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The boost-invariant tunneling of particles along the hyperbolas of con-
stant invariant time 7 = v/t2 — 22 is included in the transport equations
describing formation of the quark—gluon plasma in strong color fields. The
non-trivial solutions of the transport equations exist if the boost-invariant
distance between the tunneling particles, measured in the quasirapidity
space n = 1/2In((t + 2)/(t — z)), is confined to a finite interval An. For
realistic values of An the solutions of the transport equations show similar
characteristics to those found in the standard approach, where the tunnel-
ing takes place at constant time ¢. In the limit Anp — oo, the initial color
fields decay instantaneously.

PACS numbers: 25.75.—q, 05.20.Dd, 24.85.+p

1. Introduction

In this paper we solve transport equations describing production of the
quark—gluon plasma in strong color fields. A novel feature of our approach is
the implementation of the boost-invariant tunneling along the hyperbolas of
constant invariant time 7 = v/#2 — 22 into the framework of the relativistic
kinetic theory. In this way we generalize the previous results of Refs. [1-4].

In the standard WKB description of the tunneling process [5, 6], the
particles tunnel at fixed time ¢. They emerge from the vacuum at a certain
distance from each other, and their longitudinal momenta vanish (in the
center-of-mass frame of a pair). In Refs [1-4,7]|, the WKB results were used
to fix the longitudinal-momentum dependence of the production rates of
quarks and gluons. The effect of the finite distance appearing between the
tunneling particles is more difficult to include. One assumes usually that
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this distance is small, and the non-local character of the tunneling process
is neglected. This approximation is not always valid. For large transverse
mass, the distance between the tunneling particles may be quite substantial
and should be taken into account.

The main difficulty connected with the non-local features of the tunneling
concerns the causal properties of sequential decays. In this case one cannot
define which pair is produced earlier or later, which leads to ambiguity in
the determination of the decay probabilities. Nevertheless, at very high
energies a solution to this problem exists [8]. Assuming that the pairs are
produced at fixed invariant time 7 = /2 — 22, one introduces a Lorentz-
invariant sequence of pair production, and the requirements of causality can
be naturally fulfilled. The tunneling of particles along the hyperbolas of
constant invariant time leads to finite longitudinal momenta of the created
particles. Thus, the production rates in the kinetic equations should include
also this extra effect.

The boost-invariant description of the tunneling process was the main
ingredient of the simulation program used to describe the space-time evolu-
tion of the color-flux tubes [9,10]. In particular, this program was applied in
the investigations of intermittency [11] and soft photon emission [12]. In the
present paper the boost-invariant tunneling along the hyperbolas of constant
invariant time is included in the kinetic equations. In contrast to the sim-
ulation studies [11,12], which were restricted to the case of the elementary
color fields, we now deal with stronger fields. Similarities and differences
between the present approach and Refs. [1,2] are discussed in detail.

2. Pair production in strong chromoelectric fields

2.1. Boost-invariant tunneling

A semi-classical boost-invariant description of pair production in chro-
moelectric fields was introduced in Ref. [8]. In this approach the tunneling
particles move along the hyperbola of constant invariant time

T=V1t2— 22 (1)

If the virtual particles start their motion at z = 0, see Fig. 1, the end points
of the tunneling trajectory may be determined from the energy—momentum
conservation laws

Ef:Mmi—f—pfc”:FZf, pr:F(tf—T). (2)

Here Ey and py| are the energy and the longitudinal momentum of the
particle at the space—time point where it emerges from the vacuum, m is
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antiparticle becomes particle becomes

/ real rea

0 starting point of .
tunneling

Fig.1. Boost-invariant tunneling of particles along the trajectory of constant in-

variant time 7 = /12 — 22

the transverse mass, and F is a constant force acting on the particle (in this
Section we shall concentrate our discussion on the case F' > 0 only). Using
the rapidity variable y we may write

Ey =m coshyy , Py = my sinhyy . (3)
In the analogous way we define the quasirapidity variable 7, which gives
ty = T coshny , zy = Tsinhny. (4)
Equations (2), (3) and (4) yield [§]

. my
sinhy; = T ng =2 ys. (5)

An interesting feature of Eq. (5) is that the kinematical quantities char-
acterizing the tunneling particles depend on 7, i.e., pairs with different
momenta are created at different invariant times. This is an effect of the
boundary conditions which describe expansion of the system. For very large
7, when the boundary of the field is far away from the center of the system
we recover the standard results: py =0, zy = my/F and ty = 7.

