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AN EFFECTIVE MODEL FOR QUARK MASSESAND MIXINGS�Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00�681 Warszawa, Poland(Reeived August 17, 2001)By analogy with an e�etive model of harged-lepton mass matrix that,with the inputs of mexpe and mexp� , predits (in a perturbative zero order)m� = 1776:80 MeV lose to mexp� = 1777:03+0:30�0:26 MeV, we onstrut suha model for quark mass matries reproduing onsistently the bulk of ex-perimental information on quark masses and mixings. In partiular, themodel predits jVubj = 0:00313,  = � argVub = 63:8Æ and jVtdj = 0:00785,� = � argVtd = 20:7Æ (i.e., sin 2� = 0:661 to be ompared with the BaBarvalue sin 2�exp = 0:59�0:14), if the �gures jV expus j = 0:2196, jV expb j = 0:0402and mexps = 123 MeV, mexp = 1:25 GeV, mexpb = 4:2 GeV are used as in-puts. Also the rest of CKM matrix elements is predited onsistently bythe experimental data. Here, quark masses and CKM matrix elements (tenindependent quantities) are parametrised by eight independent model on-stants, what gives two independent preditions, e.g. for jVubj and �. Theonsidered model deals with the fundamental-fermion Dira mass matries,so that the neutrino Majorana mass matrix is outside the sheme. Somefoundations of the model are olleted in Appendix.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. IntrodutionThe expliit e�etive form of mass matrix invented for three genera-tions of harged leptons e�; ��; ��, and being surprisingly good for theirmasses [1℄, is applied in this paper to three generations of up and downquarks, u; ; t and d; s; b, in order to orrelate tentatively their masses and� Work supported in part by the Polish State Committee for Sienti� Researh (KBN),Grant 5 P03B 119 20 (2001�2002). (2961)



2962 W. Królikowskimixing parameters. This form reads�M (f)�� � = 129 0B� �(f)"(f) 2�(f)ei'(f) 02�(f)e�i'(f) 4�(f)(80 + "(f))=9 8p3�(f)ei'(f)0 8p3�(f)e�i'(f) 24�(f)(624 + "(f))=25 1CA ;(1)where the label f = e or u; d is used to denote harged leptons or up anddown quarks, respetively, while �(f), "(f), �(f) and '(f) are real onstants tobe determined from the present and future experimental data for harged-lepton or quark masses and mixing parameters (�(f) and �(f) are mass-dimensional).Here, the form (1) of mass matrix �M (f)�� � may be onsidered as a de-tailed ansatz to be ompared with the harged-lepton or quark data. How-ever, in the past, we have presented an argument [2,1℄ in favour of theform (1), based on: (i) Kähler-like generalised Dira equations (interatingwith the Standard Model gauge bosons) whose a priori in�nite sequene isneessarily redued (in the ase of fermions) to three Dira equations, dueto an intrinsi Pauli priniple, and (ii) an ansatz for the Dira mass matrix,suggested by the above three-generation harateristis (i). For the reader'sonveniene this argument is reprodued in Appendix.In the ase of harged leptons, assuming that the o�-diagonal elementsof the mass matrix �M (e)�� � an be treated as a small perturbation of itsdiagonal terms (i.e., that �(e)=�(e) is small enough), we alulate in thelowest perturbative order [1℄m� = 241776:80 + 10:2112 �(e)�(e)!2 35 MeV ;�(e) = 85:9924 MeV +O24 �(e)�(e)!2 35 �(e) ;"(e) = 0:172329 +O24 �(e)�(e)!235 ; (2)when the experimental values of me and m� [3℄ are used as inputs. InEqs. (2), the unperturbed parts are given as Æm�= 6(351m� � 136me)=125,Æ�(e)= 29(9m� � 4me)=320 and Æ"(e)= 320me=(9m� � 4me), respetively. Wean see that the predited value of m� agrees very well with its experimental�gure mexp� = 1777:03+0:30�0:26 MeV [3℄, even in the zero perturbative order. To



An E�etive Model for Quark Masses and Mixings 2963estimate ��(e)=�(e)�2, we an take this experimental �gure as another input,obtaining  �(e)�(e)!2 = 0:023+0:029�0:025 ; (3)whih value is not inonsistent with zero. Hene, �(e) 2 = 170+220�190 MeV2 dueto Eq. (2).For the unitary matrix �U (e)�� �, diagonalizing the harged-lepton massmatrix �M (e)�� � aording to the relation U (e)yM (e)U (e)=diag(me; m�; m� ),we get in the lowest perturbative order�U (e)�� � =0BBBBBBBB� 1� 2292 ��(e)m� �2 229 �(e)m� ei'(e) 16p3292 ��(e)m� �2 e2i'(e)�229 �(e)m� e�i'(e) 1� 2292 ��(e)m� �2� 96292 ��(e)m� �2 8p329 �(e)m� ei'(e)16p3292 �(e) 2m�m� e�2i'(e) �8p329 �(e)m� e�i'(e) 1� 96292 ��(e)m� �2
1CCCCCCCCA :(4)

