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In this paper we have estimated correction to the distance modulus,
derived from the generalized Dyer—Roeder equation, due to a single clump
of matter inducing gravitational lensing effect. To describe the influence of
the gravitational lensing, we have used the “Swiss cheese” model and the
Jacobi equation. In the case, when the source is at redshift z = 1 and
the lensing object is a galaxy modeled by the Singular Isothermal Sphere
(SIS) with mass M = 10! x My, we have found that the correction is about
0.01 mag. We have also show relations between the described approach and
the convenient approach using the gravitational lens equation. In particu-
lar, we have derived the lens equation from the geodesic deviation equation
and showed that the obtained dependence of the magnification factor on
the impact parameter is well approximated (with accuracy ~ 0.2%) by
a function obtained from the lens equation for the SIS.

PACS numbers: 98.62.Sb

1. Introduction

To determine cosmological parameters and evolution of the universe,
it has been customary to compare observations of extragalactic objects
with the predictions of the spatially homogeneous and isotropic Friedman-—
Robertson—Walker (FRW) cosmological models. However, the assumption,
that the matter distribution is homogeneous and isotropic, seems to be rea-
sonable only for the largest distance scale (larger than 300 Mpc), on smaller
scale we observe many inhomogeneities such as clusters of galaxies and galax-
ies. It is interesting to study the effect of a locally inhomogeneous mass
distribution on the optical properties of distant objects, in a universe which
is homogeneous and isotropic on sufficiently large scale.
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A beam of light propagating outside the mass clumps in such a universe
has less mass within the beam, so it diverges faster than it would in the
homogeneous universe of the same mean density. A discussion of this effect
was first published by Zel’dovich [1] and later taken up by Dashevskii and
Zel'dovich [2] and Dashevskii and Slysh [3]. If the beam passes close to any
clumps, it may be intensified and sheared by the gravitational lens effect of
the clumps. These two effects were discussed by Gunn [4]. All of them used
models of the inhomogeneous universe, which are approximate solutions of
the field equations. The first application of an exact solution of the field
equations to this problem was done by Kantowski [5]. He considered the
“Swiss cheese” inhomogeneous model.

Recent results [6-8] of two projects: the Supernova Cosmology Project
(SCP) and High-Z supernova search team (HIZ), which main goals are ob-
servations of high-redshift supernovae and determination of cosmological
parameters through the distance-redshift relation for type Ia Supernova
(SN Ia), indicate that the major energy density in the universe must be
of the “vacuum” type related to a non-zero value of the cosmological con-
stant. To check these results and determine cosmological parameters with
higher precision we should study changes in the distance measurements due
to the effect of the gravitational lensing.

In this paper we estimate correction to the distance modulus obtained
from the Dyer—Roeder equation caused by a single gravitational lens. To
describe the spacetime containing a gravitational lens we use the “Swiss
cheese” model. All interesting us properties of the light beam we derive
from the geodesic deviation equation. This approach is applied to the ob-
served source at redshift z = 1 lensed by a galaxy modeled by the SIS with
mass M = 10*! x M. Obtained dependence of the magnification factor on
the impact parameter is compared with the same dependence derived from
the lens equation for the SIS. We also show how our approach relates with
the gravitational lens equation used in the conventional approach.

The paper is organized as follow. Sec. 2 contains basic definitions and
relations between different kinds of distances used in cosmology. A brief
review of the FRW model, the distance-redshift relation in this model and
the Dyer—Roeder equation are presented in Sec. 3. The “Swiss cheese” model
is described in Sec. 4 and the SIS in Sec. 5. The procedure of calculating
the correction is presented in Sec. 6. In Sec. 7 the derivation of the lens
equation from the deviation equation is showed. Results of calculations are
in Sec. 8 and 9.
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2. Luminosity and angular-diameter distances

In cosmology distance is not directly measurable quantity. Thus there is
no unique definition of the distance. Two typical ones which are frequently
used are the luminosity and angular-diameter distances.

If one knows the source luminosity L and observes the flux S, one can
determine the luminosity distance Dy using relation

L

= . 1
47TD% (1)

The angular-diameter distance is defined as

Dy =/ —> 2
A d.QO ’ ( )

where df2p is the solid angle at the observation point subtended by the
surface element dAs.

Similarly, interchanging the roles of source and observer, one defines, so
called, the “corrected” luminosity distance D'

[dAo
D) =] —=

which connects with the luminosity distance by relation Dy = (1 + z)D7,
where z is the redshift of the source.