Although the boundary conditions change the kinematics of the tun-
neling process, the probability of tunneling per unit volume of space—time
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does not change [8]. Thus, we may use the well established formula for the

n eXp .

Here the minus sign is appropriate for fermions (in our case for quarks and
antiquarks) and the plus sign should be used for bosons (in our case for
gluons). Eq. (6) gives the rate integrated over the longitudinal momentum.
The p|-dependence may be taken into account by the following modification

of (6)
In <1 F exp <_7r7;i))‘5 <y—n+ %m) . (7

The production rate (7) is boost invariant and reduces to the previous for-
mula if divided by p° and integrated over p||- Moreover, the rapidity of the

_av _F
diz d?p,  4n3

AN _ , dN F

ar — P aty d3p = 4n3

particles which are produced at = n; is simply y; = %r]f, the result re-
quired by the condition of the boost-invariant tunneling discussed above. In
the limit of large invariant times or large color fields we find 7y — 0, hence
the standard formula for tunneling is recovered: the longitudinal momenta
of particles tunneling at z = 0 are zero.

It is important to emphasize that the production rate (6) was derived for
a constant force F' [5,6,13,14]. The use of this formula in the case of color
fields which are changing in time (due to the screening effect) requires jus-
tification. The work in this direction has been done in Refs. [15-19], where
a complete field-theoretic treatment of this problem was performed in elec-
trodynamics. The results of Ref. [19] show that the use of the semiclassical
production term in the transport equation is valid if a separation of different
time scales can be achieved: the time scales associated with quantum phase
oscillations and amplitudes of pair creation should be much smaller than
the time scales associated with the oscillations of the fields. In the present
paper we assume that such a separation is possible.

2.2. Boost-invariant variables w and v

In the next Sections we shall use the boost-invariant variables introduced
in Refs [20,21]

_22’ w:tpH _ZEa b, (8)

v=FEt—p| z=/w?+mu. 9)

and also
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From these two equations one can easily find the energy and the longitudinal
momentum of a particle

vt + wz wt 4+ vz
B=p' =" = (10)

The invariant measure in the momentum space is

d d
P = d?p, P — g2y ™. (11)
P v
In addition we have
w = Ttm sinh (y — ), v=7m, cosh(y —n). (12)

Equation (12) allows us to rewrite the production rate in the form

dN dN F ™m3
ﬁ:pomzmln<l¢exp<— FL))‘é(w—wo)v, (13)
where )
wo = Tm | sinh (yf —ny) = —7m sinh (n?f) = —%. (14)

2.3. Finite-size corrections

Comparing Eqs (8) and (14) we find that the longitudinal momenta of
the tunneling particles at z = 0 are —m?2 /(2F7). Thus, for large invariant
times p| — 0. On the other hand, in the limit of small invariant times pj
becomes infinite. As we shall see in more detail in Section 4, this divergence
leads to infinite values of color currents at 7 = 0, and to infinite decay rate
of the initial chromoelectric field. The physical origin of this singularity is
the possibility of the creation of particles at infinite values of ¢ and z, which
correspond to small values of the invariant time 7. In practice, we always
deal with finite systems and such tunneling cannot take place. In order
to take into account such finite-size corrections we impose an additional
condition on the tunneling process, namely [10]

. m
20y = 4Arcsinh (272 ) < An. 15
nf resinh (o7 ) < A7 (15)

Here An is a parameter which determines the space—time region in quasi-
rapidity, |n| < An, where the tunneling is possible. The tunneling particles
should fit into this region, hence the distance between the emerging members
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of a pair should be smaller than An. As a consequence, our final expression
for the production rate is !

dN F m2
ar mm(”e’“’(— F ))‘
. An
x6 |27 F sinh o) ™ d(w—wp)v, (16)

where 6 is the step function
O(z)y=1 for >0, O(x)=0 for z<O0. (17)

We note that condition (15) was also used in the simulation program [9,10].
In that case, the allowed region in the quasirapidity space was determined
by the actual size of a decaying color flux tube. In the present study, the size
of An is suggested by the rapidity range accessible in the ultra-relativistic
heavy-ion collisions at SPS and RHIC. In the following, we consider three
typical values: An =4, 6 and 8.

