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hnologyzKoszykowa 75, 00-662 Warsaw, Poland(Re
eived July 24, 2001; revised version re
eived September 25, 2001)A sele
tion of the Photon Gluon Fusion (PGF) pro
ess with light quarksfor deep inelasti
 s
attering events is presented. This pro
ess is dire
tly sen-sitive to gluon polarization and our goal is to �nd out the most e�e
tivesele
tion on a sample of events simulated for the SMC experiment. We
ompare two general multi-
lass 
lassi�
ation methods � Bayes methodand neural network with a 
onventional sele
tion pro
edure. The neuralnetwork algorithm presented here is a modi�
ation of method belonging tothe family of dire
tional minimization algorithms. This method is 
onve-nient and e�e
tive for photon gluon fusion sele
tion and determination ofgluon polarization. Finally we present the estimation for pre
ision of gluonpolarization for neural network method.PACS numbers: 13.10.+q, 13.85.Fb, 07.05.Mh1. Introdu
tionThe spin stru
ture of the nu
leon has been studied in polarized DeepInelasti
 lepton�nu
leon S
attering (DIS) for quite a long time. The ex-perimental observation by EMC [1℄, that a surprisingly small fra
tion of thenu
leon spin is 
arried by quarks has had major in�uen
e on the more re
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s. Many experiments were performed to 
on�rm this result [2�7℄and 
he
k it on di�erent targets. More measurements are in progress andin preparation [8�10℄. Several theoreti
al ideas were proposed [11℄ to ex-plain this observation. They were based either on large negative sea quarkpolarization or on 
ontribution from polarized gluon and orbital angularmomentum of quarks and gluons.To 
he
k whi
h of them is responsible for making up the nu
leon spinone should determine a fra
tion of nu
leon spin 
arried by gluons. Informa-tion about this quantity 
an be obtained indire
tly from the dependen
e ofthe stru
ture fun
tion g1 on four-momentum transfer squared, Q2. In thisanalysis parton distributions (quarks (q) and gluons (G)) are �tted usingQCD evolution to the measurements of the spin dependent stru
ture fun
-tion g1 [12,13℄. However, due to the large number of theoreti
al assumptionsin this method, a dire
t measurement of gluon polarization seems to be thebest way of verifying the spin stru
ture of the nu
leon.The �rst measurement of the polarized gluon density was performed byE704 experiment at Fermilab but unfortunately the results did not allow todistinguish between di�erent theoreti
al models. The Hermes experiment atDESY also has measured gluon polarization. In their 
ase the pre
ision isseverely limited and the interpretation is not 
lear due to low momentumtransfer. The experiments STAR/PHENIX at RHIC , COMPASS at CERNand E161 at SLAC are planned to take data next years. Their pre
ision onÆ(�G=G) will be better than indire
t measurements. Also the possibilityof using 
olliding polarized proton and ele
tron beam at HERA has beendis
ussed.
Fig. 1. Lowest order diagrams for DIS 
�N s
attering: a) virtual photo-absorption(LO), b) gluon radiation (Compton diagram), 
) photon gluon fusion (PGF).In DIS the leading order pro
ess, the virtual photo-absorption, does notallow dire
t a

