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A selection of the Photon Gluon Fusion (PGF) process with light quarks
for deep inelastic scattering events is presented. This process is directly sen-
sitive to gluon polarization and our goal is to find out the most effective
selection on a sample of events simulated for the SMC experiment. We
compare two general multi-class classification methods — Bayes method
and neural network with a conventional selection procedure. The neural
network algorithm presented here is a modification of method belonging to
the family of directional minimization algorithms. This method is conve-
nient and effective for photon gluon fusion selection and determination of
gluon polarization. Finally we present the estimation for precision of gluon
polarization for neural network method.

PACS numbers: 13.10.+q, 13.85.Fb, 07.05.Mh

1. Introduction

The spin structure of the nucleon has been studied in polarized Deep
Inelastic lepton-nucleon Scattering (DIS) for quite a long time. The ex-
perimental observation by EMC [1], that a surprisingly small fraction of the
nucleon spin is carried by quarks has had major influence on the more recent
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spin physics. Many experiments were performed to confirm this result [2-7]
and check it on different targets. More measurements are in progress and
in preparation [8-10]. Several theoretical ideas were proposed [11] to ex-
plain this observation. They were based either on large negative sea quark
polarization or on contribution from polarized gluon and orbital angular
momentum of quarks and gluons.

To check which of them is responsible for making up the nucleon spin
one should determine a fraction of nucleon spin carried by gluons. Informa-
tion about this quantity can be obtained indirectly from the dependence of
the structure function ¢g; on four-momentum transfer squared, Q2. In this
analysis parton distributions (quarks (¢) and gluons (G)) are fitted using
QCD evolution to the measurements of the spin dependent structure func-
tion g1 [12,13]. However, due to the large number of theoretical assumptions
in this method, a direct measurement of gluon polarization seems to be the
best way of verifying the spin structure of the nucleon.

The first measurement of the polarized gluon density was performed by
E704 experiment at Fermilab but unfortunately the results did not allow to
distinguish between different theoretical models. The Hermes experiment at
DESY also has measured gluon polarization. In their case the precision is
severely limited and the interpretation is not clear due to low momentum
transfer. The experiments STAR/PHENIX at RHIC , COMPASS at CERN
and E161 at SLAC are planned to take data next years. Their precision on
d(AG/G) will be better than indirect measurements. Also the possibility
of using colliding polarized proton and electron beam at HERA has been
discussed.
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Fig. 1. Lowest order diagrams for DIS v* N scattering: a) virtual photo-absorption
(LO), b) gluon radiation (Compton diagram), c¢) photon gluon fusion (PGF).

In DIS the leading order process, the virtual photo-absorption, does not
allow direct access to the gluon distribution, since the virtual photon does
not couple directly to the gluon. Hence the observation of higher order
processes is an alternative solution to get gluon distribution compared to
the indirect method based on QCD evolution.

Such a direct measurement is possible via the Photon Gluon Fusion
(PGF) process. The Feynman diagram of this process is presented in Fig. 1(c)
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together with leading order (Fig. 1(a)) and gluon radiation — Compton dia-
grams (Fig. 1(b)). Both PGF and Compton processes are of the same order
in strong coupling constant, a,g, so they have lower contribution to DIS cross
section then leading order diagram.

Since the frequency of PGF is small in comparison to all processes, find-
ing a signature to tag this process is very important. The most straight-
forward way of searching for PGF is charm production signalled either by
detection of charmed particles (especially D°) or by production of J/v. For
such processes the contribution from leading order diagram is small because
contents of the charm quark in the nucleon is practically negligible. Due to
the large mass of the charm quark the contribution via the fragmentation
processes is also low. For the same reason charm pair production in PGF
is suppressed. Therefore it is important to find a method which allows to
identify PGF in case of light quarks production. Tagging the PGF process
by observation of hadrons with large transverse momentum (pr) in the final
state gives such possibility. The pt is calculated with respect to the virtual
photon direction.

In the leading order process the contributions to hadrons prt are the
intrinsic k1 of quarks in the nucleon [14] and the fragmentation process.
Thus most hadrons have small transverse momentum. The opposite situa-
tion occurs for Compton and PGF where hadrons mainly acquire transverse
momentum from primary produced partons. For this reason the requirement
of observation of two hadrons with large transverse momentum can enhance
the contribution of the PGF process in the selected sample. This idea has
been recently discussed in [15]. It was applied to determine the gluon po-
larization from photoproduction data in the Hermes experiment [16].