3. Semi-classical kinetic equations for quark—gluon plasma

In the Abelian dominance approrimation, the equations for quarks, an-
tiquarks and gluons have the form [2,22, 23]

1 uv » + d]\]z:t
(0" 0y + gei - F*'p,08) G (z,p) = T (18)
- dN;;
(P"0u + gmij - F*pu0f) Gij(w,p) = — (19)

where G (z,p) , G; (z,p) and éij(x,p) are the phase-space densities of
quarks, antiquarks and gluons, respectively. Here g is the strong coupling
constant, and 4,5 = (1,2,3) are color indices. The terms on the left-hand-
side describe the free motion of the particles and the interaction of the
particles with the mean field F,,. The terms on the right-hand-side de-
scribe production of quarks and gluons due to the decay of the field. The
distribution functions GZ-i and G;; include the spin degeneracy factors. In
the numerical calculations we neglect the quark masses and assume that
Eq. (18) holds for Ny = 3 flavors. We note that Eqs (18) and (19) do not
include the thermalization effects. The latter can be taken into account in
the relaxation time approximation (see for example Refs [24-26]).

! We neglect here the boundary effects: The tunneling processes can start from a place
close to the edge of the system and may have not enough space to fit into the allowed
region. Such situations should be eliminated by introducing an additional constraint.
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The only non-zero components of the tensor F,, = (Fﬁ‘y, Flfl,) are those

corresponding to the chromoelectric field £, which may be written as

dh 1 dh
=F= 22— = ——. 2
£ du Tdt (20)

Here h is a function of the variable u = 72 only (note that £ is invariant

under Lorentz boosts along the z-axis). The quarks couple to the chromo-
electric field € through the charges [27]

N

The gluons couple to £ through the charges n;; defined by relation
Ni; = € — €j. (22)

According to our discussion from the previous Section, the production
rates of quarks and antiquarks in the chromoelectric field € are

dN;

dr

=Ri(1,p1)d (w F w;) v, (23)

where we have defined

_ A mph . (An
Ri(t,pL) = 13 In <1—exp <— 1, ))‘H[QTAZsmh <T —pi|,
(24)
Ai = (glei-&| —04)0(glei- €| = 0g), (25)
and
P
w; = ——=sign (€; - E) . (26)

24;

The quantity A; describes the effective force acting on the tunneling quarks.
The effect of the screening of the initial field by the tunneling particles is
taken into account by the subtraction of the “elementary force” characterized
by the string tension o,. Similarly, for gluons we have

dN;;
d—lij = Rij(1,p1)d (w — wij) v, (27)
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where
. Ais 2 ) A
Rij(r,p1) = 47:_% In <1 + exp <—7Z)J‘)) ‘ 0 [27'/1ij sinh <Tn) —pJ_] ,
ij
(28)
Aij = (g|ni;- €| = 04) 0(g|ni;- €| = 0g) , (29)
and pi
wij = _ZAZ-]- sign (nij E). (30)

We note that the string tension of a tube spanned by gluons is three times
stronger than that of a quark tube, o4 = 30, [3].

The implementation of the boost invariance in Egs. (18) and (19) leads
us to the following form of the transport equations [2]

oG+ dh 0G+
—F g€ ——F— =TR; (1,p1) d (w F wi(r,pL)), (31)
or dr Ow
G dh 0G,; .
ang —9n; - ar 81;] =7Rij (T,p1) 0 (W — wis(T,pL)) - (32)

Their formal solution is
G;t (TawapJ_) = /dT’ TI RZ (Tlapj_) d (Ahl (Ta 7-’) Tw— wi(TlapJ_)) 3 (33)
0

T

Gij (1, w,p1) = /dT’ 7' Rij (7',p1) 6 (Ahij (7,7') +w = wij(7',p1)) |
0

(34)

where
Ah; (1,7') = g€; - [h (1) — h (7')], (35)
Ahjj (T, T') =gn;; - [h (r)—h (T’)] . (36)