It is known that the “corrected” luminosity distance and the angular-
diameter distance are not mutually independent but they are related by the
Etherington’s reciprocity relation [9] D} = (1 + z)D 4, so one has

Dy = (1+2)?Dy4 . (4)

The reciprocity relation means that study of a future-directed null geo-
desic congruence, which starts expanding from the source S to the observer O
(its Jacobi vector vanish at S), is equivalent to study of a past-directed
null geodesic congruence, which starts expanding from the observer O to
the source S (its Jacobi vector vanish at O). The latter approach is more
conveniently for observer, so we will use it.
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3. The distance-redshift relations in homogeneous and
inhomogeneous models of universe

3.1. The distance-redshift relation in the FRW models

Geometry of a homogeneous and isotropic universe is described by the
FRW metric

dr?
1 — kr?

ds® = 2dt* — R(t) < + 72 (d6* + sin? 9d<p2)) : (5)
where ¢ is the speed of light, ¢ is a time coordinate, (r,0,¢) — spatial
coordinates, R(t) — a scale factor, k = 0,+1, —1 depend on, respectively,
zero, positive or negative curvature of space.

After inserting this metric in the Einstein’s equation one obtains the
Friedman’s equation

) 2
R(t)\ _ 887G kc? 1
(m) = 2 RaE T3 ©)

where "= %, G is the gravitational constant, o = p(t) is density of matter,
A is the cosmological constant.
The above equation can be written in terms of four parameters': the

Hubble constant H(t) := R1) and density parameters (2, := 220 () := k<

R(t) o’ T RZHZ

. : : 2

and 24 := 5;—/‘ , where 0,0 is matter density at the present time? g4 := SA;’G
C

2
density of “matter” connected with the cosmological constant, g, = % the
critical density, then

H?(z) = Hf (2m(1+2)* + 211+ 2)> + 24) (7)

where z = % — 1 is the redshift. Using the relation {2, + 2, + 24 =1 we
obtain

H?(2) :Hg ((1+z)2(1+0mz) —z(z—l—Z)QA) . (8)

As we see the three parameters Hy, (2,,, {24 uniquely determine evolution
of the universe.

Values of the cosmological parameters may be determined through the
distance-redshift relation. In the FRW dust models the luminosity distance
Dy, is a function of redshift and cosmological parameters and is given by [10]:

! We neglect a radiation energy density.
2 Index 0 means evaluated at the present age of the universe.
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DL(Z' H07 'Qma 'Q/l) ==

(1+2)c ) 0] dz'
Hy/|2 142 /\/ (14 2n2') — 22 +2)2, ) )

where S(z) denotes sin(z) for 2, < 0 (k = +1), z for 2, =0 (k = 0), or
sinh(z) for 2, > 0 (k = —1). When 24 = 0 it simplifies to the Mattig’s
formula [11]

Di(z; Ho, ) = Hf% Oz + (2 — 2) <\/1+(2mz— 1)] (10)

3.2. The Dyer—Roeder equation

Although the universe may be approximated by the FRW model on aver-
age, observed distribution of matter is far from isotropic and homogeneous.
A large part of the matter is concentrated in galaxies, galaxies tend to form
groups and clusters, clusters form super-clusters. In such an universe the
light may travel far away from all clumps through the intergalactic space,
which is nearly vacuum. In this situation it is said, that the light prop-
agates through an empty cone in contrast to a filled cone, when the light
propagates through homogeneous and isotropic background with the uni-
form matter density p. For these two cases the distance measures may be
completely different, because for empty cone the light beam diverges faster
than for filled cone.

To take into account a non homogeneous distribution of matter, one
can assume, following Dyer—Roeder [12], that a mass-fraction &, called the
smoothness parameter or clumpiness parameter, of matter in the universe is
smoothly distributed, while a fraction 1 — & is bound in galaxies. The case
& = 0 corresponds to the vacuum in the intergalactic space, while & =1 to
the uniform FRW model. In such an universe the largest possible (for given
redshift) angular-diameter distance D4 is determined from the generalized
Dyer-Roeder equation [12]

d2DA <3 1 7 )dDA

(14+2)(14+2p2)—— 72 +§Qm+§(2mz ¥ +-a0,Ds =0, (11)

with the initial conditions Da(2)|,—g = 0, dDa(z)/dz,—¢ = c¢/Ho, so
it is often called the Dyer—Roeder distance. As we see the above equation

does not take into account the cosmological constant A. The generalized
Dyer—Roeder equation with A takes the form [13]:
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d?D 4
dz?
dDy 3

7
+<§(2m(1+z)3+3Qk(1+z)2+2(2/1> W+§&(zm(1+z)2p,4 =0. (12)

(14 2) (2m(1+2)* + 25(1 + 2)> + 24)

The Dyer—Roeder distance will be our reference distance in the calcula-
tion of the magnification factor (Sec. 6.2).

