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AN EFFECTIVE MODEL FOR QUARK MASSESAND MIXINGS�Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Re
eived August 17, 2001)By analogy with an e�e
tive model of 
harged-lepton mass matrix that,with the inputs of mexpe and mexp� , predi
ts (in a perturbative zero order)m� = 1776:80 MeV 
lose to mexp� = 1777:03+0:30�0:26 MeV, we 
onstru
t su
ha model for quark mass matri
es reprodu
ing 
onsistently the bulk of ex-perimental information on quark masses and mixings. In parti
ular, themodel predi
ts jVubj = 0:00313, 
 = � argVub = 63:8Æ and jVtdj = 0:00785,� = � argVtd = 20:7Æ (i.e., sin 2� = 0:661 to be 
ompared with the BaBarvalue sin 2�exp = 0:59�0:14), if the �gures jV expus j = 0:2196, jV exp
b j = 0:0402and mexps = 123 MeV, mexp
 = 1:25 GeV, mexpb = 4:2 GeV are used as in-puts. Also the rest of CKM matrix elements is predi
ted 
onsistently bythe experimental data. Here, quark masses and CKM matrix elements (tenindependent quantities) are parametrised by eight independent model 
on-stants, what gives two independent predi
tions, e.g. for jVubj and �. The
onsidered model deals with the fundamental-fermion Dira
 mass matri
es,so that the neutrino Majorana mass matrix is outside the s
heme. Somefoundations of the model are 
olle
ted in Appendix.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. Introdu
tionThe expli
it e�e
tive form of mass matrix invented for three genera-tions of 
harged leptons e�; ��; ��, and being surprisingly good for theirmasses [1℄, is applied in this paper to three generations of up and downquarks, u; 
; t and d; s; b, in order to 
orrelate tentatively their masses and� Work supported in part by the Polish State Committee for S
ienti�
 Resear
h (KBN),Grant 5 P03B 119 20 (2001�2002). (2961)



2962 W. Królikowskimixing parameters. This form reads�M (f)�� � = 129 0B� �(f)"(f) 2�(f)ei'(f) 02�(f)e�i'(f) 4�(f)(80 + "(f))=9 8p3�(f)ei'(f)0 8p3�(f)e�i'(f) 24�(f)(624 + "(f))=25 1CA ;(1)where the label f = e or u; d is used to denote 
harged leptons or up anddown quarks, respe
tively, while �(f), "(f), �(f) and '(f) are real 
onstants tobe determined from the present and future experimental data for 
harged-lepton or quark masses and mixing parameters (�(f) and �(f) are mass-dimensional).Here, the form (1) of mass matrix �M (f)�� � may be 
onsidered as a de-tailed ansatz to be 
ompared with the 
harged-lepton or quark data. How-ever, in the past, we have presented an argument [2,1℄ in favour of theform (1), based on: (i) Kähler-like generalised Dira
 equations (intera
tingwith the Standard Model gauge bosons) whose a priori in�nite sequen
e isne
essarily redu
ed (in the 
ase of fermions) to three Dira
 equations, dueto an intrinsi
 Pauli prin
iple, and (ii) an ansatz for the Dira
 mass matrix,suggested by the above three-generation 
hara
teristi
s (i). For the reader's
onvenien
e this argument is reprodu
ed in Appendix.In the 
ase of 
harged leptons, assuming that the o�-diagonal elementsof the mass matrix �M (e)�� � 
an be treated as a small perturbation of itsdiagonal terms (i.e., that �(e)=�(e) is small enough), we 
al
ulate in thelowest perturbative order [1℄m� = 241776:80 + 10:2112 �(e)�(e)!2 35 MeV ;�(e) = 85:9924 MeV +O24 �(e)�(e)!2 35 �(e) ;"(e) = 0:172329 +O24 �(e)�(e)!235 ; (2)when the experimental values of me and m� [3℄ are used as inputs. InEqs. (2), the unperturbed parts are given as Æm�= 6(351m� � 136me)=125,Æ�(e)= 29(9m� � 4me)=320 and Æ"(e)= 320me=(9m� � 4me), respe
tively. We
an see that the predi
ted value of m� agrees very well with its experimental�gure mexp� = 1777:03+0:30�0:26 MeV [3℄, even in the zero perturbative order. To



An E�e
tive Model for Quark Masses and Mixings 2963estimate ��(e)=�(e)�2, we 
an take this experimental �gure as another input,obtaining  �(e)�(e)!2 = 0:023+0:029�0:025 ; (3)whi
h value is not in
onsistent with zero. Hen
e, �(e) 2 = 170+220�190 MeV2 dueto Eq. (2).For the unitary matrix �U (e)�� �, diagonalizing the 
harged-lepton massmatrix �M (e)�� � a

ording to the relation U (e)yM (e)U (e)=diag(me; m�; m� ),we get in the lowest perturbative order�U (e)�� � =0BBBBBBBB� 1� 2292 ��(e)m� �2 229 �(e)m� ei'(e) 16p3292 ��(e)m� �2 e2i'(e)�229 �(e)m� e�i'(e) 1� 2292 ��(e)m� �2� 96292 ��(e)m� �2 8p329 �(e)m� ei'(e)16p3292 �(e) 2m�m� e�2i'(e) �8p329 �(e)m� e�i'(e) 1� 96292 ��(e)m� �2
1CCCCCCCCA :(4)

