)A neural network is trained by feeding a set of teahing patterns and hang-ing the wi weights aording to some learning rule. In the supervised learn-ing, whih was applied in present projet, training vetors are supplemented



2936 K. Kowalik et al.

Fig. 2. Network topology.

Fig. 3. Neural unit.by mathing output patterns. The weights are hanged usually with a gra-dient desent method whih iteratively minimizes an error funtion whih isde�ned as the mean square error between desired and atual outputs of allneurons.The struture (topology) of the network depends on the appliation (seeRefs [18, 20, 21℄). In the lassi�ation task presented in this paper, a netwith two hidden layers was used. The number of neurons in the input layer



Seletion of Photon Gluon Fusion Events in DIS 2937orresponds to the number of parameters used in the data proessing. Theoutput layer ontains a single neuron. The response of this neuron variesbetween 1 ( the desired output of PGF) and 0 ( other proesses). The answerof the net may be interpreted as a onditional probability. The threshold,whih we an apply to the neural network output, orresponds to the Trthreshold for the bayesian lassi�ation.As mentioned above, a training set of patterns is needed for teahing thenetwork. Eah pattern orresponds to the feature vetor of an event. Thereshould be a ouple of times more patterns (of eah proess) in the trainingset than weights in the network. The most ommonly used gradient desenttraining algorithm is the BP method (error Bak Propagation). However,there are more e�ient tehniques suh as onjugated gradients. The train-ing algorithm used in this projet is a modi�ation of this tehnique. Theapplied algorithm an be deomposed into the following steps:1. Initialize weight values as random numbers (there is no a priori knowl-edge where the starting point should be): point �0� in Fig. 4.2. Calulate the negative gradient: diretion of the greatest inlination ofthe MSE surfae (mean squared deviation between answers obtainedfrom the net and orret answers for all events from the training set).3. Move through the weights spae in this diretion (with relatively biginitial steps) until the angle between urrent negative gradient andsearhing diretion exeeds 90Æ: points �1� and �2�.4. Reverse searhing diretion and shorten the step to half of its previousvalue.

Fig. 4. Illustration of the training algorithm.



2938 K. Kowalik et al.5. Repeat (3) and (4) until minimum step value is reahed: points �3�and �4�.6. Change searhing diretion to the urrent negative gradient diretion(nearly perpendiular to the previous one): point �5�.7. Repeat (3)�(6) until the terminal ondition (MSE value, number oftraining set presentations) is satis�ed.This algorithm is similar to the well-known onjugated gradient algo-rithm (see Refs [18,22�24℄), whih belongs to the family of diretional min-imization algorithms. In this family, basially, the point of minimum erroris searhed for in a �xed diretion. Then the searhing diretion is hangedaording to some rules. In the onjugated gradient algorithm, the newdiretion is alulated as:dn = g +  � dn�1 ;  = (g � dn�1)T � gdTn�1 � dn�1 ; (3.5)where g is a urrent negative gradient and dn�1 is previous searhing di-retion. Eq. (3.5) assumes a squared form of error surfae in minimumsurrounding and, if the MSE surfae omplies with this ondition, the algo-rithm assures the smallest number of diretion hanges.The onjugated gradient algorithm was also tested and serious disad-vantages were observed. This algorithm is very sensitive to the value of theinitial step (used in searhing for the minimum in �xed diretion). A too bigvalue makes the algorithm unstable. It fores starting from tiny steps eahtime the algorithm hanges searhing diretion. This auses that, in spite oflower number of diretion hanges, we have to alulate often a omparablenumber of iterations to reah the same MSE level as with the �rst presentedalgorithm (Fig. 5(a) and Fig. 5(b)). Di�ulties in �nding the optimal initialstep value were the reason of giving up further tests with the onjugatedgradient algorithm. Our modi�ed algorithm aepts a wide range of initialstep values. Bigger values speed up the training proess (Fig. 6) and thereis no danger of making the proess unstable (a very large initial step onlyslows down the training proess).Beause of the possibility of �nding a loal minimum (the MSE surfaemay have a lot of them) it is good to train the network with di�erent initialweight values and, if the network gives similar results in these trials, it is a�ne proof of �nding a global minimum. The presented algorithm is apable ofesaping from loal minima in many ases and there was no ase of signi�antdi�erenes in results obtained by networks trained with randomized initialweights. The training proess should be stopped when no signi�ant hangein the MSE value is observed.
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(a)

(b)

(c)

Fig. 5. Training proess: (a) MSE as a funtion of diretion hanges (MSE valuesbefore diretion hanging are plotted only); (b) MSE as a funtion of trainingiterations; () enlarged fragment of the MSE diagram (arrows mark the iterationswhen the searh diretion is hanged). An initial step of 0:01 (maximum stablevalue) was used for the onjugated gradient algorithm. An initial step of 0:04 wasused for the modi�ed algorithm.