ess to the gluon distribution, sin
e the virtual photon doesnot 
ouple dire
tly to the gluon. Hen
e the observation of higher orderpro
esses is an alternative solution to get gluon distribution 
ompared tothe indire
t method based on QCD evolution.Su
h a dire
t measurement is possible via the Photon Gluon Fusion(PGF) pro
ess. The Feynman diagram of this pro
ess is presented in Fig. 1(
)
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tion of Photon Gluon Fusion Events in DIS 2931together with leading order (Fig. 1(a)) and gluon radiation � Compton dia-grams (Fig. 1(b)). Both PGF and Compton pro
esses are of the same orderin strong 
oupling 
onstant, �S , so they have lower 
ontribution to DIS 
rossse
tion then leading order diagram.Sin
e the frequen
y of PGF is small in 
omparison to all pro
esses, �nd-ing a signature to tag this pro
ess is very important. The most straight-forward way of sear
hing for PGF is 
harm produ
tion signalled either bydete
tion of 
harmed parti
les (espe
ially D0) or by produ
tion of J= . Forsu
h pro
esses the 
ontribution from leading order diagram is small be
ause
ontents of the 
harm quark in the nu
leon is pra
ti
ally negligible. Due tothe large mass of the 
harm quark the 
ontribution via the fragmentationpro
esses is also low. For the same reason 
harm pair produ
tion in PGFis suppressed. Therefore it is important to �nd a method whi
h allows toidentify PGF in 
ase of light quarks produ
tion. Tagging the PGF pro
essby observation of hadrons with large transverse momentum (pT) in the �nalstate gives su
h possibility. The pT is 
al
ulated with respe
t to the virtualphoton dire
tion.In the leading order pro
ess the 
ontributions to hadrons pT are theintrinsi
 kT of quarks in the nu
leon [14℄ and the fragmentation pro
ess.Thus most hadrons have small transverse momentum. The opposite situa-tion o

urs for Compton and PGF where hadrons mainly a
quire transversemomentum from primary produ
ed partons. For this reason the requirementof observation of two hadrons with large transverse momentum 
an enhan
ethe 
ontribution of the PGF pro
ess in the sele
ted sample. This idea hasbeen re
ently dis
ussed in [15℄. It was applied to determine the gluon po-larization from photoprodu
tion data in the Hermes experiment [16℄.In this paper we present di�erent approa
hes to the sele
tion of PGFwith light quark produ
tion. In Se
tion 2 a short theoreti
al des
riptionof the determination of gluon polarization is presented. Methods based onBayes 
lassi�
ation and the neural network are dis
ussed in Se
tion 3. TheMonte Carlo sample used in the tests is des
ribed in Se
tion 4. In Se
tion 5we 
ompare results obtained in di�erent methods:1. Bayes 
lassi�
ation,2. the neural network,3. traditional 
uts on kinemati
 variables.For the best 
lassi�
ation method we determine the 
onditions providing theoptimal pre
ision on the gluon polarization determination.



2932 K. Kowalik et al.2. FormalismThe experimentally measured quantity is the spin 
ross se
tion asymme-try de�ned as the ratio of polarized and unpolarized 
ross se
tions:AlN = ��2� = �"# � �""�"# + �"" ; (2.1)where �"# and �"" are the 
ross se
tions with antiparallel and parallel ori-entation of beam and target polarizations, respe
tively. The measured AlNasymmetry is related to the polarized distribution of quarks � q = (q"�q#)and gluons �G = (G" � G#). Here, the arrows 
orrespond to antiparalleland parallel 
on�guration of parton and nu
leon spin.The unpolarized 
ross se
tion 
an be expressed as:� = F 
 �̂ 
D (2.2)and the polarized one as: �� = �F 
��̂ 
D ; (2.3)where F and �F are unpolarized and polarized quark or gluon distributionfun
tions. The �̂ and ��̂ symbols are, respe
tively, the spin-independentand spin-dependent partoni
 hard-s
attering 
ross se
tions. The fun
tionD des
ribes the fragmentation of partons into hadrons and the symbol 
stands for 
onvolution.The full expression to 
al
ulate unpolarized (�) and polarized (��) 
rossse
tions of in
lusive produ
tion of two hadrons with large pT in the �nal state
onsists of three terms sin
e all pro
esses shown in Fig. 1 should be takeninto a