In this paper we present different approaches to the selection of PGF
with light quark production. In Section 2 a short theoretical description
of the determination of gluon polarization is presented. Methods based on
Bayes classification and the neural network are discussed in Section 3. The
Monte Carlo sample used in the tests is described in Section 4. In Section 5
we compare results obtained in different methods:

1. Bayes classification,
2. the neural network,
3. traditional cuts on kinematic variables.

For the best classification method we determine the conditions providing the
optimal precision on the gluon polarization determination.
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2. Formalism

The experimentally measured quantity is the spin cross section asymme-
try defined as the ratio of polarized and unpolarized cross sections:

AN 2 Bo ot -0l , (2.1)
200 oM+ oft

where o™ and o1 are the cross sections with antiparallel and parallel ori-
entation of beam and target polarizations, respectively. The measured AWV
asymmetry is related to the polarized distribution of quarks A ¢ = (¢" —¢")
and gluons AG = (GT — G¥). Here, the arrows correspond to antiparallel
and parallel configuration of parton and nucleon spin.

The unpolarized cross section can be expressed as:

c=F®c®D (2.2)
and the polarized one as:
Aoc=AFQRAGRD, (2.3)

where F' and AF are unpolarized and polarized quark or gluon distribution
functions. The 6 and Ad symbols are, respectively, the spin-independent
and spin-dependent partonic hard-scattering cross sections. The function
D describes the fragmentation of partons into hadrons and the symbol ®
stands for convolution.

The full expression to calculate unpolarized (o) and polarized (Ao) cross
sections of inclusive production of two hadrons with large pr in the final state
consists of three terms since all processes shown in Fig. 1 should be taken
into account.

We can extract the gluon polarization £ el & by inserting the full expression
for 0 and Ao into Eq. (2.1). The final expression reads:

AG
e —(ar)" Y7 Rpgr =
Al <&LL>7*q%qRLO + Al <&LL>’Y* q%qGRCOmpton - AlN%th ) (2-4)
where (ar1,) = Af is the partonic asymmetry for the hard scattering pro-

cesses, the ratios R refer to the contribution of each process shown in Fig. 1
to the total cross section, AN7MX ig the measured asymmetry for the se-
lected events and A; is the virtual photo-absorption asymmetry which is
well known from inclusive experiments.

The values of (ar1,) are calculated for each event using the matrix element
for partonic processes in the program POLDIS [17]. Their behavior as the
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function of scattering angle in the parton—photon c.m. significantly depends
on the type of process. For the Compton process the asymmetry (&LL)V*‘I%"G
is positive in contrast to the one for PGF — (ar1)? 7% which is negative
and almost two times bigger in the relevant kinematic region.

As can be seen from Eq. (2.4) the precision of the gluon polarization
determination depends on the statistical precision of the measured asym-
metry AN7MX and on the contribution of background processes (Rro and
Rcompton) to the final sample. Since the background contribution intro-
duces the major systematic uncertainty in the evaluation of AG—G, the goal
of the selection is to obtain a sample with maximal number of PGF events
and minimal contributions of background processes. The average value of
(arr) and the ratios R for the final sample are estimated from Monte Carlo
simulations.

The criteria to judge the selection are based on two numbers: purity,
which is the fraction of wanted PGF events in the finally selected sample, and
efficiency defined as the fraction of PGF events from input which survives
the selection.

3. Classification techniques

Conventional approaches, based on cuts on event and hadron variables,
have two serious weak points. The first one is the laborious search for the
optimal set of cuts, often done with a trial and error technique. The sec-
ond disadvantage is treating parameters independently, even when obvious
correlations do occur. Also, there is no possibility of continuous balance
between selection efficiency and sample purity when using cuts.

We show two alternative techniques of selecting PGF events: neural
network and, for comparison, a pure statistical technique based on the Bayes
theorem, which is known as a “close to optimum” standard in multi-class
classification problems.

3.1. Bayesian approach

This technique consists in computing the conditional probability, with
which a given event belongs to the distribution of the process of interest (all
other processes are treated as background). This probability is given by the
expression:

Ik)) — gn(I17“"$k)pTL

’ Z?il g’i(xla"'axk)p’i’
where: G, — is the process of interest; X — the event feature vector;
9i(X) — the i-th process distribution; p; — the a priori probability of i-th
process; m — the total number of processes.