One may notice that the distribution functions (33) and (34) satisfy the
following symmetry relations

Gz_ (TawapJ_) = Gj_ (Ta _wapJ_) ) GZ] (TawapJ_) = GJZ (Ta _wapJ_) . (37)

We note also that the time integrals in (33) and (34) reveal the non-Markovian
character of the particle production mechanism: the behavior of the system
at a time 7 is determined by the whole evolution of the system in the time
interval 0 < 7' < 7.
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4. Color currents

Equations (18) and (19) show how the particles behave under the influ-
ence of the field. In order to obtain a self-consistent set of equations we
should have also the dynamic equation for the field. It can be written in the
following Maxwell form

OuF" () = 3" () + Jp(2), (38)

where 3V is the conductive current (related to the simple fact that particles
carry color charges €; and nij) and j%, is the displacement current (induced
by the tunneling of quarks and gluons from the vacuum).

4.1. Conductive current

The form of the conductive current is standard

3
7" (z )—g/de Nfzez (z,p) — G (z.p)) + Y _ ;G

i=1 ij=1
(39)

Substituting the quark and gluon distribution functions (33) and (34) into
Eq. (39), and using Egs. (10) and (37) we find that j”(x) has the following

space—time structure

3" (z) = [§°(2),0,0,5%(z)] = [2,0,0,4]T (1), (40)

where

29/ o dww

j T dpj_ N EZ Tapr_ + T,W,PL

( ) » f ; ;nzj ( )
(41)

The use of the explicit form of the distribution functions G; and éij in

Eq. (41) gives

29Nf 2 (r'sp1) [Ahi —wi(p1, 7")]
J (1) = € | dr' T [ d°p
Z / / \/Ah —wi(pL, ™)) +plu

an]/dTl TI/dQPLRiJ( apL) [Ah wz](pLa )]
i>j \/[Ahij —wij(pL, )] +p?u

(42)
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4.2. Displacement current

The structure of the displacement current is less obvious. One can find
the form of 5% through the analysis of the energy and momentum conser-
vation laws for both the matter (quarks and gluons) and the field

O Tinatter(®) + 3uTé‘e”1d($) =0. (43)
The v = 0 component of this equation gives for the field part
9 (1 OE OF%
™ = = — = —F30. 44

and for the matter part

3 3
3MT£gtter = —gF" - /dP po by 3ﬁ NfZei (G:r - G;) + Z nz-jG”

i=1 ij=1

AN} dN; 3 dN;:
ooy ] w

,J=1

where we used Eqgs. (18) and (19). Using the last results we may write

30 8F03 30 3 - + - - A

i=1 ij=1

5. We;  [dANF dN-
F30_ P N D €; 7 7
* /d f;ei-Ff‘O ar T ar
p’ny;  (dNy; . dNj;
. 4
+§ F30<dr+dr (46)

Similarly, we may analyze the v = 3 component of Eq. (43). The conclu-
sion is that the field equations (38) represent a sufficient condition for the
conservation of energy and momentum if the displacement current has the
structure

ip(@) = [i5(2),0,0,5H()] =[2,0,0,4]T p (1) (47)

_Nf 5 [dN; ng
- Zezgfdwd“<dr T

n; dNZ" dNZ
7_2 Z L /dwdeL ( dFJ + d]z ) (48)

i>j 77zg

where
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Integration over w in Eq. (48) can be easily done

€& /d2pJ‘m Ri(r:p1)
2 Nij R
+= —]g /dgpL\/W Rij(t,p1). (49)
1> n”

We note that the form of Eqs (40) and (47) implies that both the con-
ductive and displacement currents are conserved separately

We also note that the integral over p is restricted by condition (15), implic-

o) = 2NfZ

itly included in R; and 7~2Z3 If we did not use our finite-size correction, the
displacement current would diverge at small 7, J p(7) ~ 772, and the field
equation would be singular, compare Eq. (51). In the standard case (with
zero longitudinal momenta of the tunneling particles and with no finite-size
corrections), the quantities w; and w;; are zero, hence Jp(r) ~ 77! for
small 7, and the field equation is regular in the limit 7 — 0

5. Field equations
With the all substitutions required by the boost invariance, the field
equation (38) may be written as
d€ (1)
dr

