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By analogy with an effective model of charged-lepton mass matrix that,
with the inputs of m¢™ and mj*®, predicts (in a perturbative zero order)

m, = 1776.80 MeV close to m&P = 1777.03703% MeV, we construct such
a model for quark mass matrices reproducing consistently the bulk of ex-
perimental information on quark masses and mixings. In particular, the
model predicts |V,,| = 0.00313, v = — arg Vo, = 63.8° and |V;4| = 0.00785,
B =—argVy = 20.7° (i.e., sin 28 = 0.661 to be compared with the BaBar
value sin 23%P = 0.59+0.14), if the figures |V,2P| = 0.2196, |V, = 0.0402
and m&P = 123 MeV, m&® = 1.25 GeV, m; P = 4.2 GeV are used as in-
puts. Also the rest of CKM matrix elements is predicted consistently by
the experimental data. Here, quark masses and CKM matrix elements (ten
independent quantities) are parametrised by eight independent model con-
stants, what gives two independent predictions, e.g. for |Vy;| and 5. The
considered model deals with the fundamental-fermion Dirac mass matrices,
so that the neutrino Majorana mass matrix is outside the scheme. Some
foundations of the model are collected in Appendix.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

1. Introduction

The explicit effective form of mass matrix invented for three genera-
tions of charged leptons e, ", 7, and being surprisingly good for their
masses [1], is applied in this paper to three generations of up and down
quarks, u, ¢, t and d, s, b, in order to correlate tentatively their masses and

* Work supported in part by the Polish State Committee for Scientific Research (KBN),
Grant 5 PO3B 119 20 (2001-2002).
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mixing parameters. This form reads

1 /J/(f)g(f) 2a(f)ei4r/’(f) O
(M;Q) =55 | 200" 4480+ e)/9 8v/3 alNeie'” ,
0 8v/3alle v 2419 (624 + (1) /25

(1)
where the label f = e or u, d is used to denote charged leptons or up and
down quarks, respectively, while u(f ), el alf) and <p(f ) are real constants to
be determined from the present and future experimental data for charged-
lepton or quark masses and mixing parameters (u(f ) and olf) are mass-
dimensional).

Here, the form (1) of mass matrix (M(g?) may be considered as a de-

tailed ansatz to be compared with the charged-lepton or quark data. How-
ever, in the past, we have presented an argument [2,1] in favour of the
form (1), based on: (i) Kahler-like generalised Dirac equations (interacting
with the Standard Model gauge bosons) whose a priori infinite sequence is
necessarily reduced (in the case of fermions) to three Dirac equations, due
to an intrinsic Pauli principle, and (4i) an ansatz for the Dirac mass matrix,
suggested by the above three-generation characteristics (7). For the reader’s
convenience this argument is reproduced in Appendix.

In the case of charged leptons, assuming that the off-diagonal elements

of the mass matrix (Mé?) can be treated as a small perturbation of its

diagonal terms (i.e., that o(®)/u(®) is small enough), we calculate in the
lowest perturbative order [1]

2
(e)
m, = [1776.80 +10.2112 [ 2~ MeV
M(e)
NS
19 = 85.9924 MeV + O || — e
'u,(e)
2
© ol©)
e© = 0172329 +0 || =] |, (2)
N(e)

when the experimental values of m, and m, [3] are used as inputs. In

Egs. (2), the unperturbed parts are given as M= 6(351m, — 136m.)/125,
o (e) o

B =29(9m, — 4m,)/320 and 6(6): 320m./(9m,, — 4m,), respectively. We
can see that the predicted value of m. agrees very well with its experimental
figure m$® = 1777.0373:32 MeV [3], even in the zero perturbative order. To
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. 2 : . .
estimate (a(e)/,u(e)) , we can take this experimental figure as another input,

obtaining
2
ol®) _ +0.029
W = 0.02325 55 » (3)

which value is not inconsistent with zero. Hence, a{®? = 1707220 MeV? due

to Eq. (2).
For the unitary matrix (Ué%)), diagonalizing the charged-lepton mass

matrix (Mé%)) according to the relation U©t MO U(e) = diag(me., My, M),

we get in the lowest perturbative order

(#)-

1— 2 ale) 2 2 al®) ew(e) 16v3 [ al®) 2 egw(@)
292 \ my 29 my, 292 mor
200 —ig@ 2 (a@)?_ 06 (a@)? 830 i (4)
29 my, 292 \ my 292 \ m, 29 m, :
1613 a(®)? _2ip() _8v/8al®) ipl©) 96 (a©)?
292 my, mr 29 m, 292 \ m,