ount.We 
an extra
t the gluon polarization �GG by inserting the full expressionfor � and �� into Eq. (2.1). The �nal expression reads:�GG hâLLi
�G!q�qRPGF =A1hâLLi
�q!qRLO +A1hâLLi
�q!qGRCompton �AlN!hhX ; (2.4)where hâLLi = ��̂̂� is the partoni
 asymmetry for the hard s
attering pro-
esses, the ratios R refer to the 
ontribution of ea
h pro
ess shown in Fig. 1to the total 
ross se
tion, AlN!hhX is the measured asymmetry for the se-le
ted events and A1 is the virtual photo-absorption asymmetry whi
h iswell known from in
lusive experiments.The values of hâLLi are 
al
ulated for ea
h event using the matrix elementfor partoni
 pro
esses in the program POLDIS [17℄. Their behavior as the
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tion of s
attering angle in the parton�photon 
.m. signi�
antly dependson the type of pro
ess. For the Compton pro
ess the asymmetry hâLLi
�q!qGis positive in 
ontrast to the one for PGF � haLLi
�G!q�q whi
h is negativeand almost two times bigger in the relevant kinemati
 region.As 
an be seen from Eq. (2.4) the pre
ision of the gluon polarizationdetermination depends on the statisti
al pre
ision of the measured asym-metry AlN!hhX and on the 
ontribution of ba
kground pro
esses (RLO andRCompton) to the �nal sample. Sin
e the ba
kground 
ontribution intro-du
es the major systemati
 un
ertainty in the evaluation of �GG , the goalof the sele
tion is to obtain a sample with maximal number of PGF eventsand minimal 
ontributions of ba
kground pro
esses. The average value ofhâLLi and the ratios R for the �nal sample are estimated from Monte Carlosimulations.The 
riteria to judge the sele
tion are based on two numbers: purity,whi
h is the fra
tion of wanted PGF events in the �nally sele
ted sample, ande�
ien
y de�ned as the fra
tion of PGF events from input whi
h survivesthe sele
tion. 3. Classi�
ation te
hniquesConventional approa
hes, based on 
uts on event and hadron variables,have two serious weak points. The �rst one is the laborious sear
h for theoptimal set of 
uts, often done with a trial and error te
hnique. The se
-ond disadvantage is treating parameters independently, even when obvious
orrelations do o

ur. Also, there is no possibility of 
ontinuous balan
ebetween sele
tion e�
ien
y and sample purity when using 
uts.We show two alternative te
hniques of sele
ting PGF events: neuralnetwork and, for 
omparison, a pure statisti
al te
hnique based on the Bayestheorem, whi
h is known as a �
lose to optimum� standard in multi-
lass
lassi�
ation problems. 3.1. Bayesian approa
hThis te
hnique 
onsists in 
omputing the 
onditional probability, withwhi
h a given event belongs to the distribution of the pro
ess of interest (allother pro
esses are treated as ba
kground). This probability is given by theexpression: P (GnjX = (x1; : : : ; xk)) = gn(x1; : : : ; xk) pnPmi=1 gi(x1; : : : ; xk) pi ; (3.1)where: Gn � is the pro
ess of interest; X � the event feature ve
tor;gi(X) � the i-th pro
ess distribution; pi � the a priori probability of i-thpro
ess; m � the total number of pro
esses.