2. Quark mass matriesNow, we will try to apply to quarks the form of mass matrix whihwas worked out above for leptons. To this end, we onjeture for threegenerations of up quarks u; ; t and down quarks d; s; b the mass matries�M (u)�� � and �M (d)�� �, respetively, essentially of the form (1), where the labelf = u; d denotes up and down quarks. The only modi�ation introduedis a new real onstant C(f) added to "(f) in the mass-matrix element M (f)33whih now beomesM (f)33 = 24�(f)25� 29 �624 + "(f) + C(f)� : (5)Note that our approah refers to the fermion Dira mass matries, leavingthe neutrino Majorana mass matrix [4℄ outside the sheme.Sine for quarks the mass sales �(u) and �(d) are expeted to be evenmore important than the sale �(e) for harged leptons, we assume that theo�-diagonal elements of mass matries �M (u)�� � and �M (d)�� � an be onsid-ered as a small perturbation of their diagonal terms. Then, in the lowest



2964 W. Królikowskiperturbative order, we alulate the following mass formulae:mu;d = �(u;d)29 "(u;d) �A(u;d) �(u;d)�(u;d)!2 ;m;s = �(u;d)29 49 �80 + "(u;d)�+ �A(u;d) �B(u;d)� �(u;d)�(u;d)!2 ;mt;b = �(u;d)29 2425 �624 + "(u;d) + C(u;d)�+B(u;d) �(u;d)�(u;d)!2 ; (6)where A(u;d) = �(u;d)29 36320 � 5"(u;d) ;B(u;d) = �(u;d)29 1080031696 + 54C(u;d) + 29"(u;d) : (7)In Eqs. (6), the relative smallness of perturbating terms is more pronouneddue to extra fators [f. Eqs. (35) further on℄. In our disussion, we willtake for experimental quark masses the arithmeti means of their lower andupper limits quoted in [3℄ i.e.,mu = 3MeV; m = 1:25GeV; mt = 174GeV (8)and md = 6MeV; ms = 123MeV; mb = 4:2GeV : (9)Eliminating from the unperturbed terms in Eqs. (6) the onstants �(u;d)and "(u;d), we derive the orrelating formulae being ounterparts of Eqs. (2)for harged leptons:mt;b = 6125 (351m;s � 136mu;d) + �(u;d)29 2425C(u;d)� 1125 �2922A(u;d) � 2231B(u;d)� �(u;d)�(u;d)!2 ;�(u;d) = 29320 (9m;s � 4mu;d)� 29320 �5A(u;d) � 9B(u;d)� �(u;d)�(u;d)!2 ;"(u;d) = 29mu;d�(u;d) + 29�(u;d)A(u;d) �(u;d)�(u;d)!2 : (10)



An E�etive Model for Quark Masses and Mixings 2965The unperturbed parts of these relations are:Æmt;b = 6125 (351m;s � 136mu;d) + Æ�(u;d)29 2425 ÆC(u;d)= � 21:02:03� GeV + Æ�(u;d)29 2425 ÆC(u;d) ;Æ�(u;d) = 29320 (9m;s � 4mu;d) = � 102098:1 � MeV ;Æ"(u;d) = 29mu;dÆ�(u;d) = � 0:08541:77 � : (11)In the spirit of our perturbative approah, the �oupling� onstant �(u;d)an be put zero in all perturbing terms in Eqs. (6) and (10), exept for�(u;d) 2 in the numerator of the fator (�(u;d)=�(u;d))2 that now beomes(�(u;d)= Æ�(u;d))2. Then, A(u;d) and B(u;d) are replaed byÆA(u;d) = Æ�(u;d)29 36320 � 5 Æ"(u;d) ;ÆB(u;d) = Æ�(u;d)29 1080031696 + 54 ÆC(u;d) +29 Æ"(u;d) : (12)Note that the �rst Eq. (6) an be rewritten identially as mu;d =Æ�(u;d)Æ"(u;d)=29 aording to the third Eq. (11). We shall be able to returnto the disussion of quark masses after an estimation of onstants �(u) and�(d) is made. Then, we shall determine the parameters C(u) and C(d) (aswell as their unperturbed parts ÆC(u) and ÆC(d)) playing here an essential rolein providing large values for mt and mb.3. Cabibbo�Kobayashi�Maskawa matrixAt present, we �nd the unitary matries (U (u;d)�� ) that diagonalize themass matries (M (u;d)�� ) aording to the relations U (u;d) yM (u;d)U (u;d) =diag(mu;d; m;s; mt;b). In the lowest perturbative order, the result has theform (4) with the neessary replaement of labels:



2966 W. Królikowski(e)! (u) or (d) ; �!  or s ; � ! t or b ; (13)respetively.Then, the elements V�� of the Cabibbo�Kobayashi�Maskawa matrixV = U (u) yU (d) an be alulated with the use of Eqs. (13) in the lowestperturbative order. Six resulting o�-diagonal elements are:Vus = �V �d = 229  �(d)ms ei'(d) � �(u)m ei'(u)! ;Vb = �V �ts = 8p329  �(d)mb ei'(d) � �(u)mt ei'(u)! ' 8p329 �(d)mb ei'(d) ;Vub ' �16p3841 �(u)�(d)mmb ei('(u)+'(d)) ;Vtd ' 16p3841 �(d) 2msmb e�2i'(d) ; (14)where the indiated approximate steps were made due to the inequalitymt � mb and/or under the assumption that �(u)=m � �(d)=mb (f. theonjeture (18) later on). All three diagonal elements are real and positivein a good approximation:Vud ' 1� 12 jVusj2 ; Vs ' 1� 12 jVusj2 � 12 jVbj2 ; Vtb ' 1� 12 jVbj2 : (15)In fat, in the lowest perturbative order,arg Vud ' 4841 �(u)�(d)mms sin�'(u)�'(d)� 180Æ� ' � arg Vs; arg Vtb ' 0 ; (16)what gives a nearly vanishing arg Vud = 0:88Æ = � arg Vs, if the values (17),(19) and (22) are used.Taking as an input the experimental value jVbj = 0:0402 � 0:0019 [3℄,we estimate from the seond Eq. (14) that�(d) ' 298p3 mb jVbj = (353 � 17) MeV ; (17)where mb = 4:2 GeV. In order to estimate also �(u), we will tentativelyonjeture the approximate proportion�(u) : �(d) ' Q(u) 2 : Q(d) 2 = 4 (18)



An E�etive Model for Quark Masses and Mixings 2967to hold, where Q(u) = 2=3 and Q(d) = �1=3 are quark eletri harges.Under the onjeture (18)�(u) ' (1410 � 70)MeV : (19)In this ase, from the seond and third Eq. (14) we obtain the preditionjVubj=jVbj ' 229 �(u)m ' 0:0779 � 0:0037 ; (20)where m = 1:25 GeV. This is onsistent with the experimental �gurejVubj=jVbj = 0:08 � 0:02 as well as 0:090 � 0:025 [3℄.Now, with the experimental value jVusj = 0:2196� 0:0023 [3℄ as anotherinput, we an alulate from the �rst Eq. (14) the phase di�erene '(u)�'(d).In fat, taking the absolute value of this equation, we getos�'(u) � '(d)� = 18mms "1 + 16�msm�2 � 8414 � ms�(d)�2 jVusj2# = �0:0967(21)with m = 1:25 GeV and ms = 123 MeV, if the proportion (18) is taken intoaount. Here, the entral values of �(d) and jVusj were used. Hene,'(u) � '(d) = 95:5Æ = �84:5Æ + 180Æ : (22)Then, alulating the argument of the �rst Eq. (14), we infer thattan�arg Vus � '(d)� = �4 msm sin �'(u) � '(d)�1� 4(ms=m) os �'(u) � '(d)� = �0:377 ;(23)what gives arg Vus = �20:7Æ + '(d) : (24)The results (22) and (24) together with the formula (14) enable us toevaluate the rephasing-invariant CP -violating phasesarg(V �usV �bVub) = 20:7Æ � 84:5Æ = �63:8Æ (25)and arg(V �dV �tsVtd) = �20:7Æ (26)(they are invariant under quark rephasing the same for up and down quarksof the same generation). Note that the sum of arguments (25) and (26) isalways equal to '(u) �'(d) � 180Æ. Carrying out quark rephasing (the samefor up and down quarks of the same generation), wherearg Vus ! 0 ; arg Vb ! 0 ; arg Vd ! 180Æ ; arg Vts ! 180Æ (27)