2. Quark mass matrices

Now, we will try to apply to quarks the form of mass matrix which
was worked out above for leptons. To this end, we conjecture for three
generations of up quarks u, ¢, ¢ and down quarks d, s, b the mass matrices

(MSZ;) and (M(g?), respectively, essentially of the form (1), where the label

f = u, d denotes up and down quarks. The only modification introduced
is a new real constant CY) added to £(¥) in the mass-matrix element Még )
which now becomes

o 24p)
33795 % 29

(624 +e) 4 C(f)) . (5)

Note that our approach refers to the fermion Dirac mass matrices, leaving
the neutrino Majorana mass matrix [4] outside the scheme.

Since for quarks the mass scales u(® and p(® are expected to be even
more important than the scale ;(¢) for charged leptons, we assume that the

off-diagonal elements of mass matrices (M(%)) and (M(%)) can be consid-

ered as a small perturbation of their diagonal terms. Then, in the lowest
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perturbative order, we calculate the following mass formulae:

2
(u.d) o)
My,d = %6(%@ —A(u’d) (W) y

pe? 4 d d o\ [ a™? i
Moy = Foamg (804+60) 4 (A0 — gt} (2]

) 24 ] ] NPT
My = = (6244 el 4 o) 4 plud) (S} ()

29 25 W
where
Ay _ Y36
29 320 — 5elwd)’
Blud) _ () 10800 )

29 31696 + 54C(wd) 4 29¢(ud) *

In Egs. (6), the relative smallness of perturbating terms is more pronounced
due to extra factors [¢f. Egs. (35) further on]. In our discussion, we will
take for experimental quark masses the arithmetic means of their lower and
upper limits quoted in [3] i.e.,

my = 3MeV, m,.=125GeV, m;=174GeV (8)

and
mg = 6MeV, m;=123MeV, my =4.2GeV. (9)
Eliminating from the unperturbed terms in Egs. (6) the constants (%%
and (™% we derive the correlating formulae being counterparts of Egs. (2)

for charged leptons:

6 (usd) 94
Miy = —— (351me.s — 136my.q) + & ()

’ 125 29 25
2
_L (2922A(u,d) _ 22313(%!1)) @
125 pwd) |
2
29 29 a(wd)
(ud) _ 29 _ _ 2 (e a(uwd) _ gp(ud)
a 320 (IMes —4mua) = 355 ( A 9B ) ( M(u,d)> ’

2
.
glud) — 2Mud QQ)A(“’d) (a(u )> ' (10)
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The unperturbed parts of these relations are:

o (u,d)
o 6 M 24 o (u,d)
— — (351 ~1 g
o 125 (35 Me s 36'mu’d) + 59 95 C
O(uad) 24 ( d)
21.0 1Y o \u,
o('qu) 29 1020
= g Omes — dmua) = { 98.1 [ MeV

ol(u,d 2 u .
(wd) _ 29m ,d_{00854} (11)

o(ud) | 1.77
I

In the spirit of our perturbative approach, the “coupling” constant alwd)

can be put zero in all perturbing terms in Eqs. (6) and (10), except for
D2 in the numerator of the factor (a(®®/u(*®)2 that now becomes

O(u7d)
(@D /)2 Then, A9 and B®4 are replaced by
o (u,d
,Z(%d) B M( : 36
- o(u,d) ’
29 320 — 5 6( )
wa) 10800
B - o (u,d) o(ud) (12)

31696 + 54 C +29 ¢

Note that the first Eq. (6) can be rewritten identically as m,q =
o (u,d) .d
1 6(u )/29 according to the third Eq. (11). We shall be able to return

to the discussion of quark masses after an estimation of constants a(*) and

@ is made. Then, we shall determine the parameters C®) and C(4) (as

o (u) o (d)
well as their unperturbed parts ¢ and ¢ ) playing here an essential role

in providing large values for m; and my.