2. Quark mass matri
esNow, we will try to apply to quarks the form of mass matrix whi
hwas worked out above for leptons. To this end, we 
onje
ture for threegenerations of up quarks u; 
; t and down quarks d; s; b the mass matri
es�M (u)�� � and �M (d)�� �, respe
tively, essentially of the form (1), where the labelf = u; d denotes up and down quarks. The only modi�
ation introdu
edis a new real 
onstant C(f) added to "(f) in the mass-matrix element M (f)33whi
h now be
omesM (f)33 = 24�(f)25� 29 �624 + "(f) + C(f)� : (5)Note that our approa
h refers to the fermion Dira
 mass matri
es, leavingthe neutrino Majorana mass matrix [4℄ outside the s
heme.Sin
e for quarks the mass s
ales �(u) and �(d) are expe
ted to be evenmore important than the s
ale �(e) for 
harged leptons, we assume that theo�-diagonal elements of mass matri
es �M (u)�� � and �M (d)�� � 
an be 
onsid-ered as a small perturbation of their diagonal terms. Then, in the lowest



2964 W. Królikowskiperturbative order, we 
al
ulate the following mass formulae:mu;d = �(u;d)29 "(u;d) �A(u;d) �(u;d)�(u;d)!2 ;m
;s = �(u;d)29 49 �80 + "(u;d)�+ �A(u;d) �B(u;d)� �(u;d)�(u;d)!2 ;mt;b = �(u;d)29 2425 �624 + "(u;d) + C(u;d)�+B(u;d) �(u;d)�(u;d)!2 ; (6)where A(u;d) = �(u;d)29 36320 � 5"(u;d) ;B(u;d) = �(u;d)29 1080031696 + 54C(u;d) + 29"(u;d) : (7)In Eqs. (6), the relative smallness of perturbating terms is more pronoun
eddue to extra fa
tors [
f. Eqs. (35) further on℄. In our dis
ussion, we willtake for experimental quark masses the arithmeti
 means of their lower andupper limits quoted in [3℄ i.e.,mu = 3MeV; m
 = 1:25GeV; mt = 174GeV (8)and md = 6MeV; ms = 123MeV; mb = 4:2GeV : (9)Eliminating from the unperturbed terms in Eqs. (6) the 
onstants �(u;d)and "(u;d), we derive the 
orrelating formulae being 
ounterparts of Eqs. (2)for 
harged leptons:mt;b = 6125 (351m
;s � 136mu;d) + �(u;d)29 2425C(u;d)� 1125 �2922A(u;d) � 2231B(u;d)� �(u;d)�(u;d)!2 ;�(u;d) = 29320 (9m
;s � 4mu;d)� 29320 �5A(u;d) � 9B(u;d)� �(u;d)�(u;d)!2 ;"(u;d) = 29mu;d�(u;d) + 29�(u;d)A(u;d) �(u;d)�(u;d)!2 : (10)



An E�e
tive Model for Quark Masses and Mixings 2965The unperturbed parts of these relations are:Æmt;b = 6125 (351m
;s � 136mu;d) + Æ�(u;d)29 2425 ÆC(u;d)= � 21:02:03� GeV + Æ�(u;d)29 2425 ÆC(u;d) ;Æ�(u;d) = 29320 (9m
;s � 4mu;d) = � 102098:1 � MeV ;Æ"(u;d) = 29mu;dÆ�(u;d) = � 0:08541:77 � : (11)In the spirit of our perturbative approa
h, the �
oupling� 
onstant �(u;d)
an be put zero in all perturbing terms in Eqs. (6) and (10), ex
ept for�(u;d) 2 in the numerator of the fa
tor (�(u;d)=�(u;d))2 that now be
omes(�(u;d)= Æ�(u;d))2. Then, A(u;d) and B(u;d) are repla
ed byÆA(u;d) = Æ�(u;d)29 36320 � 5 Æ"(u;d) ;ÆB(u;d) = Æ�(u;d)29 1080031696 + 54 ÆC(u;d) +29 Æ"(u;d) : (12)Note that the �rst Eq. (6) 
an be rewritten identi
ally as mu;d =Æ�(u;d)Æ"(u;d)=29 a

ording to the third Eq. (11). We shall be able to returnto the dis
ussion of quark masses after an estimation of 
onstants �(u) and�(d) is made. Then, we shall determine the parameters C(u) and C(d) (aswell as their unperturbed parts ÆC(u) and ÆC(d)) playing here an essential rolein providing large values for mt and mb.3. Cabibbo�Kobayashi�Maskawa matrixAt present, we �nd the unitary matri
es (U (u;d)�� ) that diagonalize themass matri
es (M (u;d)�� ) a

ording to the relations U (u;d) yM (u;d)U (u;d) =diag(mu;d; m
;s; mt;b). In the lowest perturbative order, the result has theform (4) with the ne
essary repla
ement of labels:



2966 W. Królikowski(e)! (u) or (d) ; �! 
 or s ; � ! t or b ; (13)respe
tively.Then, the elements V�� of the Cabibbo�Kobayashi�Maskawa matrixV = U (u) yU (d) 
an be 
al
ulated with the use of Eqs. (13) in the lowestperturbative order. Six resulting o�-diagonal elements are:Vus = �V �
d = 229  �(d)ms ei'(d) � �(u)m
 ei'(u)! ;V
b = �V �ts = 8p329  �(d)mb ei'(d) � �(u)mt ei'(u)! ' 8p329 �(d)mb ei'(d) ;Vub ' �16p3841 �(u)�(d)m
mb ei('(u)+'(d)) ;Vtd ' 16p3841 �(d) 2msmb e�2i'(d) ; (14)where the indi
ated approximate steps were made due to the inequalitymt � mb and/or under the assumption that �(u)=m
 � �(d)=mb (
f. the
onje
ture (18) later on). All three diagonal elements are real and positivein a good approximation:Vud ' 1� 12 jVusj2 ; V
s ' 1� 12 jVusj2 � 12 jV
bj2 ; Vtb ' 1� 12 jV
bj2 : (15)In fa
t, in the lowest perturbative order,arg Vud ' 4841 �(u)�(d)m
ms sin�'(u)�'(d)� 180Æ� ' � arg V
s; arg Vtb ' 0 ; (16)what gives a nearly vanishing arg Vud = 0:88Æ = � arg V
s, if the values (17),(19) and (22) are used.Taking as an input the experimental value jV
bj = 0:0402 � 0:0019 [3℄,we estimate from the se
ond Eq. (14) that�(d) ' 298p3 mb jV
bj = (353 � 17) MeV ; (17)where mb = 4:2 GeV. In order to estimate also �(u), we will tentatively
onje
ture the approximate proportion�(u) : �(d) ' Q(u) 2 : Q(d) 2 = 4 (18)



An E�e
tive Model for Quark Masses and Mixings 2967to hold, where Q(u) = 2=3 and Q(d) = �1=3 are quark ele
tri
 
harges.Under the 
onje
ture (18)�(u) ' (1410 � 70)MeV : (19)In this 
ase, from the se
ond and third Eq. (14) we obtain the predi
tionjVubj=jV
bj ' 229 �(u)m
 ' 0:0779 � 0:0037 ; (20)where m
 = 1:25 GeV. This is 
onsistent with the experimental �gurejVubj=jV
bj = 0:08 � 0:02 as well as 0:090 � 0:025 [3℄.Now, with the experimental value jVusj = 0:2196� 0:0023 [3℄ as anotherinput, we 
an 
al
ulate from the �rst Eq. (14) the phase di�eren
e '(u)�'(d).In fa
t, taking the absolute value of this equation, we get
os�'(u) � '(d)� = 18m
ms "1 + 16�msm
�2 � 8414 � ms�(d)�2 jVusj2# = �0:0967(21)with m
 = 1:25 GeV and ms = 123 MeV, if the proportion (18) is taken intoa

ount. Here, the 
entral values of �(d) and jVusj were used. Hen
e,'(u) � '(d) = 95:5Æ = �84:5Æ + 180Æ : (22)Then, 
al
ulating the argument of the �rst Eq. (14), we infer thattan�arg Vus � '(d)� = �4 msm
 sin �'(u) � '(d)�1� 4(ms=m
) 
os �'(u) � '(d)� = �0:377 ;(23)what gives arg Vus = �20:7Æ + '(d) : (24)The results (22) and (24) together with the formula (14) enable us toevaluate the rephasing-invariant CP -violating phasesarg(V �usV �
bVub) = 20:7Æ � 84:5Æ = �63:8Æ (25)and arg(V �
dV �tsVtd) = �20:7Æ (26)(they are invariant under quark rephasing the same for up and down quarksof the same generation). Note that the sum of arguments (25) and (26) isalways equal to '(u) �'(d) � 180Æ. Carrying out quark rephasing (the samefor up and down quarks of the same generation), wherearg Vus ! 0 ; arg V
b ! 0 ; arg V
d ! 180Æ ; arg Vts ! 180Æ (27)