4. The “Swiss cheese” model

The “Swiss cheese” model, also called the Einstein-Strauss model [14],
describes an inhomogeneous universe. The name “Swiss cheese” refers to the
fact that in this model static spherical voids are created within a large, time-
dependent spacetime. A void is constructed by removing homogeneously
distributed matter from a sphere and replacing it by a compact object with
the same mass, placed at the centre of the sphere.

Mathematically, the “Swiss cheese” model is realized by matching of
a FRW metric describing the exterior spacetime

dr?
1 — kr2

ds?c = 2dt? — R*(t) < + 72 (d6? + sin® Od‘Pg))’ (13)

to a Schwarzschild metric with the cosmological constant describing the void

2_ 2 rg A 2 dr3 2 (102 | o2 2
dSs = C <]. — '['_s — g’l”s> dT —1_74_9—_%712—7”5 (de + sin HdQD ) s (].4)
Ts
where? r, denotes the Schwarzschild’s radius (r, = 2GM/c?, M mass of
the central object), across a spherical boundary. The spherical boundary
X stays at a fixed coordinate radius in the FRW frame (ry =const.), but
changes with time in the Schwarzschild frame. The smooth matching of the
two spacetimes across a boundary is guaranteed if junction conditions are
satisfied: the first fundamental forms and the second fundamental forms are

identical on both sides of the hypersurface. From these conditions we obtain

R(t)ry =7y . (15)
ar rg A S\7!
E— 1—kT2<1—r—s—§7’s . (16)
at ¥

3 Indices f and s refer to, respectively, quantities in the FRW metric and the
Schwarzschild metric.
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The above equation in terms of the cosmological parameters and the redshift
z takes on the form

2)c? — kr?
dr (14 2)cy/1 % (17)

dz  H(2) [(142)2 — HX(Rors)2(2m(1+ 2)3 + 24)]

where H(2) = Hor/2m(1 + 2)3 + 2, (1 + 2)2 + 24

Radius Ry = Ryry of the void described by the Schwarzschild metric
can be calculated from the condition that the average matter density in the
void should be equal to the average matter density of the universe (2,,0c.
It means that M = (47/3)2,,0.R3, what could be rewritten in the form

MG = 102, H{R} . (18)

In contrast to the “pure” “Swiss cheese” model, where outside the sphere
there are homogeneously and isotropicly distributed matter with density o,,
we assume that outside the sphere there are matter with uniform density
apm as in the Dyer-Roeder approach presented in the previous section.

5. Model of the singular isothermal sphere

In our case a compact object in the center of the sphere models a galaxy.
On the other hand observations of galaxies indicate that they are surrounded
by dark matter halo in ranges much larger than a visible part of galaxy, so
treating them as a point mass is too crude. We must consider more realistic
model of the matter distribution.

A simple model for the density profile p of a galaxy is the Singular
Isothermal Sphere (SIS)

02

psis(r) = m ) (19)

where o, is the line-of-sight velocity dispersion of the mass particles. Mass
conservation implies that the velocity dispersion is related to the mass of
the halo M and to the redshift by [15]

o, = MY3 [H2(2) A(2)G216]) '/ (20)
where A(z) is the mean density of the halo in units of the critical density

at that redshift and, for a flat universe (£2; = 0), it may be approximated
by [15] A(z) = 1872 + 82z — 3922 where x = HZ 2, (1 + 2)3/H?(2) — 1.
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A SIS halo is truncated at radius d given by relation

d
o2d
M = /pSIS(T')dV = 2?, (21)
0

where M is mass of the halo.
The gravitational field inside the SIS is static and spherically symmetric
so it can be described by the line element

dskg = 22N qT? — 2B gp2 _ 2 (d6? + sin® 0 dp?) , (22)

where coordinates T, 1,0, @ are the same as in the Schwarzschild metric in-
troduced in previous section and functions A(r), B(r) are given by equations