2968 W. Królikowskiand arg Vud, arg Vs, arg Vtb remain unhanged, we onlude from Eqs. (25)and (26) that arg Vub ! �63:8Æ ; arg Vtd ! �20:7Æ : (28)The sum of arguments (28) after rephasing (27) is always equal to'(u) � '(d) � 180Æ.Thus, in this quark phasing, we predit the following Cabibbo�Kobayashi�Maskawa matrix:(V��) = 0� 0:976 0:220 0:00313 e�i 63:88Æ�0:220 0:975 0:04020:00795 e�i 20:7Æ �0:0402 0:999 1A : (29)Here, only jVusj and jVbj [and quark masses ms ; m ; mb onsistent withthe mass matries �M (u)�� � and �M (d)�� �℄ are our inputs, while all other ma-trix elements V��, partly indued by unitarity, are evaluated from the re-lations derived in this Setion from the Hermitian mass matries �M (u)�� �and �M (d)�� � [and the onjetured proportion (18)℄. The independent pre-ditions are two, e.g. for jVubj and argVub, sine ten independent quantities(six quark masses, three mixing angles and one CP -violating phase) areparametrised by eight independent model onstants (�(u), �(d), "(u), "(d),�(u) or �(d), '(u) � '(d) and C(u), C(d)). In Eq. (29), the small phases aris-ing from Eqs. (16), arg Vud = 0:9Æ and arg Vs = �0:9Æ, are negleted (here,arg (VudVsVtb) = 0).The above predition of V�� implies the following values of Wolfensteinparameters [3℄:� = 0:2196 ; A = 0:834 ; � = 0:157 ; � = 0:318 (30)and of unitary-triangle angles: = artan �� = � arg Vub = 63:8Æ ; � = artan �1� � = � arg Vtd = 20:7Æ :(31)Hene, the predited value of sin 2� = 0:661 is not inonsistent with thereent BaBar experimental result sin 2�exp = 0:59 � 0:14 [5℄.Now, we may turn bak to quark masses. From the third Eq. (6) we anevaluateC(u;d) = 29�(u;d) 2524 mt;b � 624 � "(u;d) � 29�(u;d) 2524 B(u;d) �(u;d)�(u;d)!2 ; (32)



An E�etive Model for Quark Masses and Mixings 2969what, in the framework of our perturbative approah, givesC(u;d) = ÆC(u;d) + 29Æ�(u;d) 2524 mt;b 29320 Æ�(u;d) �5 ÆA(u;d) �9 ÆB(u;d)�  �(u;d)Æ�(u;d)!2� 29Æ�(u;d) � ÆA(u;d) + ÆB(u;d)�  �(u;d)Æ�(u;d)!2 ; (33)where ÆC(u;d)= 29Æ�(u;d) 2524 mt;b � 624� Æ"(u;d)= � 4540667� : (34)With the entral values of �(u) and �(d) as estimated in Eqs. (17) and (19)we �nd from Eqs. (12)ÆA(u;d)  �(u;d)Æ�(u;d)!2 = � 7:605:07� MeV ; ÆB(u;d)  �(u;d)Æ�(u;d)!2 = � 2:636:98� MeV ;(35)where Æ�(u;d)29  �(u;d)Æ�(u;d)!2 = � 67:543:8� MeV : (36)We alulate from Eqs. (33) with the use of values (35) thatC(u;d) = � 4540619� : (37)Similarly, from the seond and third Eq. (10), making use of the values(35), we obtain�(u;d) = � 1020102 � MeV ; "(u;d) = � 0:3023:27 � : (38)We an easily hek that, with the values (11) for Æ�(u;d) and Æ"(u;d) andthe value (34) for ÆC(u;d) determined as above from quark masses, the unper-turbed parts of mass formulae (6) reprodue orretly these masses. In fat,we get numerially



2970 W. Królikowski
Æmu;d = Æ�(u;d)29 Æ"(u;d)= � 36� MeV = mu;d ;Æm;s = Æ�(u;d)29 49 �80+ Æ"(u;d)� = � 1250123� MeV = m;s ;Æmt;b = Æ�(u;d)29 2425 �624+ Æ"(u;d) + ÆC(u;d)� = � 1744:2 � GeV = mt;b : (39)The same is true for the unperturbed part of the �rst orrelating formula (10).Here, Æm� = m�� Æm� is neglible versus m� = mexp� (� = u; ; t and d; s; b).We would like to stress that, in ontrast to the ase of harged leptons,where (in the zero perturbative order) m� has been predited from me andm�, in the ase of up and down quarks two extra parameters C(u) and C(d)appear neessarily to provide large masses mt and mb (muh larger thanm� ). They ause that (even in the zero perturbative order) mt (mb) annotbe predited from mu and m (md and ms), till the new parameters arequantitatively understood.If the ratio C(u)=C(d) is equal tox, we an write C(u;d) = onst[Q(u;d)2 +(3x � 4)Q(u;d)B + (3x+ 4)B2℄, where Q(u;d) = 2=3 ; �1=3 and B = 1=3. Inthe ase of Eq. (37) x = 7:33 = 22=3. Thus, the baryon number B may beinterpreted as ontributing largely to the onstants C(u;d).4. A possible phase onjetureNote that a onjeture about C(u) and C(d) might lead to a preditionfor quark masses and so, introdue hanges in the �experimental� quarkmasses (8) and (9) aepted here. The same is true for a onjeture about'(u) and '(d).For instane, the onjeture that the phase di�erene '(u)�'(d) is max-imal, '(u) � '(d) = 90Æ ; (40)leads through the �rst equality in Eq. (21) to the ondition1 + 16�msm�2 � 8414 � ms�(d)�2 jVusj2 = 0 (41)prediting for s quark the massms = 119MeV (42)