2940 K. Kowalik et al.

Fig. 6. Training proess speed for modi�ed algorithm for two di�erent initial stepvalues.One of main advantages of the network is its omputation simpliity. Thenumber of required alulations depends on the network struture, whih isgiven by:� H1, H2, the number of neurons in hidden layers; su�ient values forPGF events lassi�ation are H1 = 5� 6 and H2 = 3,� m, the size of the input event feature vetor, m = 3� 8.For the lassi�ation of a single event the network requiresH1(m+ 1) +H2(H1 + 1) +H2 + 1aumulation and multipliation operations and H1 + H2 + 1 alulationsof the neuron output funtion, whih is usually implemented as segmentlinear approximation. It means that in pratial appliations lassi�ationof events with the neural network is about 103 faster then with the bayesiantehnique. Also, the simpliity of lassifying of events makes the trainingtime muh shorter than the optimization of estimation parameters (Gaussianfuntion width) for the bayesian tehnique.4. Sample desriptionThe studies were performed for the spei� setup of the SMC experimentrealized in the high energy muon beam at CERN. The polarized muons of 190GeV satter o� polarized nuleons produing hadrons in the �nal state. Theinteration an be desribed by following kinemati variables: � is energytransfer to the virtual photon, y = �=Eb where Eb is beam energy, Q2 isthe squared mass of the virtual photon and xBj = Q2=2M� where M isthe proton mass. Using the above variables the invariant mass of the �nalhadroni state W 2 an be de�ned.



Seletion of Photon Gluon Fusion Events in DIS 2941The sattered muon and produed harge partile were measured in SMCopen magneti spetrometer. The minimal energy of hadron whih an bedeteted in spetrometer is around 5 GeV.The experimental setup was simulated using the LEPTO [25℄ genera-tor with parameterizations of parton distributions at leading order takenfrom [26℄. The spin dependent e�ets were alulated in POLDIS [17℄ witha onsistent polarized parton distribution set [27℄. In generation the follow-ing kinematis uts were applied:0:003 < xBj < 0:7,0:05 < y < 0:93,1 GeV < Q2 < 100 GeV,6.5 GeV2 < W 2 < 1000 GeV2,10 GeV < � < 190 GeV.The generated sample is omposed of 88% leading order proess, 8%Compton and 4% PGF proess. For eah event the muon trak was followedthrough the magnet and trigger onditions were heked. About 33% eventsful�ll the trigger onditions. The fration of events whih have at least twohadrons in the aeptane is 52%. Finally only events with at least twohadrons with pT above 0.7 GeV were kept. With this seletion we are leftwith 4% of generated event sample. The fration of PGF events in thissample amounts to 25%. The frations of events for bakground proessesLO and Compton are about 35% and 40%, respetively. The simulation wastaking into aount kinemati smearing in the reonstrution program usedin the experiment as well as losses of traks due to hamber ine�ienies.The sample desribed above is used for several tests of seletion pro-edures presented in this paper. The following variables were used in thelassi�ation:� variables haraterizing the event:� �, y, Q2, xBj,� multipliity of traks,� variables for two hadrons with highest pT:� pT, pL � transverse and longitudinal momentum of hadron withrespet to the virtual photon diretion,� harge of the hadron,� z = Eh=�, where Eh is the hadron energy in the laboratory frame,� �� azimuthal angle between transverse momenta of this hadrons.



2942 K. Kowalik et al.5. ResultsIn this setion we ompare results of seletion of the PGF proess forthree lassi�ation tehniques: the most ommonly used seletion based onuts, the Bayes method and the neural network. From arguments disussedin the introdution one expets that the high sensitivity on the PGF proessis related to pT(1�2) of the seleted hadrons. Also the variable y is stronglyorrelated with the size of the expeted asymmetries. These three variableswere found to be most e�ient for the seletion based on uts. That is whyas �rst approah we ompared di�erent tehniques in the same onditionsusing only tree variables mentioned above: pT1, pT2, y. The results on thepurity and the e�ieny are shown in Fig. 7. The dashed and solid linesshow the Bayes method and the neural network results, respetively, andpoints orrespond to several uts. It was found that optimal seletion forthe ut method is obtained for uts on (p2T1 + p2T2) (set (i)). The values forevery ut number are listed in Table I. As an example another set of uts (ii)is also presented in Fig. 7. For the hadron with highest pT, the ut on pTis hanging while for the other one is kept at 0.8 GeV. This seletion is lesse�ient than the set of uts (i). As is seen in Fig. 7 there are no signi�antdi�erenes when we ompare the best seletion based on uts (set (i)) withthe neural network and Bayes results.