P(GnlX = (z1,. .. (3.1)
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The bayesian classification described in this section can be applied for
the PGF process selection. An event is classified as PGF if the obtained
probability exceeds a fixed threshold Tr: P(PGF|X) > Tr . Changing this
threshold allows us to increase the selection purity at the cost of classified
set’s statistics, or, on the other hand, we can get higher selection efficiency
with lower purity of classified sample.

This technique would give an optimal solution on one condition: it is
necessary to know the real probability distributions and the ‘a priori’ prob-
abilities for all processes in the experiment. This is not true in our case and
we can only estimate their values from a limited set of events (called later
“a training set”); see [18] for more details on this technique.

A good estimator of g(X)p for a given process (convergent to the real
value with growing number of events in the training set) is the sum of func-
tions attached to each event corresponding to this process in the training
set. These functions (called also “potential functions”, [19]) should have
a maximum at the point with coordinates equal to the feature vector of
a given event and their values should decrease with growing distance from
that point, so that the event has strong influence on the estimator value only
in its close surrounding. Gaussoid functions comply with these requirements
quite well. The estimator defined in this way takes the form:

0(X) i = D exp (—%d(x,w) : (32)

J=1

where n; is the number of events of the i-th process in the training set; r —
is the Gaussian function width; d(X,Y ;) — indicates the distance between
the feature vector X and the feature vector Y'; of the j-th event from the

training set (corresponding to the i-th process): d = 1/ X”Y ;. In Eq. (3.1)
we calculate ratios of g(X) - p values so there is no need to normalize the
estimator values.

The Gaussoid function width (parameter r) determines the radius of in-
fluence of a single event on the estimator shape. It is optimized with an
algorithm that minimizes the Mean Squared Error (MSE). This error is cal-
culated on a testing set of events as the mean value of the squared deviation
between correct answer and Bayes probabilities obtained with Eq. (3.1):

1 n
MSE = — ) "[d; - P(PGF|X)]?, (3.3)
ni

where d; is a correct answer for event X; from a testing set of n events
(d;j = 1 for PGF process, d; = 0 for background process). In practice,
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a good algorithm (quickly convergent to optimum value of r) is the one that
assumes a parabolic dependence MSE(r) in minimum surroundings.

Because of the very long calculation time in the selection of the PGF
process, it was necessary to make a simplification: the Gaussoid function
width r was assumed to be the same in all directions of a feature space.
According to this simplification, data in the training set were normalized to
get similar numerical values of all parameters i.e. to prevent features with
large standard deviation from dominating the r optimization process.

A serious and important problem in bayesian classification is the com-
plexity of calculations. Distribution’s estimator values have to be computed
each time we classify an event from the testing set, during both optimization
and classification processes. It means, according to Eq. (3.2), that about
(N m) multiplication and accumulation operations and N calculations of
exponential function should be done to classify one event for a training set
consisting of N events described with m parameters. The value of m gives
the number of components of the feature vector and depends on the number
of variables used to describe an event (in our case m = 3). The number of
events in the training set (N) is chosen as a compromise between the quality
of estimator (statistics of processes) and the calculation time. The required
value of N dramatically increases when new variables appear in a feature
vector, which makes this technique very time-consuming.

3.2. Neural network

The neural network application is an alternative method of event classi-
fication. A simple network, in feed-forward configuration (Fig. 2), was used
in the project.

Neural networks consist of multiple, simple processing units (artificial
neurons) interconnected by large number of weighted connections. In the
feed-forward configuration neurons are arranged in a few layers and data
flow is strictly feed-forward i.e. from the first (input) layer, through the
number of hidden layers to the output.

Each neuron receives an input signal which is a sum of signals connected
to its inputs multiplied by connection weights and generates an output signal
which is a certain function of the input. A so-called sigmoid function is used
in most of cases. Eq. (3.4) describes the neuron operations shown in Fig. 3.

1
o= [1+ exp[—wo — > | zw;]] (3.4)

A neural network is trained by feeding a set of teaching patterns and chang-
ing the w; weights according to some learning rule. In the supervised learn-
ing, which was applied in present project, training vectors are supplemented
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Fig.3. Neural unit.

by matching output patterns. The weights are changed usually with a gra-
dient descent method which iteratively minimizes an error function which is
defined as the mean square error between desired and actual outputs of all
neurons.