An E�etive Model for Quark Masses and Mixings 2971(with �(d) = 353 MeV), being only slightly lower than the value 123 MeVused previously. Here, m and mb are kept equal to 1.25 and 4.2 GeV,respetively (also masses of u ; d and t quarks are not hanged, while Æ�(d),Æ"(d) and ÆC(d) hange slightly). Then, from the �rst equality in Eq. (23)tan�arg Vus � '(d)� = �4 msm = �0:379 ; arg Vus = �20:8Æ + '(d) : (43)After rephasing (27), this gives arg Vub+arg Vtd = '(u)�'(d)�180Æ = �90Æ,where arg Vub = �69:2Æ ; arg Vtd = �20:8Æ (44)i.e., pratially �70Æ and �20Æ. For the new value (42) ofms, in the approx-imation used, all jV�� j remain unhanged (with our inputs of jVusj = 0:2196and jVbj = 0:0402), exept for jVtdj whih hanges slightly, beomingjVtdj = 0:00849 : (45)Thus, in the Cabibbo�Kobayashi�Maskawa matrix predited in Eq. (29),only jVtdj and the phases (44) show some hanges. The Wolfenstein param-eters are � = 0:126 ; � = 0:332 ; (46)while � and A do not hange (here, the sum �2 + �2 = 0:126 is also un-hanged). Hene,  + � = 90Æ and � = 180Æ �  � � = 90Æ, where = artan �� = � arg Vub = 69:2Æ� = artan �1� � = � arg Vtd = 20:8Æ : (47)So, in the ase of onjeture (40), the new restritive relation�� = 1� �� or �2 + �2 = � (48)holds, implying the preditionjVtdj=jVubj =s(1� �)2 + �2�2 + �2 = �� = 2:64 ; (49)due to the de�nition of � and � from Vub and Vtd. It is in agreement withour �gures for jVtdj and jVubj. Then, the new relationship14mms = �(d)m�(u)ms = �� (50)



2972 W. Królikowskifollows for quark masses m, ms and Wolfenstein parameters �, �, in onse-quene of Eqs. (14) and the onjetured proportion (18). Both its sides arereally equal for our values of m, ms and �, �.Thus, summarizing, we annot predit quark masses without an addi-tional knowledge or onjeture about the onstants �(u;d), "(u;d), C(u;d), �(u;d)and '(u;d) (in partiular, the onjeture (40) prediting ms may be natural).However, we always desribe them orretly. If we desribe them jointlywith quark mixing parameters, we obtain two independent preditions e.g.for jVubj and  = � arg Vub: the whole Cabibbo�Kobayashi�Maskawa matrixis alulated from the inputs of jVusj and jVbj hand of quark masses ms, mand mb onsistent with the mass matries �M (u)�� � and �M (d)�� �i.Conluding, we an laim that our harged-lepton form of mass matrixworks also in a promising way for up and down quarks. But, it turns outthat, in the framework of this leptoni form of mass matrix, the heaviestquarks, t and b, require an additional mehanism in order to produe thebulk of their masses (here, it is represented by the large onstants C(u) andC(d)). Suh a mehanism, however, intervenes into the proess of quarkmixing only through quark masses (pratially mt and mb) and so, it doesnot modify for quarks the harged-lepton form of mixing mehanism.5. Appendix: Motivation for the mass matrix (1)The form of Dira mass matrix (1) is based on two assumptions:(i) the onjeture that all kinds of matter's fundamental partiles existingin Nature an be dedued from Dira's square-root proedure pp2 = � � p,onstrained by an intrinsi Pauli priniple, and (ii) a simple ansatz for theDira mass matrix, formulated on the ground of the onjeture (i).As is easy to observe, Dira's square-root proedure leads generially tothe sequene N = 1; 2; 3; : : : of generalised Dira equations [2,1℄n� (N) � [p� gA(x)℄ �M (N)o (N)(x) = 0 ; (A:1)where for any N the Dira algebran� (N)� ; � (N)� o = 2g�� (A:2)is onstruted by means of a Cli�ord algebra,� (N)� � 1pN NXi=1 (N)i� ; n(N)i� ; (N)j� o = 2Æijg�� (A:3)