6723(7") = 1= —AT _ % ,OSIS( )'I"IQd'rl 5 (23)

A , 2B(r') _
QA(T’) = / ((87;?1) . A) TIeQB(T ) + erill> dr' (24)

Taking the equation of state for the dust p = 0 and the density profile

of the SIS we have e=2B(r) — 1/1 2 _ , SO
T —24 2 + ﬁ
2A(r) = / 3 f O (25)
0 7", (1 — §A7'I — 6—2">

Because above integral is divergent at zero, we introduce some cutoff radius

Teutoff <€ d below which we assume the constant density profile peusoff, such
Tcutoff Tcutoff

that M (reutor) = 47 [ psis (r)r2dr = 47 i Peutof”>dr. Then we have
0 0

2
Pcutoff = 20&# and convergent integral (24) at zero.
4 rcutoﬁ

6. A procedure for calculating the correction

6.1. The Jacobi equation

Let us consider an infinitesimal beam of light propagating from the source
to the observer, described by a congruence of null geodesics

k kH =0 —— =kLE" =0 26
=0, (20)
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where* D/d) denotes covariant differentiation, X is affine parameter, and
k¥ is a wave vector tangent to the ray. A vector X#()), called the devia-
tion vector or the Jacobi vector, connects “central” light ray to one of its
neighbors, which belongs to the same congruence. It has the property that

DXH())
X

After differentiation of the above equation we obtain the geodesic deviation
equation also called the Jacobi equation

= X1 =kt XV (27)

D2XH())
—z = —RM, po k" XP(N)ET (28)
where R¥,,, is the Riemann tensor®. As we see, the Jacobi equation de-
scribes all gravitational focusing and shearing effects on an infinitesimal
beam of light rays, so we will use it to study the influence of inhomogeneities
and curvature of spacetime on the observed properties of light.

We choose the affine parameter A so that:

e A\ =0 at the point of observation,

e ) increases from the observer to the source,

e for the observer with the 4-velocity u#, k,u* = c (1 + z).
With this choice, the affine parameter is related to the redshift by

Z—f\ = Ho(1+2)>/ (1 + 2)2(1 + 2mmz) — 2(z +2)24 . (29)

In the case of null geodesics the Jacobi equation can be rewritten in
a more convenient form for calculations. One can always choose a deviation
vector X# such that, besides k, X" = 0, also X, u* = 0 at the point of ob-
servation. The vector X* chosen in this manner spans the two-dimensional,
space-like, subspace orthogonal to the ray, which we call a screen. The
Jacobi vector can then be written as

Xt =X el + Xoebh + X3k* | (30)

where €/, e} are vectors spanning an orthonormal basis on the screen
kuef = kel = uyel = uy el = effey, =0, (31a)
efe;, =ehey, = —1. (31b)

4 Greek indices run from 0 to 3.
5 R'uupa' EF#a,p_FlﬁLp,J_FFl:—dF#p_Fl:—pF#d‘



3124 P. BIELEWICZ

el and eb are parallel transported along the ray
A k=0, e k" =0. (32)

Using the fact, that deviation vectors differing by a constant multiple of k*
represent displacements to the same nearby ray, we choose X3 = 0 so that

The equation
DXH(A
D _ g xv(a). (3)

in terms of the screen components X; and X5 takes on the form

XZ(A) = SZ]XJ(A), Sz] = —ef k}t;l/ 657 7'a.7 = 172 (35)

)

where "= %. In the matrix notation we have
X0 =8X(N) (36)

where the matrix § after introducing quantities, which more conveniently
describe changes in the cross-section of the beam, such as: the expansion
parameter 6 = % k¥, which describes the rate of expansion, the shear
o= % kype*te®, where et = ef + iely, describing the rate of distortion
the shape of the cross-section, takes on the form

0 —Reo Imo
S= < Imo 0+ Reo ) (37)

Differentiation of (36) gives

XN =TX(), (38)

where ]
T=8+8%, (39)
and after combining the last equation with Sachs’ equations for 6 and o [16]
0+6%+ |0 = iR, k'K, (40a)
& 4200 = —5Cppoe™ k" ek, (40b)

we obtain

R-ReF ImF
TZ( Im F R+Re]—')’ (41)
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where R = —%Rﬂyk“k” , F = —%Cﬂyms*“k”s*pk” = Feif (Ruy — the
Ricci tensor, C)pr — the Weyl tensor).