2968 W. Królikowskiand arg Vud, arg V
s, arg Vtb remain un
hanged, we 
on
lude from Eqs. (25)and (26) that arg Vub ! �63:8Æ ; arg Vtd ! �20:7Æ : (28)The sum of arguments (28) after rephasing (27) is always equal to'(u) � '(d) � 180Æ.Thus, in this quark phasing, we predi
t the following Cabibbo�Kobayashi�Maskawa matrix:(V��) = 0� 0:976 0:220 0:00313 e�i 63:88Æ�0:220 0:975 0:04020:00795 e�i 20:7Æ �0:0402 0:999 1A : (29)Here, only jVusj and jV
bj [and quark masses ms ; m
 ; mb 
onsistent withthe mass matri
es �M (u)�� � and �M (d)�� �℄ are our inputs, while all other ma-trix elements V��, partly indu
ed by unitarity, are evaluated from the re-lations derived in this Se
tion from the Hermitian mass matri
es �M (u)�� �and �M (d)�� � [and the 
onje
tured proportion (18)℄. The independent pre-di
tions are two, e.g. for jVubj and argVub, sin
e ten independent quantities(six quark masses, three mixing angles and one CP -violating phase) areparametrised by eight independent model 
onstants (�(u), �(d), "(u), "(d),�(u) or �(d), '(u) � '(d) and C(u), C(d)). In Eq. (29), the small phases aris-ing from Eqs. (16), arg Vud = 0:9Æ and arg V
s = �0:9Æ, are negle
ted (here,arg (VudV
sVtb) = 0).The above predi
tion of V�� implies the following values of Wolfensteinparameters [3℄:� = 0:2196 ; A = 0:834 ; � = 0:157 ; � = 0:318 (30)and of unitary-triangle angles:
 = ar
tan �� = � arg Vub = 63:8Æ ; � = ar
tan �1� � = � arg Vtd = 20:7Æ :(31)Hen
e, the predi
ted value of sin 2� = 0:661 is not in
onsistent with there
ent BaBar experimental result sin 2�exp = 0:59 � 0:14 [5℄.Now, we may turn ba
k to quark masses. From the third Eq. (6) we 
anevaluateC(u;d) = 29�(u;d) 2524 mt;b � 624 � "(u;d) � 29�(u;d) 2524 B(u;d) �(u;d)�(u;d)!2 ; (32)



An E�e
tive Model for Quark Masses and Mixings 2969what, in the framework of our perturbative approa
h, givesC(u;d) = ÆC(u;d) + 29Æ�(u;d) 2524 mt;b 29320 Æ�(u;d) �5 ÆA(u;d) �9 ÆB(u;d)�  �(u;d)Æ�(u;d)!2� 29Æ�(u;d) � ÆA(u;d) + ÆB(u;d)�  �(u;d)Æ�(u;d)!2 ; (33)where ÆC(u;d)= 29Æ�(u;d) 2524 mt;b � 624� Æ"(u;d)= � 4540667� : (34)With the 
entral values of �(u) and �(d) as estimated in Eqs. (17) and (19)we �nd from Eqs. (12)ÆA(u;d)  �(u;d)Æ�(u;d)!2 = � 7:605:07� MeV ; ÆB(u;d)  �(u;d)Æ�(u;d)!2 = � 2:636:98� MeV ;(35)where Æ�(u;d)29  �(u;d)Æ�(u;d)!2 = � 67:543:8� MeV : (36)We 
al
ulate from Eqs. (33) with the use of values (35) thatC(u;d) = � 4540619� : (37)Similarly, from the se
ond and third Eq. (10), making use of the values(35), we obtain�(u;d) = � 1020102 � MeV ; "(u;d) = � 0:3023:27 � : (38)We 
an easily 
he
k that, with the values (11) for Æ�(u;d) and Æ"(u;d) andthe value (34) for ÆC(u;d) determined as above from quark masses, the unper-turbed parts of mass formulae (6) reprodu
e 
orre
tly these masses. In fa
t,we get numeri
ally
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Æmu;d = Æ�(u;d)29 Æ"(u;d)= � 36� MeV = mu;d ;Æm
;s = Æ�(u;d)29 49 �80+ Æ"(u;d)� = � 1250123� MeV = m
;s ;Æmt;b = Æ�(u;d)29 2425 �624+ Æ"(u;d) + ÆC(u;d)� = � 1744:2 � GeV = mt;b : (39)The same is true for the unperturbed part of the �rst 
orrelating formula (10).Here, Æm� = m�� Æm� is neglible versus m� = mexp� (� = u; 
; t and d; s; b).We would like to stress that, in 
ontrast to the 
ase of 
harged leptons,where (in the zero perturbative order) m� has been predi
ted from me andm�, in the 
ase of up and down quarks two extra parameters C(u) and C(d)appear ne
essarily to provide large masses mt and mb (mu
h larger thanm� ). They 
ause that (even in the zero perturbative order) mt (mb) 
annotbe predi
ted from mu and m
 (md and ms), till the new parameters arequantitatively understood.If the ratio C(u)=C(d) is equal tox, we 
an write C(u;d) = 
onst[Q(u;d)2 +(3x � 4)Q(u;d)B + (3x+ 4)B2℄, where Q(u;d) = 2=3 ; �1=3 and B = 1=3. Inthe 
ase of Eq. (37) x = 7:33 = 22=3. Thus, the baryon number B may beinterpreted as 
ontributing largely to the 
onstants C(u;d).4. A possible phase 
onje
tureNote that a 
onje
ture about C(u) and C(d) might lead to a predi
tionfor quark masses and so, introdu
e 
hanges in the �experimental� quarkmasses (8) and (9) a