3. Cabibbo—Kobayashi—Maskawa matrix

At present, we find the unitary matrices (U(Sé’d)) that diagonalize the

mass matrices (M(%’d)) according to the relations U®d 1 p(wdy(ud) —
diag(muy,d, Me,s, Mep). In the lowest perturbative order, the result has the

form (4) with the necessary replacement of labels:
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() = (u) or (d), p—cor s, 7—1torb, (13)

respectively.
Then, the elements V,g of the Cabibbo-Kobayashi-Maskawa matrix

V = UMUM@ can be calculated with the use of Eqs. (13) in the lowest
perturbative order. Six resulting off-diagonal elements are:

m:‘%:ﬁ@iw'ﬁiw ’
S C

Vi = —V* = 8V3 @ _ ﬂew(“) ~ %@eicp(‘”
b 57729 \ my my " 29 my ’
Vo o 16\/504 e(w(“)w(d))’
841 MMy
163 « (d)2 2@
Vig ~ ——~22 g2 14
td 841 msmbe ) ( )

where the indicated approximate steps were made due to the inequality
my > my and/or under the assumption that o /m, > o(® /my (cf. the
conjecture (18) later on). All three diagonal elements are real and positive
in a good approximation:

1 1
Vud_l——|vus|2 Vs ~1— |Vus|2—§|vcb|2,th:1—§|vcb|2. (15)

In fact, in the lowest perturbative order,

4 oy 180°
arg Vg >~ Ea Y sin ((p(“) —<p(d)> ~ —arg Veg,arg Vi, ~ 0, (16)
MeMs T

what gives a nearly vanishing arg V,,q = 0.88° = — arg V., if the values (17),
(19) and (22) are used.

Taking as an input the experimental value |Vg| = 0.0402 £ 0.0019 [3],
we estimate from the second Eq. (14) that

ol ~ 8\/_mb|‘/0b|_(353i17) MeV , (17)

where mp = 4.2 GéV. In order to estimate also o), we will tentatively
conjecture the approximate proportion

) ; old) ~ Q2 2 _ 4 (18)
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to hold, where Q)

= 2/3 and Q¥ = —1/3 are quark electric charges.
Under the conjecture (18)

o™ ~ (1410 + 70) MeV . (19)

In this case, from the second and third Eq. (14) we obtain the prediction

Vsl /| Ve 2 o) 0.0779 £+ 0.0037 20
Vauol/Ver| = 55— = 0. 0037, (20)
where m, = 1.25 GeV. This is consistent with the experimental figure

[Vaol/|Ves| = 0.08 £ 0.02 as well as 0.090 £ 0.025 [3].

Now, with the experimental value |V,s| = 0.2196 + 0.0023 [3] as another
input, we can calculate from the first Eq. (14) the phase difference () — (@)
In fact, taking the absolute value of this equation, we get

1m ms\2 841 / mg\2
(w) _ ,(d)) — = Tos )y 0% s 2 _ _
cos ((p ® ) 5 [1 + 16 < ) (a(d)) |Vas| 0.0967

Mg Me 4

(21)
with m, = 1.25 GeV and my = 123 MeV, if the proportion (18) is taken into
account. Here, the central values of o{® and |V,,| were used. Hence,

o) — oD —955° — _84.5° 1 180° . (22)

Then, calculating the argument of the first Eq. (14), we infer that

in (o™ — (d))
_o@D) = g™ sin (p'") — ¢ —
tan (arg Vus = @ ) me 1 — 4(mg/me) cos () — o(d)) 0.377,
(23)
what gives
arg Vys = —20.7° + (4 . (24)

The results (22) and (24) together with the formula (14) enable us to
evaluate the rephasing-invariant C'P-violating phases

arg(V Vi Vap) = 20.7° — 84.5° = —63.8° (25)

and
arg(V,VisVig) = —20.7° (26)

C
(they are invariant under quark rephasing the same for up and down quarks
of the same generation). Note that the sum of arguments (25) and (26) is
always equal to p(*) — (4 —180°. Carrying out quark rephasing (the same
for up and down quarks of the same generation), where

arg Vys — 0, argVyy — 0, arg Vg — 180°, arg Vs — 180° (27)
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and arg Vyq, arg Vs, arg Vj;, remain unchanged, we conclude from Egs. (25)
and (26) that
arg Vyp — —63.8°, arg Vg — —20.7°. (28)

The sum of arguments (28) after rephasing (27) is always equal to
o) — (@) —180°.