2934 K. Kowalik et al.The bayesian 
lassi�
ation des
ribed in this se
tion 
an be applied forthe PGF pro
ess sele
tion. An event is 
lassi�ed as PGF if the obtainedprobability ex
eeds a �xed threshold Tr: P (PGFjX) > Tr . Changing thisthreshold allows us to in
rease the sele
tion purity at the 
ost of 
lassi�edset's statisti
s, or, on the other hand, we 
an get higher sele
tion e�
ien
ywith lower purity of 
lassi�ed sample.This te
hnique would give an optimal solution on one 
ondition: it isne
essary to know the real probability distributions and the `a priori' prob-abilities for all pro
esses in the experiment. This is not true in our 
ase andwe 
an only estimate their values from a limited set of events (
alled later�a training set�); see [18℄ for more details on this te
hnique.A good estimator of g(X) p for a given pro
ess (
onvergent to the realvalue with growing number of events in the training set) is the sum of fun
-tions atta
hed to ea
h event 
orresponding to this pro
ess in the trainingset. These fun
tions (
alled also �potential fun
tions�, [19℄) should havea maximum at the point with 
oordinates equal to the feature ve
tor ofa given event and their values should de
rease with growing distan
e fromthat point, so that the event has strong in�uen
e on the estimator value onlyin its 
lose surrounding. Gaussoid fun
tions 
omply with these requirementsquite well. The estimator de�ned in this way takes the form:ĝi(X) p̂i = niXj=1 exp��1rd(X ;Y j)2� ; (3.2)where ni is the number of events of the i-th pro
ess in the training set; r �is the Gaussian fun
tion width; d(X ; Y j) � indi
ates the distan
e betweenthe feature ve
tor X and the feature ve
tor Y j of the j-th event from thetraining set (
orresponding to the i-th pro
ess): d =qXTY j. In Eq. (3.1)we 
al
ulate ratios of g(X) � p values so there is no need to normalize theestimator values.The Gaussoid fun
tion width (parameter r) determines the radius of in-�uen
e of a single event on the estimator shape. It is optimized with analgorithm that minimizes the Mean Squared Error (MSE). This error is 
al-
ulated on a testing set of events as the mean value of the squared deviationbetween 
orre
t answer and Bayes probabilities obtained with Eq. (3.1):MSE = 1n nXj=1[dj � P (PGFjXj)℄2 ; (3.3)where dj is a 
orre
t answer for event Xj from a testing set of n events(dj = 1 for PGF pro
ess, dj = 0 for ba
kground pro
ess). In pra
ti
e,
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tion of Photon Gluon Fusion Events in DIS 2935a good algorithm (qui
kly 
onvergent to optimum value of r) is the one thatassumes a paraboli
 dependen
e MSE(r) in minimum surroundings.Be
ause of the very long 
al
ulation time in the sele
tion of the PGFpro
ess, it was ne
essary to make a simpli�
ation: the Gaussoid fun
tionwidth r was assumed to be the same in all dire
tions of a feature spa
e.A

ording to this simpli�
ation, data in the training set were normalized toget similar numeri
al values of all parameters i.e. to prevent features withlarge standard deviation from dominating the r optimization pro
ess.A serious and important problem in bayesian 
lassi�
ation is the 
om-plexity of 
al
ulations. Distribution's estimator values have to be 
omputedea
h time we 
lassify an event from the testing set, during both optimizationand 
lassi�
ation pro
esses. It means, a

ording to Eq. (3.2), that about(N m) multipli
ation and a

umulation operations and N 
al
ulations ofexponential fun
tion should be done to 
lassify one event for a training set
onsisting of N events des
ribed with m parameters. The value of m givesthe number of 
omponents of the feature ve
tor and depends on the numberof variables used to des
ribe an event (in our 
ase m = 3). The number ofevents in the training set (N) is 
hosen as a 
ompromise between the qualityof estimator (statisti
s of pro
esses) and the 
al
ulation time. The requiredvalue of N dramati
ally in
reases when new variables appear in a featureve
tor, whi
h makes this te
hnique very time-
onsuming.3.2. Neural networkThe neural network appli
ation is an alternative method of event 
lassi-�
ation. A simple network, in feed-forward 
on�guration (Fig. 2), was usedin the proje
t.Neural networks 
onsist of multiple, simple pro
essing units (arti�
ialneurons) inter
onne
ted by large number of weighted 
onne
tions. In thefeed-forward 
on�guration neurons are arranged in a few layers and data�ow is stri
tly feed-forward i.e. from the �rst (input) layer, through thenumber of hidden layers to the output.Ea
h neuron re
eives an input signal whi
h is a sum of signals 
onne
tedto its inputs multiplied by 
onne
tion weights and generates an output signalwhi
h is a 
ertain fun
tion of the input. A so-
alled sigmoid fun
tion is usedin most of 
ases. Eq. (3.4) des
ribes the neuron operations shown in Fig. 3.out = 1[1 + exp[�w0 �Pni=1 xiwi℄℄ : (3.4)A neural network is trained by feeding a set of tea
hing patterns and 
hang-ing the wi weights a

ording to some learning rule. In the supervised learn-ing, whi
h was applied in present proje
t, training ve
tors are supplemented
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Fig. 2. Network topology.

