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INFLUENCE OF THE GRAVITATIONALLENSING EFFECT ON DISTANCE DETERMINATIONP. BielewizFaulty of Physis, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: pbielew�fuw.edu.pl(Reeived February 2, 2001; revised version reeived July 2, 2001)In this paper we have estimated orretion to the distane modulus,derived from the generalized Dyer�Roeder equation, due to a single lumpof matter induing gravitational lensing e�et. To desribe the in�uene ofthe gravitational lensing, we have used the �Swiss heese� model and theJaobi equation. In the ase, when the soure is at redshift z = 1 andthe lensing objet is a galaxy modeled by the Singular Isothermal Sphere(SIS) with massM = 1011�M�, we have found that the orretion is about0.01 mag. We have also show relations between the desribed approah andthe onvenient approah using the gravitational lens equation. In partiu-lar, we have derived the lens equation from the geodesi deviation equationand showed that the obtained dependene of the magni�ation fator onthe impat parameter is well approximated (with auray � 0:2%) bya funtion obtained from the lens equation for the SIS.PACS numbers: 98.62.Sb 1. IntrodutionTo determine osmologial parameters and evolution of the universe,it has been ustomary to ompare observations of extragalati objetswith the preditions of the spatially homogeneous and isotropi Friedman�Robertson�Walker (FRW) osmologial models. However, the assumption,that the matter distribution is homogeneous and isotropi, seems to be rea-sonable only for the largest distane sale (larger than 300 Mp), on smallersale we observe many inhomogeneities suh as lusters of galaxies and galax-ies. It is interesting to study the e�et of a loally inhomogeneous massdistribution on the optial properties of distant objets, in a universe whihis homogeneous and isotropi on su�iently large sale.(3115)



3116 P. BielewizA beam of light propagating outside the mass lumps in suh a universehas less mass within the beam, so it diverges faster than it would in thehomogeneous universe of the same mean density. A disussion of this e�etwas �rst published by Zel'dovih [1℄ and later taken up by Dashevskii andZel'dovih [2℄ and Dashevskii and Slysh [3℄. If the beam passes lose to anylumps, it may be intensi�ed and sheared by the gravitational lens e�et ofthe lumps. These two e�ets were disussed by Gunn [4℄. All of them usedmodels of the inhomogeneous universe, whih are approximate solutions ofthe �eld equations. The �rst appliation of an exat solution of the �eldequations to this problem was done by Kantowski [5℄. He onsidered the�Swiss heese� inhomogeneous model.Reent results [6�8℄ of two projets: the Supernova Cosmology Projet(SCP) and High-Z supernova searh team (HIZ), whih main goals are ob-servations of high-redshift supernovae and determination of osmologialparameters through the distane-redshift relation for type Ia Supernova(SN Ia), indiate that the major energy density in the universe must beof the �vauum� type related to a non-zero value of the osmologial on-stant. To hek these results and determine osmologial parameters withhigher preision we should study hanges in the distane measurements dueto the e�et of the gravitational lensing.In this paper we estimate orretion to the distane modulus obtainedfrom the Dyer�Roeder equation aused by a single gravitational lens. Todesribe the spaetime ontaining a gravitational lens we use the �Swissheese� model. All interesting us properties of the light beam we derivefrom the geodesi deviation equation. This approah is applied to the ob-served soure at redshift z = 1 lensed by a galaxy modeled by the SIS withmass M = 1011 �M�. Obtained dependene of the magni�ation fator onthe impat parameter is ompared with the same dependene derived fromthe lens equation for the SIS. We also show how our approah relates withthe gravitational lens equation used in the onventional approah.The paper is organized as follow. Se. 2 ontains basi de�nitions andrelations between di�erent kinds of distanes used in osmology. A briefreview of the FRW model, the distane-redshift relation in this model andthe Dyer�Roeder equation are presented in Se. 3. The �Swiss heese� modelis desribed in Se. 4 and the SIS in Se. 5. The proedure of alulatingthe orretion is presented in Se. 6. In Se. 7 the derivation of the lensequation from the deviation equation is showed. Results of alulations arein Se. 8 and 9.