Thus, in this quark phasing, we predict the following Cabibbo-Kobayashi—-
Maskawa matrix:

0.976 0.220 0.00313 ¢ % 63.88°
(Vag) = —0.220 0.975 0.0402 ) (29)
0.00795e %207 _(.0402 0.999

Here, only |V,s| and |Vg| [and quark masses ms, m., my consistent with
the mass matrices (MS;;) and (Mé?)] are our inputs, while all other ma-
trix elements Vg, partly induced by unitarity, are evaluated from the re-

lations derived in this Section from the Hermitian mass matrices (MS;})

and (Mé?) [and the conjectured proportion (18)]. The independent pre-

dictions are two, e.g. for |Vy;| and argVy;, since ten independent quantities
(six quark masses, three mixing angles and one CP-violating phase) are
parametrised by eight independent model constants (u(“), u(d), e gld)
o or ol® | ™) — (@ and ¢ @) In Eq. (29), the small phases aris-
ing from Eqs (16), arg Vg = 0. 9° and arg Vs = —0.9°, are neglected (here,
arg ( uchsV;fb) )

The above prediction of V,g implies the following values of Wolfenstein
parameters [3]:

A=02196, A=0834, p=0157 , n=0.318 (30)

and of unitary-triangle angles:

v = arctan n_ arg Vyp = 63.8° , [ = arctan 1 L arg Viq = 20.7°.
p —p

(31)
Hence, the predicted value of sin28 = 0.661 is not inconsistent with the
recent BaBar experimental result sin 24P = 0.59 £ 0.14 [5].
Now, we may turn back to quark masses. From the third Eq. (6) we can
evaluate

2
29 25 29 25 a(wd)
(ud) _ 25 goq _ o(ud) _ (ud)
O = S gg M~ A e e 3 B (Mu,d)) » (32
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what, in the framework of our perturbative approach, gives

2
o (uvd) (o] (uvd) (] (uvd) (u’d)
oty — g0 29 25 29 <5A 03 ) (a_>

o (U,d) Y mt,b o (u,d) o (u,d)
H 24 320 @ L
2
29 o(u,d)  o(u,d) o(tsd)
o (ud) (A + B ) (m ; (33)
K 0
where ) 2 o5 -
o o(ud) [ 4540
C = W ﬂ mt,b —624— ¢ = { 667 } . (34)

With the central values of a® and (% as estimated in Egs. (17) and (19)
we find from Egs. (12)

2 2
o (wd) [ ousd) 7.60 o (u,d) [ g (ud) 2.63
A (;(T,@ = {5.07} MeV, B 2 | {6.98} MeV,

(35)
where
AT
alt .
29 (o(u,d)) = {43.8} MeV'. (36)
i
We calculate from Egs. (33) with the use of values (35) that
(way | 4540
C = { 619 ( - (37)

Similarly, from the second and third Eq. (10), making use of the values
(35), we obtain

(wa) 1020 (way _ J 0.302
1 = { 102 MeV , ¢ =9 397 (- (38)

o (u,d) o(u,d
We can easily check that, with the values (11) for ¢ and 6(u : and
o (u7d)
the value (34) for C' determined as above from quark masses, the unper-
turbed parts of mass formulae (6) reproduce correctly these masses. In fact,
we get numerically
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(usd)

o o owd) (3
mu,d—wg —{6}MeV—mu7d,
7y (u.d) 1250
e = T§<80+5 )Z{ 123}Mev:m075’
Yoy (wd) o (ud)
o ,LL o ’M,d o\, 174
Myp = 59 25 <624+ € +C ) = { 49 } GeV =myyp. (39)

The same is true for the unperturbed part of the first correlating formula (10).

[e]
. . €
Here, 6ma = ma— My is neglible versus mqy = ma ' (o = u, ¢, t and d, s,b).

We would like to stress that, in contrast to the case of charged leptons,
where (in the zero perturbative order) m, has been predicted from m, and
my,, in the case of up and down quarks two extra parameters C™ and C@
appear necessarily to provide large masses m; and m; (much larger than
m.). They cause that (even in the zero perturbative order) m; (my) cannot
be predicted from m, and m, (mg and my), till the new parameters are
quantitatively understood.

If the ratio C) /C(D) is equal toz, we can write C(% = const[Q("4? +
(3z — 4)Q™Y B + (3z + 4)B?], where Q4 =2/3, —1/3 and B =1/3. In
the case of Eq. (37) z = 7.33 = 22/3. Thus, the baryon number B may be
interpreted as contributing largely to the constants C(%4).