An E�etive Model for Quark Masses and Mixings 2973with i ; j = 1; 2; : : : ; N and � ; � = 0; 1; 2; 3. Here, the term g� (N) � A(x)symbolizes the Standard Model gauge oupling, involving � (N)5 �i� (N)0 � (N)1 � (N)2 � (N)3 as well as the olor, weak-isospin and hyperharge ma-tries (this oupling is absent for sterile partiles suh as sterile neutrinos).The massM (N) is independent of � (N)� . In general, the massM (N) should bereplaed by a mass matrix of elements M (N;N 0) whih would ouple  (N)(x)with all appropriate  (N 0)(x), and it might be natural to assume for N 6= N 0that h(N)i� ; (N 0)j� i = 0 i.e., h� (N)� ; � (N 0)� i = 0.The Dira-type equation (A.1) for any N implies that (N)(x) = � (N)�1�2:::�N (x)� ; (A:4)where eah �i = 1; 2; 3; 4 is the Dira bispinor index de�ned in its hiralrepresentation in whih the matries(N)j5 � i(N)j0 (N)j1 (N)j2 (N)j3 ; �(N)j3 � i2 h(N)j1 ; (N)j2 i (A:5)are diagonal (note that all matries (A.5), both with equal and di�erent j's,ommute simultaneously). The wave funtion or �eld  (N)(x) for any Narries also the Standard Model (omposite) label, suppressed in our nota-tion. The mass M (N) gets also suh a label. The Standard Model ouplingof physial Higgs bosons should be eventually added to Eq. (A.1) for any N .For N = 1 Eq. (A.1) is, of ourse, the usual Dira equation, for N = 2it is known as the Dira form [6℄ of the Kähler equation [7℄, while for N � 3Eqs. (A.1) give us new Dira-type equations [2,1℄. All of them desribe somespin-hal�nteger or spin-integer partiles for N odd and N even, respetively.The nature of these partiles is the main subjet of the present paper (f.also Ref. [2,1℄).The Dira-type matries � (N)� for any N an be embedded into the newCli�ord algebra n� (N)i� ; � (N)j� o = 2Æijg�� (A:6)[isomorphi with the Cli�ord algebra introdued for (N)i� in Eq. (A.3)℄, if� (N)i� are de�ned by the properly normalised Jaobi linear ombinations of(N)i� . In fat, they are given as� (N)1� � � (N)� � 1pN NXi=1 (N)i� ;� (N)i� � 1pi(i� 1) h(N)1� + : : :+ (N)(i�1)� � (i� 1)(N)i� i (A:7)



2974 W. Królikowskifor i = 1 and i = 2; : : : ; N , respetively. So, � (N)1 and � (N)2 ; : : : ; � (N)N rep-resent respetively the �entre-of-mass� and �relative� Dira-type matries.Note that the Dira-type equation (A.1) for any N does not involve the�relative� Dira-type matries � (N)2 ; : : : ; � (N)N , solely inluding the �entre-of-mass� Dira-type matrix � (N)1 � � (N). Sine � (N)i = PNj=1Oij(N)j ,where the N � N matrix O = (Oij) is orthogonal (OT = O�1), we obtainfor the total spin tensor the formulaNXi=1 �(N)i�� = NXi=1 �(N)i�� ; (A:8)where �(N)j�� � i2 h(N)j� ; (N)j� i ; �(N)j�� � i2 h� (N)j� ; � (N)j� i : (A:9)Of ourse, the spin tensor (A.8) is the generator of Lorentz transformationsfor  (N)(x).It is onvenient for any N to pass from the hiral representations forindividual (N)i 's to the hiral representations for Jaobi � (N)i 's in whih thematries� (N)j5 � i� (N)j0 � (N)j1 � (N)j2 � (N)j3 ; �(N)j3 � i2 h� (N)j1 ; � (N)j2 i (A:10)are diagonal (they all, both with equal and di�erent j's, ommute simulta-neously). Note that � (N)15 � � (N)5 is the Dira-type hiral matrix as it isinvolved in the Standard Model gauge oupling in the Dira-type equation(A.1).Using the new Jaobi hiral representations, the �entre-of-mass� Dira-type matries � (N)1� � � (N)� and � (N)15 � � (N)5 an be taken in the reduedforms � (N)� = � 
 1
 � � � 
 1| {z }N�1 times ; � (N)5 = 5 
 1
 � � � 
 1| {z }N�1 times ; (A:11)where �, 5 � i0123 and 1 are the usual 4 � 4 Dira matries. Forinstane, the Jaobi � (N)i� 's and � (N)i5 's for N = 3 an be hosen as� (3)1� = � 
 1
 1 ; � (3)15 = 5 
 1
 1 ;� (3)2� = 5 
 i5� 
 1 ; � (3)25 = 1
 5 
 1 ;� (3)3� = 5 
 5 
 � ; � (3)35 = 1
 1
 5 : (A.12)



