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Single-particle Woods—Saxon Hamiltonian with the new set of parame-
ters adjusted to the experimental single-particle nucleonic levels in spherical
nuclei is used to evaluate the mean-square charge radii of even—even, odd—
even and even—odd (spherical or deformed) nuclei. The results are com-
pared with the experimental data and with the theoretical values obtained
using the single-particle Nilsson potential in the realization of T. Seo. The
odd—even staggering of nuclear charge radii is presented and shown to be
satisfactorily reproduced by the calculations with the new parametrization.

PACS numbers: 21.10.-k, 21.60.—n

1. Introduction

The use of laser and mass spectroscopy techniques in measurements of
the isotopic shifts in the nuclear Mean-Square Charge Radii (MSCR) has re-
sulted in new information concerning this fundamental nuclear property [1-7].

The systematic analysis of the MSCR dependence on the Z and N num-
bers and, in particular, of the odd—even staggering effects together with
that of the nuclear quadrupole moments can be used to test the quality of
the underlying theoretical background. A comparison of the corresponding
experimental and theoretical results gives a precise information about the
spherical and deformed shell closures, the influence of pairing, and important
details related to the shape evolution with the nucleon numbers.
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Over the years a number of theoretical papers has been devoted to the
calculations of the MSCR of even—even as well as odd—A nuclei and there
exist several theoretical methods used in the calculations. Examples are pro-
vided by the selfconsistent Hartree—-Fock or Hartree-Fock—Bogoliubov [8,9]
or the Relativistic Mean Field (RMF) calculations [10,11]. These methods,
although successful, are relatively computer-time consuming.

The methods based on phenomenological mean single-particle potentials
and microscopic-macroscopic approach [12-15] have also been applied in the
past; they may serve as a quick and efficient tool to analyze the discussed
properties in many nuclear regions.

The aim of the present investigation is to analyze simultaneously the
properties of the single-particle nucleonic levels together with those of the
mean-square radii of both the even—even and the odd—A nuclei by using
the Woods-Saxon (W-S) potential (for the method of solution of the cor-
responding Schrodinger equation cf. Ref. [16]). An axially-symmetric W—S
potential with the universal set of parameters [16] has been already applied
to calculate the MSCR of the even—even nuclei [15].

In the latter reference it has been shown that it was impossible to repro-
duce satisfactorily the experimental systematics of the MSCR using the uni-
versal parametrization of the W—S mean field. Consequently, it is of interest
to find an improved set of parameters which describe simultaneously the shell
structure and related microscopic features such as the nuclear MSCR [17].
Indeed, it will be demonstrated in Sect. 3, that a parametrization of the
mean-field in question exists offering at the same time an improved descrip-
tion of the single-particle levels and a correct description of the MSCR and
of their staggering.

The odd-even staggering of nuclear charge radii is a mechanism that
manifests itself through an alternative increasing and decreasing of the MSCR
for a fixed Z, when N increases by one unit (¢f. e.g. [18]). The amplitude
of such a variation and possible changes in phase are remarkable manifes-
tations of the occupation of various nucleonic orbitals with increasing N.
Within the mean-field approaches the odd—even staggering is explained fre-
quently as a particular manifestation of pairing [19,20] while, when going
beyond the mean field concepts, some authors evoke a three- and four-body
correlation mechanisms [21,22], or other methods [23]. In the present paper
we are going to show that it is possible to reproduce the main features of
the odd—even staggering of nuclear charge radii within the framework of a
Woods—Saxon mean-field plus the standard BCS [24] approach.
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2. The method

The deformed Woods—Saxon potential has been broadly discussed in the
literature (cf. e.g. Ref. [16] and references therein) and we restrict ourselves
to recalling only the basic definitions. The potential consists of the central
part Veent, the spin—orbit part Vi, and, for the protons, the Coulomb part