epted here. The same is true for a 
onje
ture about'(u) and '(d).For instan
e, the 
onje
ture that the phase di�eren
e '(u)�'(d) is max-imal, '(u) � '(d) = 90Æ ; (40)leads through the �rst equality in Eq. (21) to the 
ondition1 + 16�msm
�2 � 8414 � ms�(d)�2 jVusj2 = 0 (41)predi
ting for s quark the massms = 119MeV (42)
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tive Model for Quark Masses and Mixings 2971(with �(d) = 353 MeV), being only slightly lower than the value 123 MeVused previously. Here, m
 and mb are kept equal to 1.25 and 4.2 GeV,respe
tively (also masses of u ; d and t quarks are not 
hanged, while Æ�(d),Æ"(d) and ÆC(d) 
hange slightly). Then, from the �rst equality in Eq. (23)tan�arg Vus � '(d)� = �4 msm
 = �0:379 ; arg Vus = �20:8Æ + '(d) : (43)After rephasing (27), this gives arg Vub+arg Vtd = '(u)�'(d)�180Æ = �90Æ,where arg Vub = �69:2Æ ; arg Vtd = �20:8Æ (44)i.e., pra
ti
ally �70Æ and �20Æ. For the new value (42) ofms, in the approx-imation used, all jV�� j remain un
hanged (with our inputs of jVusj = 0:2196and jV
bj = 0:0402), ex
ept for jVtdj whi
h 
hanges slightly, be
omingjVtdj = 0:00849 : (45)Thus, in the Cabibbo�Kobayashi�Maskawa matrix predi
ted in Eq. (29),only jVtdj and the phases (44) show some 
hanges. The Wolfenstein param-eters are � = 0:126 ; � = 0:332 ; (46)while � and A do not 
hange (here, the sum �2 + �2 = 0:126 is also un-
hanged). Hen
e, 
 + � = 90Æ and � = 180Æ � 
 � � = 90Æ, where
 = ar
tan �� = � arg Vub = 69:2Æ� = ar
tan �1� � = � arg Vtd = 20:8Æ : (47)So, in the 
ase of 
onje
ture (40), the new restri
tive relation�� = 1� �� or �2 + �2 = � (48)holds, implying the predi
tionjVtdj=jVubj =s(1� �)2 + �2�2 + �2 = �� = 2:64 ; (49)due to the de�nition of � and � from Vub and Vtd. It is in agreement withour �gures for jVtdj and jVubj. Then, the new relationship14m
ms = �(d)m
�(u)ms = �� (50)