Fig. 3. Neural unit.by mat
hing output patterns. The weights are 
hanged usually with a gra-dient des
ent method whi
h iteratively minimizes an error fun
tion whi
h isde�ned as the mean square error between desired and a
tual outputs of allneurons.The stru
ture (topology) of the network depends on the appli
ation (seeRefs [18, 20, 21℄). In the 
lassi�
ation task presented in this paper, a netwith two hidden layers was used. The number of neurons in the input layer
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orresponds to the number of parameters used in the data pro
essing. Theoutput layer 
ontains a single neuron. The response of this neuron variesbetween 1 ( the desired output of PGF) and 0 ( other pro
esses). The answerof the net may be interpreted as a 
onditional probability. The threshold,whi
h we 
an apply to the neural network output, 
orresponds to the Trthreshold for the bayesian 
lassi�
ation.As mentioned above, a training set of patterns is needed for tea
hing thenetwork. Ea
h pattern 
orresponds to the feature ve
tor of an event. Thereshould be a 
ouple of times more patterns (of ea
h pro
ess) in the trainingset than weights in the network. The most 
ommonly used gradient des
enttraining algorithm is the BP method (error Ba
k Propagation). However,there are more e�
ient te
hniques su
h as 
onjugated gradients. The train-ing algorithm used in this proje
t is a modi�
ation of this te
hnique. Theapplied algorithm 
an be de
omposed into the following steps:1. Initialize weight values as random numbers (there is no a priori knowl-edge where the starting point should be): point �0� in Fig. 4.2. Cal
ulate the negative gradient: dire
tion of the greatest in
lination ofthe MSE surfa
e (mean squared deviation between answers obtainedfrom the net and 
orre
t answers for all events from the training set).3. Move through the weights spa
e in this dire
tion (with relatively biginitial steps) until the angle between 
urrent negative gradient andsear
hing dire
tion ex
eeds 90Æ: points �1� and �2�.4. Reverse sear
hing dire
tion and shorten the step to half of its previousvalue.

Fig. 4. Illustration of the training algorithm.



2938 K. Kowalik et al.5. Repeat (3) and (4) until minimum step value is rea
hed: points �3�and �4�.6. Change sear
hing dire
tion to the 
urrent negative gradient dire
tion(nearly perpendi
ular to the previous one): point �5�.7. Repeat (3)�(6) until the terminal 
ondition (MSE value, number oftraining set presentations) is satis�ed.This algorithm is similar to the well-known 
onjugated gradient algo-rithm (see Refs [18,22�24℄), whi
h belongs to the family of dire
tional min-imization algorithms. In this family, basi
ally, the point of minimum erroris sear
hed for in a �xed dire
tion. Then the sear
hing dire
tion is 
hangeda

ording to some rules. In the 
onjugated gradient algorithm, the newdire
tion is 
al
ulated as:dn = g + 
 � dn�1 ; 
 = (g � dn�1)T � gdTn�1 � dn�1 ; (3.5)where g is a 
urrent negative gradient and dn�1 is previous sear
hing di-re
tion. Eq. (3.5) assumes a squared form of error surfa
e in minimumsurrounding and, if the MSE surfa
e 
omplies with this 
ondition, the algo-rithm assures the smallest number of dire
tion 
hanges.The 
onjugated gradient algorithm was also tested and serious disad-vantages were observed. This algorithm is very sensitive to the value of theinitial step (used in sear
hing for the minimum in �xed dire
tion). A too bigvalue makes the algorithm unstable. It for
es starting from tiny steps ea
htime the algorithm 
hanges sear
hing dire
tion. This 
auses that, in spite oflower number of dire
tion 
hanges, we have to 
al
ulate often a 
omparablenumber of iterations to rea
h the same MSE level as with the �rst presentedalgorithm (Fig. 5(a) and Fig. 5(b)). Di�
ulties in �nding the optimal initialstep value were the reason of giving up further tests with the 
onjugatedgradient algorithm. Our modi�ed algorithm a

epts a wide range of initialstep values. Bigger values speed up the training pro
ess (Fig. 6) and thereis no danger of making the pro
ess unstable (a very large initial step onlyslows down the training pro
ess).Be
ause of the possibility of �nding a lo
al minimum (the MSE surfa
emay have a lot of them) it is good to train the network with di�erent initialweight values and, if the network gives similar results in these trials, it is a�ne proof of �nding a global minimum. The presented algorithm is 
apable ofes
aping from lo
al minima in many 
ases and there was no 
ase of signi�
antdi�eren
es in results obtained by networks trained with randomized initialweights. The training pro
ess should be stopped when no signi�
ant 
hangein the MSE value is observed.
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(a)