Veour:
VWS(7, 5,8 B) = Veent (7 B) + Vao 7, 5, 5 B) + Voou (7 B) (1)
with!
‘/SO(Fap:‘i/B) = _A(vvcent /\ﬁ) - 5. (2)
The central potential is defined by:
Voll £ k(552)]

o N+Z
Veent (75 ) = {1 + exp[dists (7 8) /a]} ¥

where a characterizes the diffuseness of the nuclear surface. The function
distx; (7, B), describing the distance between a given point 7 and the nuclear
surface is determined numerically [16]. In the above formulae /3 stands for the
ensemble of parameters {8y; A = 2,4, ...} characterizing the nuclear shape:

R(6; 8) = c(B)Ro

1+ 5AY,\0(COS(9)] ; (4)

A

where Ry = r9A'/3. Function ¢(8) insures the nuclear volume conservation
when surface X is being deformed.
The charge mean square radii are calculated using the expression

(r)even = Y 20| |v)v2 + 0.64 fm? (5)
v>0

for even Z systems, and as

(r)oad = 2(v[r’lv)v] + (n|r’|v1) + 0.64fm’ (6)
v#u

v>0

for the odd ones. Proton single-particle wave-functions corresponding to
paired levels are denoted by |v) while |v1) denotes a wave-function of an
unpaired particle. Term 0.64 fm? originates from the finite-size distribution
of the proton charge [25]. The single-particle occupation factors v, are
calculated within the standard BCS formalism with the blocking procedure
applied for odd—A systems.

! Strictly speaking, the mathematical form of the function acted upon with the gradient
in Eq. (2) is identical with that of the central potential, but the numerical values of the
geometrical parameters used are different from those of the central part as indicated
below.
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3. Adjustment of parameters

Generally, to define the W-—S Hamiltonian 12 constants (6 for protons
and 6 for neutrons) must be determined. One can divide these parameters
into two groups. The first one is composed of parameters that describe the
central part of the W-S potential:

Vo — the depth parameter of the central potential,
ro — the corresponding radius parameter, and
ag — the diffuseness parameter.
The second one is composed of parameters that describe the spin—orbit term:
A — the strength parameter of the spin—orbit potential,
rgo — the corresponding radius parameter, and
aso — the diffuseness parameter.

The parameters of the first group above influence first of all the single-
nucleon binding energies and the global nuclear features such as the mean
square radii, and, at a fixed deformation, the quadrupole moments. The
parameters of the second group influence first of all the order and the relative
distances among the single particle levels.

Several sets of the W—S parameters have been proposed in the literature
(see e.g. Ref. [16] and references therein). All the parameters were fitted to
the contemporarily existing experimental single-particle levels of (mostly)
spherical nuclei [26].

The ‘universal’ set of parameters has been obtained by adopting the
parametrization of the central potential from Rost, Ref. [27], and adjust-
ing the spin—orbit potential parameters from the order of the experimen-
tally known band-head properties of the deformed nuclei. No attention
has been paid at that time to the reproduction of the MSCR and it was
demonstrated later on in Ref. [28] that the proton radius of the ‘universal’
parametrization should be reduced by ~ 2% in order to reproduce system-
atically the calculated B(E2) values (c¢f. Ref. [29]). This deficiency of the
‘universal’ parametrization results in too high values of the MSCR as illus-
trated in Fig. 1, where the mean square charge radii of rare-earth isotopes
obtained with the ‘universal’ parameters of the W—S Hamiltonian are com-
pared with those of the Nilsson Hamiltonian [30] as well as with the experi-
mental data [1]. One could have thought at first that a simple modification
of the proton radius parameter would have been sufficient to remedy this de-
ficiency. However calculations show that the quality of the description of the
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single-particle energies deteriorates when trying such a simple manipulation
and a physically correct solution of the problem is to refit all the parameters.
This is particularly worth doing given a much richer experimental data basis
as compared to that of the original early studies dating 30 to 40 years back.
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Fig.1. Experimental MSCR, in fm?, (from Ref. [1], crosses) of Sm-Yb nuclei
taken as an example as functions of the neutron number, compared to calculation
results obtained with the W-S potential with ‘universal’ parametrization (empty
diamonds) and corresponding results obtained by using the Nilsson Hamiltonian
of Seo Ref. [29], open circles. The left-hand side scale corresponds to Samarium
elements. For clarity the results of the remaining nuclei are shifted upwards by
2,4, ... fm2.