2972 W. Królikowskifollows for quark masses m
, ms and Wolfenstein parameters �, �, in 
onse-quen
e of Eqs. (14) and the 
onje
tured proportion (18). Both its sides arereally equal for our values of m
, ms and �, �.Thus, summarizing, we 
annot predi
t quark masses without an addi-tional knowledge or 
onje
ture about the 
onstants �(u;d), "(u;d), C(u;d), �(u;d)and '(u;d) (in parti
ular, the 
onje
ture (40) predi
ting ms may be natural).However, we always des
ribe them 
orre
tly. If we des
ribe them jointlywith quark mixing parameters, we obtain two independent predi
tions e.g.for jVubj and 
 = � arg Vub: the whole Cabibbo�Kobayashi�Maskawa matrixis 
al
ulated from the inputs of jVusj and jV
bj hand of quark masses ms, m
and mb 
onsistent with the mass matri
es �M (u)�� � and �M (d)�� �i.Con
luding, we 
an 
laim that our 
harged-lepton form of mass matrixworks also in a promising way for up and down quarks. But, it turns outthat, in the framework of this leptoni
 form of mass matrix, the heaviestquarks, t and b, require an additional me
hanism in order to produ
e thebulk of their masses (here, it is represented by the large 
onstants C(u) andC(d)). Su
h a me
hanism, however, intervenes into the pro
ess of quarkmixing only through quark masses (pra
ti
ally mt and mb) and so, it doesnot modify for quarks the 
harged-lepton form of mixing me
hanism.5. Appendix: Motivation for the mass matrix (1)The form of Dira
 mass matrix (1) is based on two assumptions:(i) the 
onje
ture that all kinds of matter's fundamental parti
les existingin Nature 
an be dedu
ed from Dira
's square-root pro
edure pp2 = � � p,
onstrained by an intrinsi
 Pauli prin
iple, and (ii) a simple ansatz for theDira
 mass matrix, formulated on the ground of the 
onje
ture (i).As is easy to observe, Dira
's square-root pro
edure leads generi
ally tothe sequen
e N = 1; 2; 3; : : : of generalised Dira
 equations [2,1℄n� (N) � [p� gA(x)℄ �M (N)o (N)(x) = 0 ; (A:1)where for any N the Dira
 algebran� (N)� ; � (N)� o = 2g�� (A:2)is 
onstru
ted by means of a Cli�ord algebra,� (N)� � 1pN NXi=1 
(N)i� ; n
(N)i� ; 
(N)j� o = 2Æijg�� (A:3)
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tive Model for Quark Masses and Mixings 2973with i ; j = 1; 2; : : : ; N and � ; � = 0; 1; 2; 3. Here, the term g� (N) � A(x)symbolizes the Standard Model gauge 
oupling, involving � (N)5 �i� (N)0 � (N)1 � (N)2 � (N)3 as well as the 
olor, weak-isospin and hyper
harge ma-tri
es (this 
oupling is absent for sterile parti
les su
h as sterile neutrinos).The massM (N) is independent of � (N)� . In general, the massM (N) should berepla
ed by a mass matrix of elements M (N;N 0) whi
h would 
ouple  (N)(x)with all appropriate  (N 0)(x), and it might be natural to assume for N 6= N 0that h
(N)i� ; 
(N 0)j� i = 0 i.e., h� (N)� ; � (N 0)� i = 0.The Dira
-type equation (A.1) for any N implies that (N)(x) = � (N)�1�2:::�N (x)� ; (A:4)where ea
h �i = 1; 2; 3; 4 is the Dira
 bispinor index de�ned in its 
hiralrepresentation in whi
h the matri
es
(N)j5 � i
(N)j0 
(N)j1 
(N)j2 
(N)j3 ; �(N)j3 � i2 h
(N)j1 ; 
(N)j2 i (A:5)are diagonal (note that all matri
es (A.5), both with equal and di�erent j's,
ommute simultaneously). The wave fun
tion or �eld  (N)(x) for any N
arries also the Standard Model (
omposite) label, suppressed in our nota-tion. The mass M (N) gets also su
h a label. The Standard Model 
ouplingof physi
al Higgs bosons should be eventually added to Eq. (A.1) for any N .For N = 1 Eq. (A.1) is, of 
ourse, the usual Dira
 equation, for N = 2it is known as the Dira
 form [6℄ of the Kähler equation [7℄, while for N � 3Eqs. (A.1) give us new Dira
-type equations [2,1℄. All of them des
ribe somespin-hal�nteger or spin-integer parti
les for N odd and N even, respe
tively.The nature of these parti
les is the main subje
t of the present paper (
f.also Ref. [2,1℄).The Dira
-type matri
es � (N)� for any N 
an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� (A:6)[isomorphi
 with the Cli�ord algebra introdu
ed for 
(N)i� in Eq. (A.3)℄, if� (N)i� are de�ned by the properly normalised Ja
obi linear 
ombinations of
(N)i� . In fa
t, they are given as� (N)1� � � (N)� � 1pN NXi=1 
(N)i� ;� (N)i� � 1pi(i� 1) h
(N)1� + : : :+ 
(N)(i�1)� � (i� 1)
(N)i� i (A:7)



2974 W. Królikowskifor i = 1 and i = 2; : : : ; N , respe
tively. So, � (N)1 and � (N)2 ; : : : ; � (N)N rep-resent respe
tively the �
entre-of-mass� and �relative� Dira
-type matri
es.Note that the Dira
-type equation (A.1) for any N does not involve the�relative� Dira
-type matri
es � (N)2 ; : : : ; � (N)N , solely in
luding the �
entre-of-mass� Dira
-type matrix � (N)1 � � (N). Sin
e � (N)i = PNj=1Oij
(N)j ,where the N � N matrix O = (Oij) is orthogonal (OT = O�1), we obtainfor the total spin tensor the formulaNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (A:8)where �(N)j�� � i2 h
(N)j� ; 
(N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (A:9)Of 
ourse, the spin tensor (A.8) is the generator of Lorentz transformationsfor  (N)(x).It is 
onvenient for any N to pass from the 
hiral representations forindividual 
(N)i 's to the 
hiral representations for Ja
obi � (N)i 's in whi
h thematri
es� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � i2 h� (N)j1 ; � (N)j2 i (A:10)are diagonal (they all, both with equal and di�erent j's, 
ommute simulta-neously). Note that � (N)15 � � (N)5 is the Dira
-type 
hiral matrix as it isinvolved in the Standard Model gauge 
oupling in the Dira
-type equation(A.1).Using the new Ja
obi 
hiral representations, the �
entre-of-mass� Dira
-type matri
es � (N)1� � � (N)� and � (N)15 � � (N)5 
an be taken in the redu
edforms � (N)� = 
� 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 
5 
 1
 � � � 
 1| {z }N�1 times ; (A:11)where 
�, 
5 � i
0
1
2
3 and 1 are the usual 4 � 4 Dira
 matri
es. Forinstan
e, the Ja
obi � (N)i� 's and � (N)i5 's for N = 3 
an be 
hosen as� (3)1� = 
� 
 1
 1 ; � (3)15 = 
5 
 1
 1 ;� (3)2� = 
5 
 i
5
� 
 1 ; � (3)25 = 1
 