(b)

(c)

Fig. 5. Training pro
ess: (a) MSE as a fun
tion of dire
tion 
hanges (MSE valuesbefore dire
tion 
hanging are plotted only); (b) MSE as a fun
tion of trainingiterations; (
) enlarged fragment of the MSE diagram (arrows mark the iterationswhen the sear
h dire
tion is 
hanged). An initial step of 0:01 (maximum stablevalue) was used for the 
onjugated gradient algorithm. An initial step of 0:04 wasused for the modi�ed algorithm.



2940 K. Kowalik et al.

Fig. 6. Training pro
ess speed for modi�ed algorithm for two di�erent initial stepvalues.One of main advantages of the network is its 
omputation simpli
ity. Thenumber of required 
al
ulations depends on the network stru
ture, whi
h isgiven by:� H1, H2, the number of neurons in hidden layers; su�
ient values forPGF events 
lassi�
ation are H1 = 5� 6 and H2 = 3,� m, the size of the input event feature ve
tor, m = 3� 8.For the 
lassi�
ation of a single event the network requiresH1(m+ 1) +H2(H1 + 1) +H2 + 1a

umulation and multipli
ation operations and H1 + H2 + 1 
al
ulationsof the neuron output fun
tion, whi
h is usually implemented as segmentlinear approximation. It means that in pra
ti
al appli
ations 
lassi�
ationof events with the neural network is about 103 faster then with the bayesiante
hnique. Also, the simpli
ity of 
lassifying of events makes the trainingtime mu
h shorter than the optimization of estimation parameters (Gaussianfun
tion width) for the bayesian te
hnique.4. Sample des
riptionThe studies were performed for the spe
i�
 setup of the SMC experimentrealized in the high energy muon beam at CERN. The polarized muons of 190GeV s
atter o� polarized nu
leons produ
ing hadrons in the �nal state. Theintera
tion 
an be des
ribed by following kinemati
 variables: � is energytransfer to the virtual photon, y = �=Eb where Eb is beam energy, Q2 isthe squared mass of the virtual photon and xBj = Q2=2M� where M isthe proton mass. Using the above variables the invariant mass of the �nalhadroni
 state W 2 
an be de�ned.
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tion of Photon Gluon Fusion Events in DIS 2941The s
attered muon and produ
ed 
harge parti
le were measured in SMCopen magneti
 spe
trometer. The minimal energy of hadron whi
h 
an bedete
ted in spe
trometer is around 5 GeV.The experimental setup was simulated using the LEPTO [25℄ genera-tor with parameterizations of parton distributions at leading order takenfrom [26℄. The spin dependent e�e
ts were 
al
ulated in POLDIS [17℄ witha 
onsistent polarized parton distribution set [27℄. In generation the follow-ing kinemati
s 
uts were applied:0:003 < xBj < 0:7,0:05 < y < 0:93,1 GeV < Q2 < 100 GeV,6.5 GeV2 < W 2 < 1000 GeV2,10 GeV < � < 190 GeV.The generated sample is 
omposed of 88% leading order pro
ess, 8%Compton and 4% PGF pro
ess. For ea
h event the muon tra
k was followedthrough the magnet and trigger 
onditions were 
he
ked. About 33% eventsful�ll the trigger 
onditions. The fra
tion of events whi
h have at least twohadrons in the a

eptan
e is 52%. Finally only events with at least twohadrons with pT above 0.7 GeV were kept. With this sele
tion we are leftwith 4% of generated event sample. The fra
tion of PGF events in thissample amounts to 25%. The fra
tions of events for ba
kground pro
essesLO and Compton are about 35% and 40%, respe
tively. The simulation wastaking into a