In the present work we have refitted the parameters of the Woods—Saxon
Hamiltonian by adjusting them to the experimental results on the single-
particle energy levels of doubly-magic nuclei, mean square radii (r?) (for
neutrons and protons), and neutron, Sy, and proton, S,, separation ener-
gies. The most important criterion for a choice of the best parameters of
the W-S potential is of course the agreement between the theoretical and
experimental single-particle energy levels. We have restricted our analysis
of the single-particle levels to those known from the doubly magic nuclei
40Ca, 8Ca, Ni, 997r, 1328n, 298Ph. Next, however, we have verified that

the deformation dependence of the single-particle energy levels is well gen-
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erated by the W-S potential and consequently a good agreement also for
the positions of the band-heads of the deformed odd—A nuclei, by using the
same Hamiltonian, has been obtained.

The coupling of the single-particle orbitals to the collective-vibrations has
been neglected here. Estimates based, among others, on the RPA treatment
indicate (cf. Refs. [31] and [32]) that possible shifts due to the vibration-
coupling are typically of the order of 200 keV (being sometimes positive and
sometimes negative) and seldom exceed 300 keV — thus having only a rather
insignificant influence on our adjustment procedure.

As mentioned above, the second group of important observables to take
into account are the proton and neutron mean square radii. In the literature
there exists a rich collection of the experimental values of proton square radii
(7’]2)) [1,2,5]. In this work we have used them to optimize the central part of
the proton W-S potential. The experimental neutron radii, (r2), can be de-
duced from the analysis of the high-energy polarized proton scattering 34|
and from the 7% scattering [33]. The values of neutron radii are usually
given with large error. However, they provide a precious tool for definition
of the correct size of the central part of the neutron W-S potential. The neu-
tron, Sy, and proton, S,, separation energies serve as an auxiliary criterion
permitting to obtain the correct depths of the potentials.

As a measure of the fit error the root-mean-square deviation o has been
chosen, defined as usual by:

. N 1/2
0= [ﬁZ(fexp fé?) ] : (7)

i=1

Here ftgf) are the calculated, and feg(iz,, the corresponding measured quanti-
ties. The number of the expenmental data points 1s n The experimental

single-particle energies form a part of ensemble { fexp} together with the
separation energies and MSCR, leading to three types of deviations, o, o
and o,, respectively. It turns out that a more convenient expression to be
minimized is:

0 = We -0 +Wg 08+ Wy Oy, (8)
where three weight factors w., ws, and w, are the theoretical weights cor-
responding to the various observables (w; ~ 1/0;) where o is the “theoret-
ical average” error for i-observable. We used the following weight factors:
we = 1.0[1/MeV], wg = 1.6[1/MeV] and w, = 10.0[1/fm]|. We accept the
fit of the W-S potential parameters if they reproduce the experimental (r?)
within the experimental accuracy (or at least to be a very close). Such a
condition is equivalent to imposing a very high weight factor w, in front of
op; usually w, ~ 5 to 10 is a sufficient choice.
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For the single particle energies the calculations have been performed for
the above mentioned six double-magic nuclei. This determines, on the whole,
31 known (25 4 1)-degenerate levels for protons and 48 (25 + 1)-degenerate
levels for neutrons.

The best set of the W-S parameters has been found by minimizing
the standard deviations introduced above in the space of six parameters
(Vb, 70, ag, A, Tso and ag,) for protons and neutrons each. We have used as
the starting values the ones corresponding to the ‘universal’ set of parameters
allowing for the variations in the following ranges: Vy € (46 +55) MeV, rg €
(1.10+1.40) fm, ag € (0.50+0.80) fm, A\ € (10+80), r5o € (1.10=1.40) fm
and ag, € (0.50 = 0.80) fm.