4. A possible phase conjecture

Note that a conjecture about C®) and C(4) might lead to a prediction
for quark masses and so, introduce changes in the “experimental” quark
masses (8) and (9) accepted here. The same is true for a conjecture about
o) and @@

For instance, the conjecture that the phase difference ¢ — (@ is max-
imal,

oW — D) = 9g0° (40)
leads through the first equality in Eq. (21) to the condition

2
Mg 841 s mg \? 9
1+ 16 <E) _T<a<d>> Vis|* = 0 (41)

predicting for s quark the mass

ms = 119 MeV (42)
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(with o(® = 353 MeV), being only slightly lower than the value 123 MeV

used previously. Here, m. and m; are kept equal to 1.25 and 4.2 GeV,
o(d)

respectively (also masses of u, d and ¢ quarks are not changed, while it |

o d o (d)

8( : and ¢ change slightly). Then, from the first equality in Eq. (23)

Mn@gww—¢@):—4%£:—QW9,ag%m:—%8”+d@.M&
After rephasing (27), this gives arg Vi +arg Vig = o™ — (@ —180° = —90°,
where

arg Vyp = —69.2° | arg Vg = —20.8° (44)

i.e., practically —70° and —20°. For the new value (42) of mg, in the approx-
imation used, all |V,| remain unchanged (with our inputs of |V,,| = 0.2196
and |V| = 0.0402), except for |Vi4| which changes slightly, becoming

V| = 0.00849 . (45)

Thus, in the Cabibbo-Kobayashi-Maskawa matrix predicted in Eq. (29),
only |Vi4| and the phases (44) show some changes. The Wolfenstein param-
eters are

p=0.126, n=0332, (46)

while A and A do not change (here, the sum p? + n? = 0.126 is also un-
changed). Hence, v+ 8 = 90° and o = 180° — v — 8 = 90°, where

v = arctan n_ arg Vi, = 69.2°
p

[ = arctan 1 o _ arg Vg = 20.8°. (47)

So, in the case of conjecture (40), the new restrictive relation

n_Ll-p

P
holds, implying the prediction

orp> +n* =p (48)

1— 2+ 2
Vial/ Vol = 1 S5 = =2, (49)

due to the definition of p and 7 from V,;, and Vi4. It is in agreement with
our figures for |Vi4| and |Vp|. Then, the new relationship

1me. a(d) M

n
dmg;  oWmg p (50)
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follows for quark masses m., ms and Wolfenstein parameters p, 1, in conse-
quence of Eqgs. (14) and the conjectured proportion (18). Both its sides are
really equal for our values of m., ms and p, n

Thus, summarizing, we cannot predict quark masses without an addi-
tional knowledge or conjecture about the constants ,u(“’d), gwd) Clud) o(u.d)
and ¢4 (in particular, the conjecture (40) predicting m, may be natural).
However, we always describe them correctly. If we describe them jointly
with quark mixing parameters, we obtain two independent predictions e.g.
for |Vp| and v = — arg Vip: the whole Cabibbo—Kobayashi-Maskawa matrix

is calculated from the inputs of |V,s| and V| [and of quark masses mg, m,

and my consistent with the mass matrices (M(%)) and (M(%))]

Concluding, we can claim that our charged-lepton form of mass matrix
works also in a promising way for up and down quarks. But, it turns out
that, in the framework of this leptonic form of mass matrix, the heaviest
quarks, ¢ and b, require an additional mechanism in order to produce the
bulk of their masses (here, it is represented by the large constants C™ and
C(d)). Such a mechanism, however, intervenes into the process of quark
mixing only through quark masses (practically m; and m;) and so, it does
not modify for quarks the charged-lepton form of mixing mechanism.

5. Appendix: Motivation for the mass matrix (1)

The form of Dirac mass matrix (1) is based on two assumptions:
1) the conjecture that all kinds of matter’s fundamental particles existin
g

in Nature can be deduced from Dirac’s square-root procedure \/ﬁ =1"-p,
constrained by an intrinsic Pauli principle, and (#7) a simple ansatz for the
Dirac mass matrix, formulated on the ground of the conjecture (7).