ount kinemati
 smearing in the re
onstru
tion program usedin the experiment as well as losses of tra
ks due to 
hamber ine�
ien
ies.The sample des
ribed above is used for several tests of sele
tion pro-
edures presented in this paper. The following variables were used in the
lassi�
ation:� variables 
hara
terizing the event:� �, y, Q2, xBj,� multipli
ity of tra
ks,� variables for two hadrons with highest pT:� pT, pL � transverse and longitudinal momentum of hadron withrespe
t to the virtual photon dire
tion,� 
harge of the hadron,� z = Eh=�, where Eh is the hadron energy in the laboratory frame,� �� azimuthal angle between transverse momenta of this hadrons.
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tion we 
ompare results of sele
tion of the PGF pro
ess forthree 
lassi�
ation te
hniques: the most 
ommonly used sele
tion based on
uts, the Bayes method and the neural network. From arguments dis
ussedin the introdu
tion one expe
ts that the high sensitivity on the PGF pro
essis related to pT(1�2) of the sele
ted hadrons. Also the variable y is strongly
orrelated with the size of the expe
ted asymmetries. These three variableswere found to be most e�
ient for the sele
tion based on 
uts. That is whyas �rst approa
h we 
ompared di�erent te
hniques in the same 
onditionsusing only tree variables mentioned above: pT1, pT2, y. The results on thepurity and the e�
ien
y are shown in Fig. 7. The dashed and solid linesshow the Bayes method and the neural network results, respe
tively, andpoints 
orrespond to several 
uts. It was found that optimal sele
tion forthe 
ut method is obtained for 
uts on (p2T1 + p2T2) (set (i)). The values forevery 
ut number are listed in Table I. As an example another set of 
uts (ii)is also presented in Fig. 7. For the hadron with highest pT, the 
ut on pTis 
hanging while for the other one is kept at 0.8 GeV. This sele
tion is lesse�
ient than the set of 
uts (i). As is seen in Fig. 7 there are no signi�
antdi�eren
es when we 
ompare the best sele
tion based on 
uts (set (i)) withthe neural network and Bayes results.

BayesNeural networkCuts (i): (p2T1 + p2T2; (y > 0:4)Cuts (ii): p2T1; p2T2; (y > 0:4)Fig. 7. Comparison of all te
hniques. Used variables: y, pT1 and pT2 .Up to now we used limited set of variables. If we try to sele
t the PGFpro
ess by handling more variables the manual sear
hing for an optimalset of 
uts 
osts a lot of time and does not bring improvements. In 
ase
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y; pT1; pT2xb; y; Q2; p1; pT1; p2; pT2; �Fig. 8. Results for the neural network using limited and optimal set of variables.TABLE IThe list of 
utsthe (i) sele
tion the (ii) sele
tionnumber p2T1 + p2T2 number pT1 pT21 3.2 6 1.4 0.82 2.5 7 1.2 0.83 1.9 8 1.1 0.84 1.5 9 1.0 0.85 1.3 10 0.9 0.8of Bayes te
hnique, when we want to use more variables, the pro
essing ofea
h event takes mu
h time be
ause of the vast training set. The situationis mu
h better for the neural network due to simpli
ity of 
omputing. Forthis reason we de
ided to use only the neural network in further tests.It is not 
lear how to 
hoose variables other then y and pT to 
omposethe input ve
tor for the network be
ause there are no obvious di�eren
es inthe distributions for PGF and ba
kground pro
esses. A lot of attempts weremade to obtain the best 
ombination.Finally, the optimum set of variables was found as follows: xb, y andQ2 for variables des
ribing the event and pT, pL and � for variables 
har-a
terizing the sele
ted hadrons. The addition of the 
harge of the sele
tedhadrons and also the multipli
ity and energy of all hadrons in the event do