An E�etive Model for Quark Masses and Mixings 2975Then, the Dira-type equation (A.1) for any N an be rewritten in theredued form n � [p� gA(x)℄ �M (N)o�1�1  (N)�1�2:::�N (x) = 0 ; (A:13)where �1 and �2 ; : : : ; �N are the �entre-of-mass� and �relative� Dirabispinor indies, respetively (here, ( � p)�1�1 = �1�1 � p and �M (N)��1�1 =Æ�1�1M (N), but the hiral oupling g � A(x) involves within A(x) also thematrix 5 ). Note that in the Dira-type equation (A.13) for any N > 1the �relative� indies �2 ; : : : ; �N are free, but still are subjets of Lorentztransformations (for �2 this was known already in the ase of Dira form [6℄of Kähler equation [7℄ orresponding to our N = 2).Sine in Eq. (A.13) the Standard Model gauge �elds interat only withthe �entre-of-mass� index �1, this is distinguished from the physially un-observed �relative� indies �2 ; : : : ; �N . Thus, it was natural for us to on-jeture some time ago that the �relative� bispinor indies �2 ; : : : ; �N areall undistinguishable physial objets obeying Fermi statistis along withthe Pauli priniple requiring in turn the full antisymmetry of wave funtion �1�2 ; ::: ; �N (x) with respet to �2 ; : : : ; �N [2℄. Hene, only �ve values ofN satisfying the ondition N � 1 � 4 are allowed, namely N = 1; 3; 5 for Nodd and N = 2; 4 for N even. Then, from the postulate of relativity andthe probabilisti interpretation of  (N)(x) we were able to infer that threeN odd and two N even orrespond to states with total spin 1=2 and totalspin 0, respetively [2,1℄.Thus, the Dira-type equation (A.1), jointly with the �intrinsi Paulipriniple�, if onsidered on a fundamental level, justi�es the existene inNature of three and only three generations of spin-1=2 fundamental fermions(i.e., leptons and quarks) oupled to the Standard Model gauge bosons. Inaddition, there should exist two and only two generations of spin-0 funda-mental bosons also oupled to the Standard Model gauge bosons.For sterile partiles, Eq. (A.13) with any N goes over into the free Dira-type equation ��1�1 � p� Æ�1�1M (N)� (N)�1�2:::�N (x) = 0 (A:14)(as far as only Standard Model gauge interations are onsidered). Here,no Dira bispinor index �i is distinguished by the Standard Model gaugeoupling whih is absent in this ase. The �entre-of mass� index �1 is notdistinguished also by its oupling to the partile's four-momentum, sineEq. (A.14) is physially equivalent to the free Klein�Gordon equation�p2 �M (N) 2� (N)�1�2:::�N (x) = 0 : (A:15)



2976 W. KrólikowskiThus, in this ase the intrinsi Pauli priniple requires that N � 4, leadingto N = 1; 3 for N odd and N = 2; 4 for N even. Similarly as before, theyorrespond to states with total spin 1=2 and total spin 0, respetively [8℄.Therefore, there should exist two and only two spin-1=2 sterile fundamen-tal fermions (i.e., two sterile neutrinos �s and � 0s) and, in addition, two andonly two spin-0 sterile fundamental bosons.The wave funtions or �elds of ative fermions (leptons and quarks) ofthree generations and sterile neutrinos of two generations an be presentedin terms of  (N)�1�2:::�N (x) as follows (f)�1 (x) =  (1)�1 (x) ; (f 0)�1 (x) = 14 �C�15��2�3  (3)�1�2�3(x) =  (3)�112(x) =  (3)�134(x) ; (f 00)�1 (x) = 124"�2�3�4�5 (5)�1�2�3�4�5(x) =  (5)�11234(x) (A.16)and (�s)�2 (x) =  (1)�2 (x) ; (�0s)�2 (x) = 16 �C�15��2�3 "�3�4�5�6 (3)�4�5�6(x) = 8>>><>>>:  (3)134(x) for �2 = 1� (3)234(x) for �2 = 2 (3)312(x) for �2 = 3� (3)412(x) for �2 = 4(A.17)respetively, where  (N)�1�2:::�N (x) for ative fermions [Eq. (A.16)℄ arries alsothe Standard Model (omposite) label, suppressed in our notation, and Cdenotes the usual 4� 4 harge-onjugation matrix. We an see that due tothe full antisymmetry in �i indies for i � 2 these wave funtions or �eldsappear (up to the sign) with the multipliities 1, 4, 24 and 1, 6 , respetively.Thus, for ative fermions and sterile neutrinos there is given the weightingmatrix �(a) 1=2 = 1p29 0� 1 0 00 p4 00 0 p241A (A:18)and �(s) 1=2 = 1p7 � 1 00 p6� ; (A:19)respetively. Of ourse, for both weighting matries Tr � = 1.