As is easy to observe, Dirac’s square-root procedure leads generically to
the sequence N = 1,2,3,... of generalised Dirac equations [2,1]

{r®) - fp—gA@)] = MM} 4™ (z) =0, (A1)
where for any N the Dirac algebra
{ N puv)} = 29, (A.2)

is constructed by means of a Clifford algebra,

N
HN \/1—— Z: s {’Yw ) ) 'Y](f/V)} = 25ijguu (A3)
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with i, j = 1,2,...,N and g, v = 0,1,2,3. Here, the term gI"™) . A(x)

symbolizes the Standard Model gauge coupling, involving F( )

z'FO(N) Fl(N)FQ(N) FEI(N) as well as the color, weak-isospin and hypercharge ma-
trices (this coupling is absent for sterile particles such as sterile neutrinos).
The mass M) is independent of FISN). In general, the mass M (N) should be
replaced by a mass matrix of elements MV-N") which would couple 1) (x)
with all appropriate (M) (z), and it might be natural to assume for N # N’

that [%.(5) , 73(.5')] —0ie., [I’,SN) : FV(N')] —0.

The Dirac-type equation (A.1) for any N implies that
$M @) = (V0 (@) - (A.4)

where each a; = 1,2,3,4 is the Dirac bispinor index defined in its chiral

representation in which the matrices
. i

vj(év) = wj(-év)vﬁv)vj(-év)v}év) ; Uj(-év) =5 [vj(iv) ; vj(év)} (A.5)

are diagonal (note that all matrices (A.5), both with equal and different j’s,

commute simultaneously). The wave function or field (™) (z) for any N

carries also the Standard Model (composite) label, suppressed in our nota-

tion. The mass M) gets also such a label. The Standard Model coupling

of physical Higgs bosons should be eventually added to Eq. (A.1) for any N.

For N =1 Eq. (A.1) is, of course, the usual Dirac equation, for N = 2

it is known as the Dirac form [6] of the Kahler equation [7], while for N > 3

Egs. (A.1) give us new Dirac-type equations [2,1]. All of them describe some

spin-halfinteger or spin-integer particles for N odd and N even, respectively.

The nature of these particles is the main subject of the present paper (cf.
also Ref. [2,1]).

The Dirac-type matrices F;SN) for any N can be embedded into the new
Clifford algebra

N N
{T0. o0} = 269, (4.6)

[isomorphic with the Clifford algebra introduced for ’YZ(ZLV) in Eq. (A.3)], if

Q&LN) are defined by the properly normalised Jacobi linear combinations of

(V)

Vip - In fact, they are given as

1
N 1=1
(N) _ 1 (N) ) (N)
r;,’ = T [’Ylu RARER e TR I (i = Dy (A.7)
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fori=1and i =2,..., N, respectively. So, 1-,1(N) and FQ(N) y e ,F](VN) rep-

resent respectively the “centre-of-mass” and “relative” Dirac-type matrices.
Note that the Dirac-type equation (A.1) for any N does not involve the
“relative” Dirac-type matrices FQ(N) s e ,F](VN), solely including the “centre-
of-mass” Dirac-type matrix Fl(N) = ™). Since FZ-(N) = Z;vzl Oij'y](.N),
where the N x N matrix O = (O;;) is orthogonal (O = O~1), we obtain
for the total spin tensor the formula

N N
DL HEDBRVE (A.8)
i=1 i=1
where ] )
(N) _ 2 [.(N) _(N) (N) — * [n(N) (V)
Tjw = 5 [’7ju ) Vv } » D =5 [Fju » Ly } : (A.9)

Of course, the spin tensor (A.8) is the generator of Lorentz transformations
for N ().

It is convenient for any N to pass from the chiral representations for
individual fyZ(N)
matrices

’s to the chiral representations for Jacobi FZ-(N)’S in which the

(N (N o (N) (N N i N N
= ZFj(o )Fj(l )Fj(2 )Fj(3 ) , 25'3) =3 [Fj(l )’ Fj(2 )] (A.10)

are diagonal (they all, both with equal and different j’s, commute simulta-

neously). Note that Fl(év) = F5(N) is the Dirac-type chiral matrix as it is

involved in the Standard Model gauge coupling in the Dirac-type equation

(A.1).