2944 K. Kowalik et al.not improve the result. The 
omparison of the results of the 
lassi�
ationdone by the neural network with the optimal set of variables and using onlyinformation about y and pT is presented in Fig. 8. The purity at a givene�
ien
y for the optimal set of variables (dashed line) is a few per
ent betterthen the results for the neural network whi
h uses a limited set of variables.Ea
h point on the line whi
h des
ribes the result of 
lassi�
ation done bythe neural network 
orresponds to a 
ertain output threshold value. Choos-ing a low threshold we get high e�
ien
y but purity is low due to large
ontributions from ba
kground pro
esses. The opposite situation o

urs athigh thresholds.From the purity dependen
e on e�
ien
y shown in Fig. 8 the 
hoi
eof the optimal threshold for further physi
al analysis is not obvious andan additional 
riterion is needed. To solve this problem the error on thegluon polarization �GG as the fun
tion of threshold is 
al
ulated using theexpression given by Eq. (2.4). In this 
al
ulation the statisti
al error on themeasured asymmetry ÆA and the systemati
 error ÆR on ratios R are takeninto a

ount. The error on A1 asymmetry is negle
ted in the 
al
ulationas it is small 
ompared to ÆA. Also no error is introdu
ed on partoni
asymmetries âLL 
al
ulated at leading order.The results of the 
al
ulation of the error on �GG as a fun
tion of thethreshold are shown in Fig. 9 assuming di�erent statisti
s of the sample andalso varying the error on ÆR. The size of the sample whi
h was taken intoa

ount 
orresponds to: (a) one year of data taking by SMC experiment and

Threshold 
0.1 0.2 0.3 0.4 0.5 0.6 0.7

)
GG∆

 (δ 

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) low statistics

 R =0%Rδ

 R=30%Rδ

(b) 10 times bigger statistics 

 R=0%Rδ

 R=30%RδFig. 9. The dependen
e �GG on the threshold.
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s than (a). For both 
ases two possibilities of anerror on ÆR were 
onsidered. First ÆR is negle
ted (the solid lines in Fig. 9),se
ond the error is taken as ÆR = 30%R (the dashed and dashed-dottedlines in Fig. 9).The observed in
rease of the error on �GG at low threshold is the resultof the small fra
tion of PGF events in the sample while at high thresholdit is mainly due to loss of statisti
s. The optimum threshold was obtainedaround 0.37 as is marked by the arrow in Fig. 9.For low statisti
s, the 
ontribution from ÆR is negligible. For biggerstatisti
s the systemati
 error ÆR begins to play a role at low thresholdsbut the optimal value of threshold does not 
hange when we in
rease thesystemati
 error ÆR. The minimum is getting broader but 
overs the sameregion of threshold values. This allows to sele
t di�erent thresholds, givingthe possibility of systemati
s 
he
ks. The 
hoi
e of the threshold at 0.37
oresponds to a purity of the sample of � 45% and an e�
ien
y of �20%marked as a dot in Fig. 8. For this threshold value the pre
ision on gluonpolarization determination is expe
ted to be better than Æ(�G=G) � 0:3 forSMC experiment. This 
an be 
ompare to result obtain with 
ut sele
tionmethod Æ(�G=G) � 0:46. If the statisti
s of the sample is bigger we getÆ(�G=G) � 0:1 for neural network and Æ(�G=G) � 0:15 for method using
ut sele
tion. 6. SummaryWe developed the neural network algorithm for the 
lassi�
ation of PGFpro
ess. Many tests prove that this algorithm is stable and te
hni
ally wellperforming. Also we show that neural network method is 
omparable to thestandard analysis for three variables used by traditional 
ut sele
tion andbrings improvement by few per
ent in purity if extra variables are added.Neural network make optimal use of many 
orelated variables without sig-ni�
ant penalty in 
omputing time. The appli
ation of this method to thesimulations of the SMC experiment leads to 45% purity of the sele
ted sam-ple whi
h is su�
ient for gluon density determination with pre
ision betterthan Æ(�G=G) � 0:3. It shows that the method 
an be su

essfully appliedfor the experimental data analysis.REFERENCES[1℄ EMC Collaboration, J. Ashman et al., Nu
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