An E�etive Model for Quark Masses and Mixings 2977Conluding this part of Appendix, we would like to say that in our ap-proah to generations of fundamental partiles Dira bispinor indies (�alge-brai partons�) play the role of building bloks of omposite states identi�edas fundamental partiles. Any fundamental partile, ative with respet tothe Standard Model gauge interations, ontains one �ative algebrai par-ton� (oupled to the Standard Model gauge bosons) and a number N � 1of �sterile algebrai partons� (deoupled from these bosons). Due to the in-trinsi Pauli priniple obeyed by �sterile algebrai partons�, the number Nof all �algebrai partons� within a fundamental partile is restrited by theondition N � 1 � 4, so that only N = 1; 2; 3; 4; 5 are allowed. It turnsout that states with N = 1; 3; 5 arry total spin 1=2 and are identi�ed withthree generations of leptons and quarks, while states with N = 2; 4 get totalspin 0 and so far are not identi�ed. Any fundamental partile, sterile withrespet to the Standard Model gauge interations, ontains only a numberN � 4 of �sterile algebrai partons�, thus only N = 1; 2; 3; 4 are allowed.States with N = 1; 3 orrespond to total spin 1=2 and have to be identi�ed astwo hypotheti sterile neutrinos, while states with N = 2; 4 have total spin0 and are still to be identi�ed.Our algebrai onstrution may be interpreted either as ingeneously al-gebrai (muh like the famous Dira's algebrai disovery of spin 1=2) or asthe summit of an ieberg of really omposite states of N spatial partonswith spin 1=2 whose Dira bispinor indies manifest themselves as our �al-gebrai partons�. In the former algebrai option, we avoid automatiallythe irksome existene problem of new interations neessary to bind spatialpartons within leptons and quarks of the seond and third generations. Forthe latter spatial option see some remarks in the seond Ref. [8℄.Eventually, we introdue the following expliit ansatz for the Dira massmatrix [2,1℄ M (f) = �(a)1=2h(f)�(a)1=2 ; (A:20)whereh(f) = �(f)N2 + ("(f) � 1)N�2 + �(f) �aei'(f) + aye�i'(f)� (A:21)with �(f) > 0, "(f) > 0, �(f) > 0 and 0 < '(f) < 2� being parameters. Here,the matrix N = 0� 1 0 00 3 00 0 51A = 1 + 2n (A:22)desribes the number of all �i indies (all �algebrai partons�) appearing in



2978 W. Królikowskithree fermion generations, whilea = 0� 0 1 00 0 p20 0 0 1A ; ay = 0� 0 0 01 0 00 p2 01A (A:23)play the role of �trunated� annihilation and reation matries for index pairs�i�j with i; j � 2 (pairs of �sterile algebrai partons�):[a ; n℄ = a ; [ay ; n℄ = �ay ; n = aya = 0� 0 0 00 1 00 0 21A ; (A:24)where the �trunation� ondition a3 = 0 = ay 3 is satis�ed. The formulae(A.20) and (A.21) give expliitly Eq. (1).In the ase of quarks, the modi�ation (5) an be desribed by the ad-ditional term 18C(f)(N � 1)(N � 3)N�2 (A:25)to be introdued into the matrix h(f) (f = u ; d) given in Eq. (A.21).In the mass matrix (A.20), the �rst term ontaining �(f)N2 may be in-tuitively interpreted as an interation of all N �algebrai partons� treatedon equal footing, while the seond involving ��(f)(1 � "(f))N�2, as a sub-tration term aused by the fat that there is one �ative algebrai parton�distinguished (by its external oupling) among all N �algebrai partons� ofwhih N�1, as �sterile�, are undistinguishable. This distinguished �algebraiparton� appears, therefore, with the probability [N !=(N�1)!℄�1 = N�1 that,when squared, leads to an additional interation involving �(f)(1�"(f))N�2.The latter interation should be subtrated from the former in order to ob-tain for N = 1 the small matrix elementM (f)11 = �(f)"(f)=29. The third termin the mass matrix (A.20) ontaining �(f)(a + ay) annihilates and reatespairs of �sterile algebrai partons� and so, is responsible in a natural way formixing of three fermion generations.REFERENCES[1℄ W. Królikowski, in Spinors, Twistors, Cli�ord Algebras and Quantum Defor-mations (Pro. 2nd Max Born Symposium 1992), eds. Z. Oziewiz et al., KluwerAad. Press, 1993; Ata Phys. Pol. B27, 2121 (1996).[2℄ W. Królikowski,Ata Phys. Pol. B21, 871 (1990); Phys. Rev.D45, 3222 (1992);Ata Phys. Pol. B24, 1149 (1993).[3℄ Review of Partile Physis, Eur. Phys. J. C15, 1 (2000).
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