The resulting best fit parameters obtained here and the ‘universal’ ones,
used as a reference, are compared in Table I. While the potential depth
parameters do not differ very much, the isospin dependence of the central
potential well is found nearly 20% weaker in the new parametrization — the
result based on a much larger experimental information as compared to that
known when the ‘universal’ set was established. The coupling constants
of the spin—orbit potentials are found now markedly lower, compared to
the corresponding parameters of the ‘universal’ set. Also the corresponding
values of the spin—orbit radius parameters are significantly lower. In order to
understand better this aspect of the new fit we have analyzed in more detail
the behavior of o, of Egs. (7),(8). For this purpose we have tabulated o, in
function of ry, and A, all other parameters fixed as in Table I, for neutrons
and protons separately.

TABLE 1
Comparison of the W—S potential parameters: the ‘universal’ ones treated as a
reference are given in column 3, and the ‘best fit’ of the present work, given in
column 4. Parameter values for rg, and A correspond to the minima of functions o,
in Figs. 2 and 3. For apparent differences in the A-values for protons and neutrons
see text.

Parameter | Units Univ. | Present
Vo MeV | 49.600 51.500
K — 0.860 0.650
ay fm 0.700 0.610
ry fm 1.347 1.263
An — 35.000 24.000
oy fm 1.310 1.140
abh fm 0.700 0.610
rg fm 1.275 1.258
Ap — 36.000 18.000
rP fm 1.320 1.140



2988 Z. Loiewski, B. NERLO-POMORSKA, J. DUDEK

The results are illustrated in figures 2 and 3, respectively. As it is seen
from the figures, in the discussed parameter range the optimal spin—orbit
radius parameters vary nearly linearly with the spin—orbit strengths, the
corresponding behavior of o, having a form of a valley.
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Fig.2. The root-mean-square deviation o, for protons as the function of the
spin—orbit strength A, and spin—orbit radius r?, parameters of the Woods—Saxon
potential. This result has been obtained in two steps. Firstly, it has been checked
that the results for o, for the nuclei studied have similar behavior as functions of
rP and A\, and that minima for all the nuclei lie close one to another in the (rg,, o)
plane. Secondly, o, corresponding to all the nuclei has been obtained by summing
up the contributions o, from the individual nuclei.
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Fig.3. The same as in Fig. 2 for neutrons.
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It can be expected, from an approximate isospin invariance of nuclear
forces, that the proton and neutron strength parameters of the spin—orbit
interactions have very close values. As it is seen in Table I, these values taken
from Figs. 2 and 3 as the minima of o, functions are A\,=18 and A, =24, for
protons and neutrons, respectively. This relatively big difference of about
25% may be viewed as only apparent. Indeed, because of a flat dependence
of o, on rg, and X along the valleys an alternative choice of A\, ~ A, and
T~ rLy is possible. In the vicinity of the local minima found and without
loosing much in terms of quality of the fit (the latter measured in terms of
o.) we can use the following two linear approximations for the rg, vs. A
relations:

Protons : 2 = ap\p + Bp; ap = —0.0345, B, = 1.769 9)
and

Neutrons : r{y = apAp + Bn; an = —0.0140, S, = 1.487. (10)

The root-mean-square errors oy, ,y obtained for all nuclei with the exper-
imental values taken from Ref. [2], and those for the neutrons, O(r,)> €XPEr-
iment from Ref. [34], together with the binding energy deviations, o, and
os, (experiment from [35]) are presented in Table II. Comparison shows that
the new parametrization offers an important improvement over the ‘univer-
sal’ set for all the four quantities analyzed, while the energy level deviations
e, and o, remain comparable for the two sets of parameters.

TABLE 11

Comparison of the fit quality in terms of the standard deviations. In the table we
take into account 142 nuclei when calculating o, ) [5], 14 nuclei for o,y [33,34]
and correspondingly 332 and 341 nuclei for s, and og, [37]. Values o., and o,
are given for above mentioned six double-magic nuclei.

O(ren)  9(ra) 05, 0s, Oe, Oe,
fm fm MeV MeV MeV MeV

New | 0.026 0.091 0.411 0.385 0.90 0.54
Univ. | 0.082 0.247 0.530 0.740 0.88 0.76

The proton and neutron single-particle levels for the doubly-magic nuclei
studied are illustrated in figures 4-9. One can see that the ‘best fit” parame-
ters give slightly, but systematically better agreement with the experiment.
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Fig.4. Single-particle energy levels for *°Ca nucleus: left — neutrons, right —
protons.