The structure (topology) of the network depends on the application (see
Refs [18,20,21]). In the classification task presented in this paper, a net
with two hidden layers was used. The number of neurons in the input layer



Selection of Photon Gluon Fusion Events in DIS 2937

corresponds to the number of parameters used in the data processing. The
output layer contains a single neuron. The response of this neuron varies
between 1 ( the desired output of PGF) and 0 ( other processes). The answer
of the net may be interpreted as a conditional probability. The threshold,
which we can apply to the neural network output, corresponds to the Tr
threshold for the bayesian classification.

As mentioned above, a training set of patterns is needed for teaching the
network. Each pattern corresponds to the feature vector of an event. There
should be a couple of times more patterns (of each process) in the training
set than weights in the network. The most commonly used gradient descent
training algorithm is the BP method (error Back Propagation). However,
there are more efficient techniques such as conjugated gradients. The train-
ing algorithm used in this project is a modification of this technique. The
applied algorithm can be decomposed into the following steps:

1. Initialize weight values as random numbers (there is no a priori knowl-
edge where the starting point should be): point “0” in Fig. 4.

2. Calculate the negative gradient: direction of the greatest inclination of
the MSE surface (mean squared deviation between answers obtained
from the net and correct answers for all events from the training set).

3. Move through the weights space in this direction (with relatively big
initial steps) until the angle between current negative gradient and
searching direction exceeds 90°: points “1” and “2”.

4. Reverse searching direction and shorten the step to half of its previous

| N \\0‘

-1 =y 0 0.5 1

Fig. 4. llustration of the training algorithm.
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5. Repeat (3) and (4) until minimum step value is reached: points “3”
and “4”.

6. Change searching direction to the current negative gradient direction
(nearly perpendicular to the previous one): point “5”.

7. Repeat (3)-(6) until the terminal condition (MSE value, number of
training set presentations) is satisfied.

This algorithm is similar to the well-known conjugated gradient algo-
rithm (see Refs [18,22-24|), which belongs to the family of directional min-
imization algorithms. In this family, basically, the point of minimum error
is searched for in a fixed direction. Then the searching direction is changed
according to some rules. In the conjugated gradient algorithm, the new
direction is calculated as:

(g — dn—l)T g

d: + -d_, = 3 35
n=gt Y dien Y= S (3.5)

where g is a current negative gradient and d,,_1 is previous searching di-
rection. Eq. (3.5) assumes a squared form of error surface in minimum
surrounding and, if the MSE surface complies with this condition, the algo-
rithm assures the smallest number of direction changes.

The conjugated gradient algorithm was also tested and serious disad-
vantages were observed. This algorithm is very sensitive to the value of the
initial step (used in searching for the minimum in fixed direction). A too big
value makes the algorithm unstable. It forces starting from tiny steps each
time the algorithm changes searching direction. This causes that, in spite of
lower number of direction changes, we have to calculate often a comparable
number of iterations to reach the same MSE level as with the first presented
algorithm (Fig. 5(a) and Fig. 5(b)). Difficulties in finding the optimal initial
step value were the reason of giving up further tests with the conjugated
gradient algorithm. Our modified algorithm accepts a wide range of initial
step values. Bigger values speed up the training process (Fig. 6) and there
is no danger of making the process unstable (a very large initial step only
slows down the training process).

Because of the possibility of finding a local minimum (the MSE surface
may have a lot of them) it is good to train the network with different initial
weight values and, if the network gives similar results in these trials, it is a
fine proof of finding a global minimum. The presented algorithm is capable of
escaping from local minima in many cases and there was no case of significant
differences in results obtained by networks trained with randomized initial
weights. The training process should be stopped when no significant change
in the MSE value is observed.
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Fig.5. Training process: (a) MSE as a function of direction changes (MSE values
before direction changing are plotted only); (b) MSE as a function of training
iterations; (c) enlarged fragment of the MSE diagram (arrows mark the iterations
when the search direction is changed). An initial step of 0.01 (maximum stable
value) was used for the conjugated gradient algorithm. An initial step of 0.04 was
used for the modified algorithm.
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Fig.6. Training process speed for modified algorithm for two different initial step
values.

One of main advantages of the network is its computation simplicity. The
number of required calculations depends on the network structure, which is
given by:

e Hy, Hs, the number of neurons in hidden layers; sufficient values for
PGF events classification are Hy =5+ 6 and Hy = 3,

e m, the size of the input event feature vector, m = 3 =+ 8.