=—7[T (1) +Tp(7)] (51)

or
d*h (1) 1dh (1)

dr2 1 dr
This is an integro-differential equation for the function h (7), because the
conductive current J (7) depends not only on h (7) but also on all the values

of h(7') for 0 < 7" < 7. Eq. (52) has to be solved numerically step by step
for given initial values. These are taken in the form |2, 3]

h(0) = 0, ifl’;m) :—50:—,/2"%(; (53)

Here the Gauss law has been used to determine the initial strength of the
chromoelectric field £ in terms of the transverse radius of the color-flux-tube
(mr?= 1 fm?), the string tension (¢, = 30, = 3 GeV /fm), and the number of

+72 T (1) + T p (7)]. (52)
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color charges k. Since the exchange of color charges at the initial stage of a
heavy-ion collision leads to the color fields spanned by gluons [28], we assume
that g is one of the gluon color charges 7n,;. In practice we take g = 1o,
so only the third component of the chromoelectric field, 5(3), is present in
our numerical calculations. The solution of Eq. (52) is independent of the
initial condition for h (7) because of the cancellations connected with the
gauge transformation which leaves £ unchanged.

A

€3 GV/Ifm]

fm]

Fig.2. Time dependence of the chromoelectric field for different values of k. The
maximal quasirapidity interval allowed for tunneling is fixed, An—=6.

e GV/Ifm]

Fig. 3. Time dependence of the chromoelectric field for different values of Arn. The
initial field strength is fixed, k = 3.



Boost-Invariant Particle Production in Transport Equations 3047

In Fig. 2 we plot the time dependence of the chromoelectric field, as
calculated from Eqgs (52) and (53) for different values of the parameter k.
The maximal allowed quasirapidity interval An is 6 in this case. We observe
the field oscillations with the frequency growing with k. The shape of the
oscillations is almost identical to those found before in Ref. [2]. Clearly, the
modification of the tunneling process does not affect the field behavior in
this case. In Fig. 3 we show the time dependence of the field for the fixed
initial strength, k = 3, and for different values of A7. In the three considered
cases, An = 4, 6 and 8, the field oscillations are very similar. Looking in
more detail, we observe that with increasing Ap, the chromoelectric field
decreases faster at the very initial stage of the process, i.e., for 0 < 7 < 0.1
fm. Later the decrease of the field is weaker and for 7 ~ 0.3 fm the values of
the chromoelectric fields are approximately the same for different values of
An. For longer times one may notice that the period of the field oscillations
is slightly longer for larger values of Anp — a faster initial decay of the field
causes a faster back reaction of the induced currents, and the subsequent
slow down of the decay.

6. Energy density and pressure of the plasma

The energy—momentum tensor of the quark—gluon plasma has a structure

T o = e (1) + P (7)]utu” — P (1) g, (54)

matter

where in our two-dimensional model

W =22 (55)
T

It is important to emphasize that in our case the standard form of the
energy-momentum tensor, Eq. (54), does not follow from the assumption
of the local thermodynamic equilibrium, but it is a direct consequence of
the boost-invariance. Eq. (54) can be derived directly from the definition of
the energy—momentum tensor with the help of the symmetry relations (37).
The conservation law (43) together with Eq. (54) imply

4
dr

[5 (1) + %s?(f)] __c@+P) (56)

-
In the absence of the fields Eq. (56) is reduced to the Bjorken equation
describing the evolution of the energy density in a boost-invariant hydro-
dynamic model [29]. On the other hand, neglecting the expansion effects,
described by the term on the right-hand-side of Eq. (56), we obtain the
simple conservation law for the total energy of the field and matter.
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The non-equilibrium energy density ¢ and the non-equilibrium pressure
P are

6(7):l/d2pL dw v NfZS:(G;r—f—Gi)—f—ZS:éij (57)
u i=1 ij=1
and
P(r):l/deUsz—2 Nfi(GjJrG;)Jriéij : (58)
u v i=1 ij=1