5 
 1 ;� (3)3� = 
5 
 
5 
 
� ; � (3)35 = 1
 1
 
5 : (A.12)
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-type equation (A.1) for any N 
an be rewritten in theredu
ed form n
 � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (A:13)where �1 and �2 ; : : : ; �N are the �
entre-of-mass� and �relative� Dira
bispinor indi
es, respe
tively (here, (
 � p)�1�1 = 
�1�1 � p and �M (N)��1�1 =Æ�1�1M (N), but the 
hiral 
oupling g
 � A(x) involves within A(x) also thematrix 
5 ). Note that in the Dira
-type equation (A.13) for any N > 1the �relative� indi
es �2 ; : : : ; �N are free, but still are subje
ts of Lorentztransformations (for �2 this was known already in the 
ase of Dira
 form [6℄of Kähler equation [7℄ 
orresponding to our N = 2).Sin
e in Eq. (A.13) the Standard Model gauge �elds intera
t only withthe �
entre-of-mass� index �1, this is distinguished from the physi
ally un-observed �relative� indi
es �2 ; : : : ; �N . Thus, it was natural for us to 
on-je
ture some time ago that the �relative� bispinor indi
es �2 ; : : : ; �N areall undistinguishable physi
al obje
ts obeying Fermi statisti
s along withthe Pauli prin
iple requiring in turn the full antisymmetry of wave fun
tion �1�2 ; ::: ; �N (x) with respe
t to �2 ; : : : ; �N [2℄. Hen
e, only �ve values ofN satisfying the 
ondition N � 1 � 4 are allowed, namely N = 1; 3; 5 for Nodd and N = 2; 4 for N even. Then, from the postulate of relativity andthe probabilisti
 interpretation of  (N)(x) we were able to infer that threeN odd and two N even 
orrespond to states with total spin 1=2 and totalspin 0, respe
tively [2,1℄.Thus, the Dira
-type equation (A.1), jointly with the �intrinsi
 Pauliprin
iple�, if 
onsidered on a fundamental level, justi�es the existen
e inNature of three and only three generations of spin-1=2 fundamental fermions(i.e., leptons and quarks) 
oupled to the Standard Model gauge bosons. Inaddition, there should exist two and only two generations of spin-0 funda-mental bosons also 
oupled to the Standard Model gauge bosons.For sterile parti
les, Eq. (A.13) with any N goes over into the free Dira
-type equation �
�1�1 � p� Æ�1�1M (N)� (N)�1�2:::�N (x) = 0 (A:14)(as far as only Standard Model gauge intera
tions are 
onsidered). Here,no Dira
 bispinor index �i is distinguished by the Standard Model gauge
oupling whi
h is absent in this 
ase. The �
entre-of mass� index �1 is notdistinguished also by its 
oupling to the parti
le's four-momentum, sin
eEq. (A.14) is physi
ally equivalent to the free Klein�Gordon equation�p2 �M (N) 2� (N)�1�2:::�N (x) = 0 : (A:15)