For the classification of a single event the network requires
Hi(m+1)+ Hy(Hy +1)+ Hy + 1

accumulation and multiplication operations and H; + Ho + 1 calculations
of the neuron output function, which is usually implemented as segment
linear approximation. It means that in practical applications classification
of events with the neural network is about 103 faster then with the bayesian
technique. Also, the simplicity of classifying of events makes the training
time much shorter than the optimization of estimation parameters (Gaussian
function width) for the bayesian technique.

4. Sample description

The studies were performed for the specific setup of the SMC experiment
realized in the high energy muon beam at CERN. The polarized muons of 190
GeV scatter off polarized nucleons producing hadrons in the final state. The
interaction can be described by following kinematic variables: v is energy
transfer to the virtual photon, y = v/Ej where Ej is beam energy, Q2 is
the squared mass of the virtual photon and zg; = Q?/2Mv where M is
the proton mass. Using the above variables the invariant mass of the final
hadronic state W? can be defined.
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The scattered muon and produced charge particle were measured in SMC
open magnetic spectrometer. The minimal energy of hadron which can be
detected in spectrometer is around 5 GeV.

The experimental setup was simulated using the LEPTO [25] genera-
tor with parameterizations of parton distributions at leading order taken
from [26]. The spin dependent effects were calculated in POLDIS [17] with
a consistent polarized parton distribution set [27]. In generation the follow-
ing kinematics cuts were applied:

0.003 < TBj < 0.7,

0.05 <y < 0.93,

1 GeV < Q? < 100 GeV,

6.5 GeV? < W2 < 1000 GeV?,
10 GeV < v < 190 GeV.

The generated sample is composed of 88% leading order process, 8%
Compton and 4% PGF process. For each event the muon track was followed
through the magnet and trigger conditions were checked. About 33% events
fulfill the trigger conditions. The fraction of events which have at least two
hadrons in the acceptance is 52%. Finally only events with at least two
hadrons with pt above 0.7 GeV were kept. With this selection we are left
with 4% of generated event sample. The fraction of PGF events in this
sample amounts to 25%. The fractions of events for background processes
LO and Compton are about 35% and 40%, respectively. The simulation was
taking into account kinematic smearing in the reconstruction program used
in the experiment as well as losses of tracks due to chamber inefficiencies.

The sample described above is used for several tests of selection pro-
cedures presented in this paper. The following variables were used in the
classification:

e variables characterizing the event:

2
7Vay7Qa$Bj7

— multiplicity of tracks,
e variables for two hadrons with highest pr:
— pT, pL. — transverse and longitudinal momentum of hadron with
respect to the virtual photon direction,
— charge of the hadron,
— z = Ep, /v, where Fj, is the hadron energy in the laboratory frame,

— ¢ — azimuthal angle between transverse momenta of this hadrons.
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5. Results

In this section we compare results of selection of the PGF process for
three classification techniques: the most commonly used selection based on
cuts, the Bayes method and the neural network. From arguments discussed
in the introduction one expects that the high sensitivity on the PGF process
is related to pp(j_g) of the selected hadrons. Also the variable y is strongly
correlated with the size of the expected asymmetries. These three variables
were found to be most efficient for the selection based on cuts. That is why
as first approach we compared different techniques in the same conditions
using only tree variables mentioned above: pri, pre, y. The results on the
purity and the efficiency are shown in Fig. 7. The dashed and solid lines
show the Bayes method and the neural network results, respectively, and
points correspond to several cuts. It was found that optimal selection for
the cut method is obtained for cuts on (p%, + p4,) (set (i)). The values for
every cut number are listed in Table I. As an example another set of cuts (7i)
is also presented in Fig. 7. For the hadron with highest pr, the cut on pp
is changing while for the other one is kept at 0.8 GeV. This selection is less
efficient than the set of cuts (7). As is seen in Fig. 7 there are no significant
differences when we compare the best selection based on cuts (set (i)) with
the neural network and Bayes results.
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purity [%]

37
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25 =
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efficiency [%]
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—— Neural network
eee  Cuts (1): (p7y + pho, (y > 04)
sss  Cuts (i): piy, Pro, (¥ > 0.4)

Fig. 7. Comparison of all techniques. Used variables: y, pr1 and prs .
Up to now we used limited set of variables. If we try to select the PGF

process by handling more variables the manual searching for an optimal
set of cuts costs a lot of time and does not bring improvements. In case
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Fig. 8. Results for the neural network using limited and optimal set of variables.