Using the new Jacobi chiral representations, the “centre-of-mass” Dirac-
type matrices Fl(iv) = FlSN) and Fl(év ) = F5(N) can be taken in the reduced
forms

I'M=y010---01, I'N=3010---01, (A.11)
N—1 times N—1 times

where 7,, 75 = iv717273 and 1 are the usual 4 x 4 Dirac matrices. For
instance, the Jacobi FZ-(MN)’S and I’ Z-(E)N)’s for N = 3 can be chosen as

Y =y 0101, Y-yeiel,

3 . 3
F2(u) =Y QuY, ®1, F2(5) =11,

3 3
F:s(u):75®75®’7w F355) 131®7s - (A.12)
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Then, the Dirac-type equation (A.1) for any N can be rewritten in the
reduced form

N
{1 p—ea@] -u™} w0 L @=0. (A1)
where a7 and as, ..., ay are the “centre-of-mass” and “relative” Dirac
bispinor indices, respectively (here, (7:p)a,8, = Va8, - and (M(N))mﬂ1 =

Saypy M™N) but the chiral coupling g7y - A(z) involves within A(z) also the
matrix 5 ). Note that in the Dirac-type equation (A.13) for any N > 1
the “relative” indices ao, ..., ay are free, but still are subjects of Lorentz
transformations (for ap this was known already in the case of Dirac form [6]
of Kéhler equation [7]| corresponding to our N = 2).

Since in Eq. (A.13) the Standard Model gauge fields interact only with
the “centre-of-mass” index «q, this is distinguished from the physically un-
observed “relative” indices asg, ..., an. Thus, it was natural for us to con-
jecture some time ago that the “relative” bispinor indices ag, ..., an are
all undistinguishable physical objects obeying Fermi statistics along with
the Pauli principle requiring in turn the full antisymmetry of wave function
Yaras,...,ay (£) With respect to aa, ..., an [2]. Hence, only five values of
N satisfying the condition N — 1 < 4 are allowed, namely N = 1,3,5 for N
odd and N = 2,4 for N even. Then, from the postulate of relativity and
the probabilistic interpretation of 1(N)(x) we were able to infer that three
N odd and two N even correspond to states with total spin '/ and total
spin 0, respectively [2,1].

Thus, the Dirac-type equation (A.1), jointly with the “intrinsic Pauli
principle”, if considered on a fundamental level, justifies the existence in
Nature of three and only three generations of spin-'/ fundamental fermions
(i.e., leptons and quarks) coupled to the Standard Model gauge bosons. In
addition, there should exist two and only two generations of spin-0 funda-
mental bosons also coupled to the Standard Model gauge bosons.

For sterile particles, Eq. (A.13) with any N goes over into the free Dirac-
type equation

(’7041,51 ‘D~ 5a151M(N)> ¢é]1va)‘2ma]v (.’L‘) =0 (A.14)

(as far as only Standard Model gauge interactions are considered). Here,
no Dirac bispinor index ¢; is distinguished by the Standard Model gauge
coupling which is absent in this case. The “centre-of mass” index a1 is not
distinguished also by its coupling to the particle’s four-momentum, since
Eq. (A.14) is physically equivalent to the free Klein—Gordon equation

(p2 - M<N)2) M) (2)=0. (A.15)

ajas...an
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Thus, in this case the intrinsic Pauli principle requires that N < 4, leading
to N =1,3 for N odd and N = 2,4 for N even. Similarly as before, they
correspond to states with total spin !/ and total spin 0, respectively [8].

Therefore, there should exist two and only two spin-'/, sterile fundamen-
tal fermions (i.e., two sterile neutrinos vs and v}) and, in addition, two and
only two spin-0 sterile fundamental bosons.

The wave functions or fields of active fermions (leptons and quarks) of
three generations and sterile neutrinos of two generations can be presented

in terms of ngEQ___QN (z) as follows

V(@) = P (),

y 1 _
U @) = 7 (CT75) gy Wasas (@) = Pha (@) = Y0 (2),
17 ].
'Iﬁ&{ )(x) = ﬂ5a2a3a4a5¢g¢51)a2a3a4a5 (ZB) = ¢1(151)1234($) (A.lﬁ)

and

Yo (@) = 94 (),

g}(x) for ap =1
, 1 —1hgy () for g = 2
W) _ 1 1 3) = 234 2
1ﬁa2 (I) 5 (C 75)0(2@3 60430&40&50&6¢G¢40¢5C\66 (I) é?i)g(x) for ay = 3
—Q/in)?(x) for ag =