48Ca47

or neutrons protons

1fs5/2

2P g —— or

_4 |
203/ m— N 1f5/2 _/—;
- —4T 201y e

i 2p3/2
D |
—10} 1f12 1772 =" o —

>
_12} 1dspe -lzr
)
=
€2

2s1/2
—14 } ~16 } 2s1/2 =//_,4:

1dz/2

—-20 } _/_/_
—18 | ldspp =—u _

1ds/2
—20l exp. new univ. _o4 L exp. new univ.

Fig.5. Single-particle energy levels for **Ca nucleus: left — neutrons, right —
protons.

The new set of parameters introduced in this work reproduces partic-
ularly well the single-particle proton levels. For all double-magic nuclei
the order of levels is correct. Also og, -deviation is comparatively small
(0¢,—0.54) see Table II. The results are slightly worse for the neutrons. Here
0., -deviation is not better than for universal parametrization (o.,=0.90) but
also in this case the order of the single-particle energy levels is good.

The quality of comparison between the single-particle energy spectra
with the ‘universal’ parametrization and experiment can be considered very
good — even though slight improvements were possible. It should, how-
ever, be emphasized that the non-linear problem studied here allows for
the existence of rather numerous local minima of the o-test in the space of
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Fig.6. Single-particle energy levels for 5Ni nucleus: left — neutrons, right —
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Fig.7. Single-particle energy levels for °°Zr nucleus: left — neutrons, right —
protons.

the six variables studied. By imposing the condition that the experimental
mean-square radii be reproduced we must eliminate some of the mentioned
minima as ‘unphysical’ — yet there are usually a few local minima left that
reproduce the single-particle energy spectra quite well.

Our fitting procedure suggests that it will be most likely impossible to
improve the quality of description of the experimental results without mod-
ification of the formalism e.g. by introducing the potentials more complex
than the Woods—Saxon and for taking into account the coupling with the
collective degrees of freedom.
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Fig.9. Single-particle energy levels for 2°8Pb nucleus: left — neutrons, right —
protons.

4. Charge mean square radii

The charge mean square radii have been calculated at the equilibrium
deformations taken from Ref. [36]. The pairing interaction has been included
by the BCS approximation using the experimental energy gaps [35], obtained
from three-point mass formula. For the odd—A nuclei, the odd particle has
been placed in the state nearest to the Fermi level for which the angular
momentum projection {2 and parity 7 are the same as the experimental
ones. When the experimental data were not known, we have placed the
odd—particle in the state nearest to- but higher than- the Fermi level.
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The calculations were performed for nuclei with 37 < Z < 54 and
7 < N < 78, for the rare earth nuclei with 55 < Z < 79 and 74 < N < 120
and for the actinides with 80 < Z < 94 and 101 < N < 150. In the present
work we show only the results for the experimentally known nuclei and their
close neighbors i.e. the nuclei for which we may hope to know the experi-
mental results in near future. The quality of the fit can be judged through
a systematic comparison of the dependence of the neighboring isotopes on a
neutron number N.

In Figs. 10-14 the MSCR of the investigated elements are presented for
a fixed Z— and variable N —numbers. Theoretical values, obtained with
the help of the WS+BCS approach are represented by open circles, while
the experimental data of Ref. [1] by crosses. The curves are labeled by the
chemical symbols of the elements. The left-hand side scale corresponds to
the lightest element. All other curves are shifted upwards by 2, 4, ... fm?
for clarity of the illustration.

36

| <r2> (fm?2)

34 | |
32
30
28
26
24
22

20

18 s

16 :

30 40 50 60 70 80 90 100 110
N

Fig. 10. Charge mean square radii of Kr-Pd nuclei, in fm?, as functions of the neu-
tron number. Crosses denote the experimental data from Ref. [1], the open circles
the theoretical results obtained with the Woods—Saxon single particle potential, pa-
rameters of this work. The left-hand side scale corresponds to the krypton nuclei.

For clarity the results of the remaining nuclei are shifted upwards by 2, 4, ...fm?2.
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Fig.11. The same as in Fig. 10 but for Cd—Ce nuclei.