2976 W. KrólikowskiThus, in this 
ase the intrinsi
 Pauli prin
iple requires that N � 4, leadingto N = 1; 3 for N odd and N = 2; 4 for N even. Similarly as before, they
orrespond to states with total spin 1=2 and total spin 0, respe
tively [8℄.Therefore, there should exist two and only two spin-1=2 sterile fundamen-tal fermions (i.e., two sterile neutrinos �s and � 0s) and, in addition, two andonly two spin-0 sterile fundamental bosons.The wave fun
tions or �elds of a
tive fermions (leptons and quarks) ofthree generations and sterile neutrinos of two generations 
an be presentedin terms of  (N)�1�2:::�N (x) as follows (f)�1 (x) =  (1)�1 (x) ; (f 0)�1 (x) = 14 �C�1
5��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ; (f 00)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) (A.16)and (�s)�2 (x) =  (1)�2 (x) ; (�0s)�2 (x) = 16 �C�1
5��2�3 "�3�4�5�6 (3)�4�5�6(x) = 8>>><>>>:  (3)134(x) for �2 = 1� (3)234(x) for �2 = 2 (3)312(x) for �2 = 3� (3)412(x) for �2 = 4(A.17)respe
tively, where  (N)�1�2:::�N (x) for a
tive fermions [Eq. (A.16)℄ 
arries alsothe Standard Model (
omposite) label, suppressed in our notation, and Cdenotes the usual 4� 4 
harge-
onjugation matrix. We 
an see that due tothe full antisymmetry in �i indi
es for i � 2 these wave fun
tions or �eldsappear (up to the sign) with the multipli
ities 1, 4, 24 and 1, 6 , respe
tively.Thus, for a
tive fermions and sterile neutrinos there is given the weightingmatrix �(a) 1=2 = 1p29 0� 1 0 00 p4 00 0 p241A (A:18)and �(s) 1=2 = 1p7 � 1 00 p6� ; (A:19)respe
tively. Of 
ourse, for both weighting matri
es Tr � = 1.
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luding this part of Appendix, we would like to say that in our ap-proa
h to generations of fundamental parti
les Dira
 bispinor indi
es (�alge-brai
 partons�) play the role of building blo
ks of 
omposite states identi�edas fundamental parti
les. Any fundamental parti
le, a
tive with respe
t tothe Standard Model gauge intera
tions, 
ontains one �a
tive algebrai
 par-ton� (
oupled to the Standard Model gauge bosons) and a number N � 1of �sterile algebrai
 partons� (de
oupled from these bosons). Due to the in-trinsi
 Pauli prin
iple obeyed by �sterile algebrai
 partons�, the number Nof all �algebrai
 partons� within a fundamental parti
le is restri
ted by the
ondition N � 1 � 4, so that only N = 1; 2; 3; 4; 5 are allowed. It turnsout that states with N = 1; 3; 5 
arry total spin 1=2 and are identi�ed withthree generations of leptons and quarks, while states with N = 2; 4 get totalspin 0 and so far are not identi�ed. Any fundamental parti
le, sterile withrespe
t to the Standard Model gauge intera
tions, 
ontains only a numberN � 4 of �sterile algebrai
 partons�, thus only N = 1; 2; 3; 4 are allowed.States with N = 1; 3 
orrespond to total spin 1=2 and have to be identi�ed astwo hypotheti
 sterile neutrinos, while states with N = 2; 4 have total spin0 and are still to be identi�ed.Our algebrai
 
onstru
tion may be interpreted either as ingeneously al-gebrai
 (mu
h like the famous Dira
's algebrai
 dis
overy of spin 1=2) or asthe summit of an i
eberg of really 
omposite states of N spatial partonswith spin 1=2 whose Dira
 bispinor indi
es manifest themselves as our �al-gebrai
 partons�. In the former algebrai
 option, we avoid automati
allythe irksome existen
e problem of new intera
tions ne
essary to bind spatialpartons within leptons and quarks of the se
ond and third generations. Forthe latter spatial option see some remarks in the se
ond Ref. [8℄.Eventually, we introdu
e the following expli
it ansatz for the Dira
 massmatrix [2,1℄ M (f) = �(a)1=2h(f)�(a)1=2 ; (A:20)whereh(f) = �(f)N2 + ("(f) � 1)N�2 + �(f) �aei'(f) + aye�i'(f)� (A:21)with �(f) > 0, "(f) > 0, �(f) > 0 and 0 < '(f) < 2� being parameters. Here,the matrix N = 0� 1 0 00 3 00 0 51A = 1 + 2n (A:22)des
ribes the number of all �i indi
es (all �algebrai
 partons�) appearing in



2978 W. Królikowskithree fermion generations, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 01A (A:23)play the role of �trun
ated� annihilation and 
reation matri
es for index pairs�i�j with i; j � 2 (pairs of �sterile algebrai
 partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 21A ; (A:24)where the �trun
ation� 
ondition a3 = 0 = ay 3 is satis�ed. The formulae(A.20) and (A.21) give expli
itly Eq. (1).In the 
ase of quarks, the modi�
ation (5) 
an be des
ribed by the ad-ditional term 18C(f)(N � 1)(N � 3)N�2 (A:25)to be introdu
ed into the matrix h(f) (f = u ; d) given in Eq. (A.21).In the mass matrix (A.20), the �rst term 
ontaining �(f)N2 may be in-tuitively interpreted as an intera
tion of all N �algebrai
 partons� treatedon equal footing, while the se
ond involving ��(f)(1 � "(f))N�2, as a sub-tra
tion term 
aused by the fa
t that there is one �a
tive algebrai
 parton�distinguished (by its external 
oupling) among all N �algebrai
 partons� ofwhi
h N�1, as �sterile�, are undistinguishable. This distinguished �algebrai
parton� appears, therefore, with the probability [N !=(N�1)!℄�1 = N�1 that,when squared, leads to an additional intera
tion involving �(f)(1�"(f))N�2.The latter intera
tion should be subtra
ted from the former in order to ob-tain for N = 1 the small matrix elementM (f)11 = �(f)"(f)=29. The third termin the mass matrix (A.20) 
ontaining �(f)(a + ay) annihilates and 
reatespairs of �sterile algebrai
 partons� and so, is responsible in a natural way formixing of three fermion generations.REFERENCES[1℄ W. Królikowski, in Spinors, Twistors, Cli�ord Algebras and Quantum Defor-mations (Pro
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