TABLE I
The list of cuts

the (i) selection the (i) selection
number p%14—p%2 number pri  pro
1 3.2 6 14 0.8
2 2.5 7 1.2 0.8
3 1.9 8 1.1 0.8
4 1.5 9 1.0 0.8
5 1.3 10 09 08

of Bayes technique, when we want to use more variables, the processing of
each event takes much time because of the vast training set. The situation
is much better for the neural network due to simplicity of computing. For
this reason we decided to use only the neural network in further tests.

It is not clear how to choose variables other then 4 and pr to compose
the input vector for the network because there are no obvious differences in
the distributions for PGF and background processes. A lot of attempts were
made to obtain the best combination.

Finally, the optimum set of variables was found as follows: 1z, ¥ and
Q? for variables describing the event and pr, p;, and @ for variables char-
acterizing the selected hadrons. The addition of the charge of the selected
hadrons and also the multiplicity and energy of all hadrons in the event do
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not improve the result. The comparison of the results of the classification
done by the neural network with the optimal set of variables and using only
information about y and pr is presented in Fig. 8. The purity at a given
efficiency for the optimal set of variables (dashed line) is a few percent better
then the results for the neural network which uses a limited set of variables.

Each point on the line which describes the result of classification done by
the neural network corresponds to a certain output threshold value. Choos-
ing a low threshold we get high efficiency but purity is low due to large
contributions from background processes. The opposite situation occurs at
high thresholds.

From the purity dependence on efficiency shown in Fig. 8 the choice
of the optimal threshold for further physical analysis is not obvious and
an additional criterion is needed. To solve this problem the error on the
gluon polarization % as the function of threshold is calculated using the
expression given by Eq. (2.4). In this calculation the statistical error on the
measured asymmetry A and the systematic error §R on ratios R are taken
into account. The error on A; asymmetry is neglected in the calculation
as it is small compared to dA. Also no error is introduced on partonic
asymmetries ap1, calculated at leading order.

The results of the calculation of the error on AG—G as a function of the
threshold are shown in Fig. 9 assuming different statistics of the sample and
also varying the error on dR. The size of the sample which was taken into
account corresponds to: (a) one year of data taking by SMC experiment and

-~ 0.6
do|
w
L0
B (a) low statistics
0.4 5 R =0%R
S N T Y A 6 R=30%R
0.3~ ‘ e
L0
B (b) 10 times bigger statistics
0.1 : : 1 3 R=0%R
L i i N 3 R=30%R
0 ; | ‘ ; ; ; |
0.1 0.2 0.3 ? 0.4 0.5 0.6 0.7
Threshold

Fig.9. The dependence AC—1G on the threshold.
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(b) ten times bigger statistics than (a). For both cases two possibilities of an
error on 0 R were considered. First R is neglected (the solid lines in Fig. 9),
second the error is taken as dR = 30%R (the dashed and dashed-dotted
lines in Fig. 9).

The observed increase of the error on AG—G at low threshold is the result
of the small fraction of PGF events in the sample while at high threshold
it is mainly due to loss of statistics. The optimum threshold was obtained
around 0.37 as is marked by the arrow in Fig. 9.

For low statistics, the contribution from dR is negligible. For bigger
statistics the systematic error R begins to play a role at low thresholds
but the optimal value of threshold does not change when we increase the
systematic error §R. The minimum is getting broader but covers the same
region of threshold values. This allows to select different thresholds, giving
the possibility of systematics checks. The choice of the threshold at 0.37
coresponds to a purity of the sample of ~ 45% and an efficiency of ~20%
marked as a dot in Fig. 8. For this threshold value the precision on gluon
polarization determination is expected to be better than §(AG/G) = 0.3 for
SMC experiment. This can be compare to result obtain with cut selection
method §(AG/G) =~ 0.46. If the statistics of the sample is bigger we get
d(AG/G) = 0.1 for neural network and §(AG/G) = 0.15 for method using
cut selection.

6. Summary

We developed the neural network algorithm for the classification of PGF
process. Many tests prove that this algorithm is stable and technically well
performing. Also we show that neural network method is comparable to the
standard analysis for three variables used by traditional cut selection and
brings improvement by few percent in purity if extra variables are added.
Neural network make optimal use of many corelated variables without sig-
nificant penalty in computing time. The application of this method to the
simulations of the SMC experiment leads to 45% purity of the selected sam-
ple which is sufficient for gluon density determination with precision better
than 6(AG/G) =~ 0.3. It shows that the method can be successfully applied
for the experimental data analysis.
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