(A.17)

respectively, where w&]YO)Q...a ~ (z) for active fermions [Eq. (A.16)] carries also
the Standard Model (composite) label, suppressed in our notation, and C
denotes the usual 4 x 4 charge-conjugation matrix. We can see that due to
the full antisymmetry in «; indices for 7 > 2 these wave functions or fields
appear (up to the sign) with the multiplicities 1, 4, 24 and 1, 6 , respectively.
Thus, for active fermions and sterile neutrinos there is given the weighting
matrix

L (L0
P2 = __—_ (04 (A.18)
00

and

S1/2 % <é \%) , (A.19)

respectively. Of course, for both weighting matrices Tr p = 1.
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Concluding this part of Appendix, we would like to say that in our ap-
proach to generations of fundamental particles Dirac bispinor indices (“alge-
braic partons”) play the role of building blocks of composite states identified
as fundamental particles. Any fundamental particle, active with respect to
the Standard Model gauge interactions, contains one “active algebraic par-
ton” (coupled to the Standard Model gauge bosons) and a number N — 1
of “sterile algebraic partons” (decoupled from these bosons). Due to the in-
trinsic Pauli principle obeyed by “sterile algebraic partons”, the number N
of all “algebraic partons” within a fundamental particle is restricted by the
condition N — 1 < 4, so that only N = 1,2,3,4,5 are allowed. It turns
out that states with N = 1,3,5 carry total spin '/ and are identified with
three generations of leptons and quarks, while states with NV = 2,4 get total
spin 0 and so far are not identified. Any fundamental particle, sterile with
respect to the Standard Model gauge interactions, contains only a number
N < 4 of “sterile algebraic partons”, thus only N = 1,2,3,4 are allowed.
States with N = 1,3 correspond to total spin !/, and have to be identified as
two hypothetic sterile neutrinos, while states with N = 2,4 have total spin
0 and are still to be identified.

Our algebraic construction may be interpreted either as ingeneously al-
gebraic (much like the famous Dirac’s algebraic discovery of spin !/) or as
the summit of an iceberg of really composite states of N spatial partons
with spin !/, whose Dirac bispinor indices manifest themselves as our “al-
gebraic partons”. In the former algebraic option, we avoid automatically
the irksome existence problem of new interactions necessary to bind spatial
partons within leptons and quarks of the second and third generations. For
the latter spatial option see some remarks in the second Ref. [8].

Eventually, we introduce the following explicit ansatz for the Dirac mass
matrix [2,1]

M) = p@1/2, () pfa)1/2 (A.20)

where

B = fON? 4 () — 1)N=2 4 oD (aew(f) + aTe—w(“) (A.21)

with u(f) >0,e) >0, >0and 0 < <p(f) < 27 being parameters. Here,
the matrix
100
N=[030]|=1+2n (A.22)
005

describes the number of all «; indices (all “algebraic partons”) appearing in
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three fermion generations, while

01 0 000
a=[00v2 ]| .,al=[100 (A.23)
00 0 0+v20

play the role of “truncated” annihilation and creation matrices for index pairs
oo with 4,5 > 2 (pairs of “sterile algebraic partons”):

000
[a,n]=a,[a',n]=—-a", n=ala={010], (A.24)
002

where the “truncation” condition a® = 0 = a!? is satisfied. The formulae
(A.20) and (A.21) give explicitly Eq. (1).

In the case of quarks, the modification (5) can be described by the ad-
ditional term

écm (N —1)(N —3)N 2 (A.25)

to be introduced into the matrix A) (f = u, d) given in Eq. (A.21).

In the mass matrix (A.20), the first term containing 1) N2 may be in-
tuitively interpreted as an interaction of all N “algebraic partons” treated
on equal footing, while the second involving —u(f)(l — (s(f))N*Q7 as a sub-
traction term caused by the fact that there is one “active algebraic parton”
distinguished (by its external coupling) among all N “algebraic partons” of
which N —1, as “sterile”, are undistinguishable. This distinguished “algebraic
parton” appears, therefore, with the probability [N!/(N—l)!g*1 = N~! that,
when squared, leads to an additional interaction involving u()(1—e(/))N—2.
The latter interaction should be subtracted from the former in order to ob-
tain for N = 1 the small matrix element Ml({) = uNell) /29, The third term
in the mass matrix (A.20) containing a(/)(a 4 o) annihilates and creates
pairs of “sterile algebraic partons” and so, is responsible in a natural way for
mixing of three fermion generations.
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