In Fig. 10 the MSCR of even elements Kr-Pd are shown. One can see a
marked increase in the radii for N ~ 50-60 in several elements, also clearly
present in the experimental data. An abrupt change in the radii in the
vicinity of N = 42 is not confirmed by the data on krypton, although a
change in structure at N=40 is confirmed together with the corresponding
slope. The predictions of sharp irregularities at N ~ 40 and N ~ 72 can
be related to the shape coexistence (in particular: prolate vs. oblate shape
coexistence for the first of the two) whose precise description is sometimes
less certain. They are related to the uncertainties in the calculations of
the equilibrium deformations which are known to be a bit more difficult for
‘transitional’ nuclei whose Z and/or N numbers are close to those of the
strong magic shell closures.

The kink of MSCR values when crossing the N = 50 magic number would
probably be better reproduced through the inclusion of the quadrupole pair-
ing forces [38].
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Fig.12. The same as in Fig. 10 but for Nd—Yb nuclei.

The agreement of MSCR with experimental data improves for the strong-
er-deformed Cd—Ce nuclei. A series of results for even—even elements of this
group is presented in Fig. 11. Only a small irregularity in MSCR for N = 72
is obtained in the calculations, so far not seen in experiment.

The next MSCR, for Nd—Yb elements shown in Fig. 12, agree also well
with the experimental data. The characteristic dependence of the MSCR
on the neutron number in Nd, Sm and Dy nuclei when crossing the N = 82
magic number is well reproduced.

Similar relations are also true in the case of the MSCR of odd-Z elements,
Pr-Lu, shown in Fig. 13. Since the characteristic behavior of results for
Eu isotopes around N=82 is well verified by experiment one may expect
that similarly the predictions for 59Pr, ¢1Pm and ¢5Tb will be confirmed.
Although the theoretical results for Lu are slightly smaller and for Tm larger
than the experimental ones, they have the correct N dependence.
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60 70 80 90 100 110 120

Fig. 13. The same as in Fig. 10 but for Pr-Lu nuclei.

The results for the heaviest Au—Ra nuclei are presented in Fig. 14. Their
MSCR show already some irregularities in experimental data. A strong stag-
gering in the lightest Hg isotopes is not reproduced, though predicted for the
light Fr and Ra nuclei. The '%3Pb, 224Rn and ?2Rn MSCR values of Ref. [1]
seem off the trend manifested by all the other nuclei in the neighborhood and
are not reproduced by our calculation. The predictions for some of the Ra
and Th elements have to be taken with some caution, because the octupole
deformation can be present there and influence the MSCR values. The oc-
tupole degrees of freedom were not taken into account when calculating the
equilibrium deformations in this work.

The general tendencies in the dependence of the MSCR values on the
neutron number are well reproduced by our WS+BCS approach. In some
cases a more detailed discussion of the structure effects is needed in order
to explain subtle discrepancies which still exist. Figures 10-14 demonstrate
in particular that the slopes of the illustrated curves in terms of NV are cor-
rect. A good agreement of MSCR in most cases confirms a very satisfactory
quality of the new Woods—Saxon potential parameters.
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Fig. 14. The same as in Fig. 10 but for Au-Ra nuclei.

5. Odd—even staggering effect in MSCR

A detailed analysis of the MSCR experimental data shows regular devi-
ations between the odd- and the even-isotopes for several elements. Usually,
when going from an odd to an even system, the radius grows slower than
when going from an even to an odd one. In order to describe those differences
quantitatively a differential isotopic MSCR shift can be introduced:

5(,,,,2)14,.»471 — <7,,2>A _ <T2>A71‘ (11)

Within the mean field theories the discussed effects can be attributed to
the role of the pairing correlations that capture the next nucleon onto the
so far unpaired level thus contributing to a decrease in the deformation of
the charge density distributions for even particle number. As one can see in
formulas (6) a radius of odd Z system depends not only on the equilibrium
deformation of a whole Z, N nucleus, which influences the single particle
level scheme and the BCS equations solution, but also on the state |vq)
occupied by the odd proton.
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It should be possible — close to the Fermi surface, to minimize the total
potential energy and correspond to the experimentally known spin of the
nucleus (Z, N). These three conditions are sometimes difficult to achieve
because very often the most probable quasiparticle «,, should be created in
the 1y state lying under the Fermi surface in order to reproduce the proper
spin of this nucleus. The order of single particle levels close around the
Fermi surface is very important for the proper reproduction of odd—even
staggering of nuclear radii, but its impossible to take this subtle effect into
account during the W-S parameters fit not loosing the larger effects in the
whole single particles levels schemes, binding energies and even—even nuclei
radii.