The time dependence of the energy density € (7), following from Eq. (57),
is shown in Figs 4 and 5. In Fig. 4 we fix the maximal quasirapidity interval
An = 6 and show the results for different strengths of the initial field, £ = 2,
3 and 5. We observe that the energy density grows very rapidly and reaches
maximum at a fraction of a fermi. Later the energy density decreases, which
is an effect connected with the longitudinal expansion of the system, imposed
by the boost invariance. The maximal values of the energy density are very
close to those found in Ref. [2]. In Fig. 5 we show the results for the fixed
initial value of the field, £ = 3, and for different quasirapidity intervals,
An = 4, 6 and 8. It is interesting to observe that with increasing values
of An the maximal energy density gets smaller. This behavior is connected
with the time dependence of the chromoelectric field. For larger values of

A,
200 «+
rN s
v— k=
157’ \ An=6
& ] .
E o\
S qop 3
[0) | i
o \
iy [ S
5[ S -
RN T T - -
k=2 RPN .
0.5 1 1.5 2

t[fm]

Fig.4. Time dependence of the energy density of the plasma, Eq. (57), for different
values of k£ and An =6.
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A
/ N\
8 ! \
, v An=6 k=3
\
INARN
£ N\ An=4
= An=8 "\
s |
o 1
=
2 \-.— - - = -~
05 1 15 2
t[fm]

Fig.5. Time dependence of the energy density of the plasma for different values of
An and k = 3.

An the decay of the field is slower (except for the very beginning of the
decay process) and the growth of the energy density is weaker.

We have checked that our numerically evaluated functions e(7) and P(1)
obey Eq. (56). The time-dependence of the non-equilibrium pressure P(7) is
depicted in Figs 6 and 7. One can notice that the minima of P(7) correspond
to the extremes of the chromoelectric field. At these points the longitudinal
momenta of the particles practically vanish and the field is the strongest.

8
! \
k=5 _
— o An=6
= 6 I \
§ 1k=3
(0] [
O, 4 I ¢ .f\
o : \
27 7 TN~ .
' k=2 \..}. \\/—"’ ‘a_ —
0.5 1 1.5 2
t[fm]

Fig.6. Time dependence of the pressure of the plasma, as defined by Eq. (58),
k=2,3,5and Ay = 6.
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A N
/ N An=4
41 ! =
v An=6 =3
AT\
= 3 ".' T “..\
é [} :
S /N An:g
O} L
o 2 :
o \'._
S \,
1 i \ L - = ]
" \ 7/ S
05 1 15 2
t[fm]

Fig. 7. Time dependence of the pressure of the plasma, k =3 and An = 4, 6, 8.

This behavior reminds oscillations of a simple string. Another interesting
feature of the process discussed here is that the ratio P (7) /e (1) oscillates
around the mean value P/e ~ 1/3, which corresponds to the equilibrium
limit. Imposing condition P/e = 1/3 in Eq. (56) we may treat this expression
as an equation determining e (the time dependent chromoelectric field enters
here as the only input). We have found that the solutions of this equation
are very good approximations of the exact solutions shown in Figs 4 and 5.

7. Conclusions

In this paper, the boost invariant tunneling has been incorporated into
the framework of the kinetic theory describing production of the quark—
gluon plasma in strong color fields. Our description of the tunneling process
includes the effect of a finite space-like distance formed between the parti-
cles. Such a distance appears, since the energy and momentum conservation
laws should be satisfied locally during the tunneling. In our approach, the
particles emerging from the vacuum have finite longitudinal momenta, which
is a direct consequence of the tunneling along the trajectories of constant
invariant time.

We restrict the possibility of creation of pairs at very large distances
(in order to retain the boost-invariance of the system, this condition is for-
mulated in the quasirapidity space). In this way we mimic the constraints
imposed by the fact that total energies of the realistic systems are finite.
We find that the finite-size corrections are crucial to have non-trivial so-
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lutions of the kinetic equations. For the realistic finite-size corrections (as
suggested by the accessible rapidity range in the present experiments with
the ultra-relativistic heavy-ions) we find the solutions of the kinetic equa-
tions which are very close (qualitatively and quantitatively) to the results
of the previous investigations: the chromoelectric fields oscillate, and large
densities of quarks and gluons are produced in a very short time. The in-
crease of the region allowed for tunneling does not lead to the increase of
the produced maximal energy density of quarks and gluons. This feature of
the model can be used to interpret small differences in many characteristics
of the heavy-ion collisions at the SPS and RHIC energies.
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