In this manner we obtain an equation, which is equivalent to the geodesic
deviation equation (28). As we see one may distinguish two forms of matter
influence on the beam: the Ricci focusing (described by the quantity R),
which is due to the matter contained in the beam and the Weyl focusing
(described by the quantity F), which is due to tidal effects produced by
distant clumps of matter.

Because the phase of the Weyl term [, is constant along the beam in
a spherically symmetric field, we can set it equal to zero. Thus we have
ImF = 0. In the FRW metric R = —47Gomo(1 + #)? and Cpupe = 0, s0

F = 0. Tn the Schwarzschild metric R = 0 (R, = 0) and F = 22 0ta)r,
In the SIS

R = —4nG(1 + z)%e 24 (psls(r) + ;%) ,

and

r
_ ArGY (1 + z)? 40203 (1 4 #)?

3 2
= T—3/pSIs(T')7“' dr' — psis(r) | = —
0

F

r

where b is the impact parameter and the last equation is valid for r > reutof
— the cutoff radius introduced in Sec. 5.

To solve equation (38) it is necessary to specify initial conditions X (0)
and X (0). If we assume that we knew the Jacobi vectors at the observation
point X (0) and at the point of the source X ()\,), we may estimate X (0)
from the integrated form of equation (38) [17]

As
X(0) = & (X0) - X0) - 1 [ -NTWXWA (12)
0
1
< X - X(0)
As
3 [ Qs = DT (O = NXO) + 23X ()

where A is the value of affine parameter at the point of the source.
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6.2. The magnification factor

Gravitational lenses can magnify images of distant objects. This effect
can be described by the so-called magnification factor p [18], such that

==, 43
p=g (43)
where S; is the observed flux changed by gravitational lensing, and S is
the flux that would be received if the same source was observed through
an empty cone. Using the relation between the luminosity distance and the
observed flux (1) and equation (4), we obtain

_Di

=_4 44
B (4

1

where D4 is the Dyer-Roeder distance, relative to which is determined the
magnification, and D4 is the angular-diameter distance measured on the
basis of flux S;. The distance D 4 could be computed from the definition (2),

where one takes dAg= X1 (\s)X2(\s) and df2o = d)gég\o) d)gjgo)’ then one has

p2 — 2X15)Xa2(As) (45)
A X1(0)X5(0)

where X7 (), Xa(Xs), X1(0), X5(0) are coordinates of the Jacobi vector in
the universe described by the Einstein—Strauss model.

The magnification p, of an extended source, considered as an assembly of
radiating point sources with surface brightness profile I(y), is given generally

o = LW W)y
o Jlyay

where y is a vector of position at the coordinate frame with the origin at
the center of the source, u,(y) is the magnification of a point source at
position y. Let us assume that cross-section of the source is circular and
I(y) =const., then in the polar coordinates we obtain

(46)

27 Rs
Of Of pip (1, @)rdrdy
e — 5 4

where Ry is the radius of the source.
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7. Relation between the geodesic deviation equation and the
gravitational lens equation

Let us see how presented above approach to the gravitational lensing re-
lates with the gravitational lens equation used in the conventional approach.
We will restrict our consideration to the “pure” Einstein—Strauss model with-
out the SIS inside the void described by the Schwarzschild metric and to the
plane containing the source, lens and observer. Then the gravitational lens
equation is given by

B=06-2r (48)

"D, D 0’
where 74 is the Schwarzschild’s radius for a body deflecting light, Dy, Dy,
D, are the angular-diameter distances® of, respectively, the source from the
lens, the source from the observer and the lens from the observer, 3 is the
angular separation of the source from the lens, which would be observed in
the absence of lensing, 6 is the observed angular separation between the lens
and the deflected ray. ‘

Under the thin-lens approximation, we assume that the change in” X (\)
in the vicinity of the deflection point A; may be approximated by a step
function

A+e
)‘(1“+ ~ Xy, =-— / X (M\ReF dX (49a)
3b%c(1 Xy d
~9 / +Zl)rg 1], 0T (49b)
Tmin 27"5\/ 1 — k'f'z <1 — m)
c(1+4 2)rg\/1 — kr?
~2 ; EXH[ , (49¢)
T min

where b is the impact parameter and in equation (49b) we use relation be-
tween the radius and the affine parameter