It is generally difficult to obtain a quantitative agreement between the
very tiny (only 0.03%) odd-even experimental staggering in MSCR and
a simple macroscopic—microscopic description because the parameters of
the single particle potential, those of the macroscopic term and the pair-
ing strengths influence the whole potential energy surface. A realistic,
deformation-dependent single particle level scheme is crucial for the descrip-
tion of the odd-particle states. It turns out that our new parametrization
of the mean field gives very satisfactory results in this respect. Although
there are some remaining discrepancies they are smaller in the case of the
new Woods—Saxon as compared to the Nilsson model of Seo [30] as it is
illustrated below.

As an illustration of our calculations, the differential isotopic MSCR
shifts 6(r2)44=1 are shown for the Cd (even Z) and for the Ho (odd Z)
nuclei in Fig. 15. The MSCR differential isotopic shifts obtained with the
Woods—Saxon single particle potential are marked by open circles and with
Seo—Nilsson [30] by open squares.

For Cd isotopes shown in the figure the agreement of both models with
experimental data is satisfactory for N ~ 60 and slightly worse for N ~ 50
and N ~ 70 nuclei. The W-S potential gives smaller odd—even staggering as
compared to the Seo—Nilsson model in most of the cases in better agreement
with experiment. In the discussed nuclei the average staggering effect has a
proper sign, but it is exaggerated in some cases.

In Fig. 16 the odd-Z Ho nuclei are shown. The theoretical values of the
staggering are too large in comparison with the experimental data, but the
qualitative behavior is reproduced. For odd—odd nuclei the coupling of the
two odd nucleons exists. Investigations of such a coupling are in progress
now.

The best agreement is achieved for Pb isotopes (Fig. 17) where the exper-
imental odd—even staggering is reproduced. For the magic number Z = 82
the parameters of all the theoretical models are well established so, on the
one hand, the results fitted to the experimental data could be expected to
agree well. On the other hand it is also likely that in the presence of the
strongest shell closures the coupling to the collective degrees of freedom
(neglected here) is the weakest.
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Fig. 15. The differential shifts §(r2)4-4=1 of the charge mean square radii, in fm?,
for Cd isotopes as functions of the neutron number. The dots denote the exper-
imental data from Ref. [2], open circles the theoretical results obtained with the
Woods—Saxon single particle potential with parameters of this work, the squares
with the Seo—Nilsson one [30].
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Fig.16. The same as in Fig. 15 but for Ho isotopes.
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Fig.17. The same as in Fig. 15 but for Pb isotopes.

6. Summary and conclusions

In this article we have studied the properties of the nuclear deformed
mean field parametrized in terms of the Woods—Saxon potential. By us-
ing the experimental data on the single-particle levels in the doubly-magic
spherical nuclei, on the r.m.s radii in the nuclei for which they are known
and on the separation energies in the deformed nuclei we have found a new
set of the Woods—Saxon potential parameters that offers a better description
in terms of these observables.

We have applied the macroscopic-microscopic method with the obtained
here Woods—Saxon single-particle potential parameters in order to calculate
the MSCR and the odd—even staggering effects in couple of hundreds nuclei
throughout the periodic table. The corresponding results have been counter-
checked by using the Seo—Nilsson deformed harmonic oscillator potential
known to perform well in the calculations of this type.

The odd-even charge staggering effect has been satisfactorily reproduced
in many nuclei studies, although in details disagreements remain. It is worth
emphasizing that the neutron dependence in the experimental mean-square-
charge-radii has been generally very well reproduced.
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