BayesNeural networkCuts (i): (p2T1 + p2T2; (y > 0:4)Cuts (ii): p2T1; p2T2; (y > 0:4)Fig. 7. Comparison of all tehniques. Used variables: y, pT1 and pT2 .Up to now we used limited set of variables. If we try to selet the PGFproess by handling more variables the manual searhing for an optimalset of uts osts a lot of time and does not bring improvements. In ase
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y; pT1; pT2xb; y; Q2; p1; pT1; p2; pT2; �Fig. 8. Results for the neural network using limited and optimal set of variables.TABLE IThe list of utsthe (i) seletion the (ii) seletionnumber p2T1 + p2T2 number pT1 pT21 3.2 6 1.4 0.82 2.5 7 1.2 0.83 1.9 8 1.1 0.84 1.5 9 1.0 0.85 1.3 10 0.9 0.8of Bayes tehnique, when we want to use more variables, the proessing ofeah event takes muh time beause of the vast training set. The situationis muh better for the neural network due to simpliity of omputing. Forthis reason we deided to use only the neural network in further tests.It is not lear how to hoose variables other then y and pT to omposethe input vetor for the network beause there are no obvious di�erenes inthe distributions for PGF and bakground proesses. A lot of attempts weremade to obtain the best ombination.Finally, the optimum set of variables was found as follows: xb, y andQ2 for variables desribing the event and pT, pL and � for variables har-aterizing the seleted hadrons. The addition of the harge of the seletedhadrons and also the multipliity and energy of all hadrons in the event do



2944 K. Kowalik et al.not improve the result. The omparison of the results of the lassi�ationdone by the neural network with the optimal set of variables and using onlyinformation about y and pT is presented in Fig. 8. The purity at a givene�ieny for the optimal set of variables (dashed line) is a few perent betterthen the results for the neural network whih uses a limited set of variables.Eah point on the line whih desribes the result of lassi�ation done bythe neural network orresponds to a ertain output threshold value. Choos-ing a low threshold we get high e�ieny but purity is low due to largeontributions from bakground proesses. The opposite situation ours athigh thresholds.From the purity dependene on e�ieny shown in Fig. 8 the hoieof the optimal threshold for further physial analysis is not obvious andan additional riterion is needed. To solve this problem the error on thegluon polarization �GG as the funtion of threshold is alulated using theexpression given by Eq. (2.4). In this alulation the statistial error on themeasured asymmetry ÆA and the systemati error ÆR on ratios R are takeninto aount. The error on A1 asymmetry is negleted in the alulationas it is small ompared to ÆA. Also no error is introdued on partoniasymmetries âLL alulated at leading order.The results of the alulation of the error on �GG as a funtion of thethreshold are shown in Fig. 9 assuming di�erent statistis of the sample andalso varying the error on ÆR. The size of the sample whih was taken intoaount orresponds to: (a) one year of data taking by SMC experiment and
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Seletion of Photon Gluon Fusion Events in DIS 2945(b) ten times bigger statistis than (a). For both ases two possibilities of anerror on ÆR were onsidered. First ÆR is negleted (the solid lines in Fig. 9),seond the error is taken as ÆR = 30%R (the dashed and dashed-dottedlines in Fig. 9).The observed inrease of the error on �GG at low threshold is the resultof the small fration of PGF events in the sample while at high thresholdit is mainly due to loss of statistis. The optimum threshold was obtainedaround 0.37 as is marked by the arrow in Fig. 9.For low statistis, the ontribution from ÆR is negligible. For biggerstatistis the systemati error ÆR begins to play a role at low thresholdsbut the optimal value of threshold does not hange when we inrease thesystemati error ÆR. The minimum is getting broader but overs the sameregion of threshold values. This allows to selet di�erent thresholds, givingthe possibility of systematis heks. The hoie of the threshold at 0.37oresponds to a purity of the sample of � 45% and an e�ieny of �20%marked as a dot in Fig. 8. For this threshold value the preision on gluonpolarization determination is expeted to be better than Æ(�G=G) � 0:3 forSMC experiment. This an be ompare to result obtain with ut seletionmethod Æ(�G=G) � 0:46. If the statistis of the sample is bigger we getÆ(�G=G) � 0:1 for neural network and Æ(�G=G) � 0:15 for method usingut seletion. 6. SummaryWe developed the neural network algorithm for the lassi�ation of PGFproess. Many tests prove that this algorithm is stable and tehnially wellperforming. Also we show that neural network method is omparable to thestandard analysis for three variables used by traditional ut seletion andbrings improvement by few perent in purity if extra variables are added.Neural network make optimal use of many orelated variables without sig-ni�ant penalty in omputing time. The appliation of this method to thesimulations of the SMC experiment leads to 45% purity of the seleted sam-ple whih is su�ient for gluon density determination with preision betterthan Æ(�G=G) � 0:3. It shows that the method an be suessfully appliedfor the experimental data analysis.REFERENCES[1℄ EMC Collaboration, J. Ashman et al., Nul. Phys. B328, 1 (1989).[2℄ E142 Collaboration, P.L. Anthony et al., Phys. Rev. D54, 6620 (1996).[3℄ E143 Collaboration, K. Abe et al., Phys. Rev. D58, 112003 (1998).
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