%:c(uz)\/(l—kr%) <1—ﬁ<1_%_§r2)> ’

where as regards assumptions r > rg, and 2, S 1, we neglect terms

~

Tr-" ,§r2 <& 1. Inserting this into relation between the deviation vector at

5 Which one may identify with the generalized Dyer-Roeder distances.
" As was mentioned in Sec. 6.1 § = 0, then the vector ¢* lies in the considered plane
source-lens-observer.
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the source Xy, and the deviation vector which would be in the absence of

lens X, [19]
2
_ Dls . . _ Dlsrg 1—k'r‘2
X=X+ o (X, =%, ) B+ 2————Xy,, (50)
min

and using relations between the infinitesimal angles and the Jacobi vectors

Xy, = DydB (51a)
X”S = D,df , (51b)
X1|l = Dldﬁ 5 (51C)
one has
DD, " \/1-— kr?
dp = do +2—2= VT,
s Tmin

Finally, because rmin = D;0 and /1 — kr%, ~ 1 we have

D
dﬁ:d(@—Qrngge). (52)
s/l

We see that this is just the differential form of the lens equation (48).

8. Results

Now we will use the presented above procedure of calculating the mag-
nification factor to compute difference between the distance modulus based
on the generalized Dyer-Roeder equation (12) and the distance modulus
obtained from the presented approach using the “Swiss cheese” model. All
calculations were done numerically due to a lack of analytical solutions of
equation (38).

Let us consider the beam of light propagating from a source with red-
shift z; = 1, and passing a galaxy with mass M = 10'"! x M, and redshift
zg = 0.4. On the basis of the measurements of the cosmic background ra-
diation and prediction of the theory of inflation in the Big Bang model, we
assume a flat universe {2, = 0, and from the measurements based on the
motions of clusters of galaxies, we have (2, = 0.3. Then, from the relation
2 + 2 + 24 = 1, we obtain 24 = 0.7. We take also the most favorable
at the present time value of the Hubble constant Hy = 65kms ! Mpc™'.
The difference between distances A(m — M) depends very weak on the
clumpiness parameter &, so we can choose it arbitrary. We assume that
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a = 0.5. For above parameters of the model the radius of the hole is about
900 kpc and the radius of the SIS halo is about 100 kpc.

On Fig. 1 we could see that with these assumptions the magnification
factor decreases from value 1.01, for the impact parameter b = 15 kpc cor-
responding to the radius of the galaxy disk, with increasing impact param-
eter b. The dependence pu(b) could be well approximated with accuracy
~ 0.2% in the range from 15 kpc to 100 kpc (the radius of the SIS) by
a function obtained for the SIS in the conventional approach using the grav-
itational lens equation [20] u(b) = 1 + const./b.

1.012 T T T T T T T T

u

101 .
1.008 -
1.006 -
1.004 -

1.002

1 1 1 1 1 1 1 1 1 oo
10 20 30 40 50 60 70 80 90 100

b [kpc]

Fig.1. Relation between the magnification factor p and the impact parameter b.
The continuous line corresponds to the dependence u(b) derived from the lens
equation for the SIS, and the dashed line describes the dependence obtained from
the presented approach.

The difference A(m — M) between the Dyer—Roeder distance modulus
(m — M)pr = 5log(1 + 2)?D 4 + 25, (53)

and the distance modulus changed by gravitational lensing magnification
(m — M)tensing = 510g((1 + 2)°Da/ /) + 25 . (54)

is equal
Alm = M) = 5log /i (55)
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where Dy is the Dyer-Roeder distance derived from (12) and is expressed
in Mpec. Taking the largest obtained values of the magnification factor
u = 1.01, we estimate the correction as equal 0.01 mag.

9. Summary and conclusions

Using the “Swiss cheese” model to describe the inhomogeneous universe
and the geodesic deviation equation, we have investigated the influence of
a single clump of matter on the distance modulus for the source observed
through an empty cone. The advantage of this approach is the use of a known
exact solution of the field equations and the general relativity formalism.
Because in practice there are used more realistic models of the gravitational
lens based on the weak field approximation and the lens equation, we have
also showed how the presented approach relates with conventional approach.
In particular we have derived the lens equation from the Jacobi equation
and showed that the dependence of the magnification factor on the impact
parameter, 1 (b), for the source at redshift 2 = 1 and a galaxy modeled by
the SIS with mass M = 10! x M as the object caused the gravitational
lensing effect, is well approximated (with accuracy ~ 0.2%) by the relation
wu(b) = 1+ const./b obtained from the lens equation for the SIS.

I would like to thank M. Demianski for patience and useful comments,
which allow to publish this work in the present form.
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