In�uene of the Gravitational Lensing E�et on . . . 31172. Luminosity and angular-diameter distanesIn osmology distane is not diretly measurable quantity. Thus there isno unique de�nition of the distane. Two typial ones whih are frequentlyused are the luminosity and angular-diameter distanes.If one knows the soure luminosity L and observes the �ux S, one andetermine the luminosity distane DL using relationS = L4�D2L : (1)The angular-diameter distane is de�ned asDA :=r dASd
O ; (2)where d
O is the solid angle at the observation point subtended by thesurfae element dAS.Similarly, interhanging the roles of soure and observer, one de�nes, soalled, the �orreted� luminosity distane D0LD0L :=rdAOd
S ; (3)whih onnets with the luminosity distane by relation DL = (1 + z)D0L,where z is the redshift of the soure.It is known that the �orreted� luminosity distane and the angular-diameter distane are not mutually independent but they are related by theEtherington's reiproity relation [9℄ D0L = (1 + z)DA, so one hasDL = (1 + z)2DA : (4)The reiproity relation means that study of a future-direted null geo-desi ongruene, whih starts expanding from the soure S to the observer O(its Jaobi vetor vanish at S), is equivalent to study of a past-diretednull geodesi ongruene, whih starts expanding from the observer O tothe soure S (its Jaobi vetor vanish at O). The latter approah is moreonveniently for observer, so we will use it.



3118 P. Bielewiz3. The distane-redshift relations in homogeneous andinhomogeneous models of universe3.1. The distane-redshift relation in the FRW modelsGeometry of a homogeneous and isotropi universe is desribed by theFRW metrids2 = 2dt2 �R2(t)� dr21� kr2 + r2 �d�2 + sin2 � d'2�� ; (5)where  is the speed of light, t is a time oordinate, (r; �; ') � spatialoordinates, R(t) � a sale fator, k = 0;+1;�1 depend on, respetively,zero, positive or negative urvature of spae.After inserting this metri in the Einstein's equation one obtains theFriedman's equation _R(t)R(t)!2 = 8�G3 %� k2R(t)2 + 13�2 ; (6)where _� ddt , G is the gravitational onstant, % = %(t) is density of matter,� is the osmologial onstant.The above equation an be written in terms of four parameters1: theHubble onstantH(t) := _R(t)R(t) and density parameters 
m := %m0% , 
k := �k2R20H20and 
� := %�% , where %m0 is matter density at the present time2, %� := �28�Gdensity of �matter� onneted with the osmologial onstant, % = 3H208�G theritial density, thenH2(z) = H20 �
m(1 + z)3 +
k(1 + z)2 +
�� ; (7)where z = R0R � 1 is the redshift. Using the relation 
m +
k +
� = 1 weobtain H2(z) = H20 �(1 + z)2(1 +
mz)� z(z + 2)
�� : (8)As we see the three parameters H0, 
m, 
� uniquely determine evolutionof the universe.Values of the osmologial parameters may be determined through thedistane-redshift relation. In the FRW dust models the luminosity distaneDL is a funtion of redshift and osmologial parameters and is given by [10℄:1 We neglet a radiation energy density.2 Index 0 means evaluated at the present age of the universe.



In�uene of the Gravitational Lensing E�et on . . . 3119DL(z;H0; 
m; 
�) =(1 + z)H0pj
kjS0�pj
kj zZ0 dz0p(1 + z0)2(1 +
mz0)� z0(z0 + 2)
�1A; (9)where S(x) denotes sin(x) for 
k < 0 (k = +1), x for 
k = 0 (k = 0), orsinh(x) for 
k > 0 (k = �1). When 
� = 0 it simpli�es to the Mattig'sformula [11℄DL(z;H0; 
m) = 2H0
2m h
mz + (
m � 2)�p1 +
mz � 1�i : (10)3.2. The Dyer�Roeder equationAlthough the universe may be approximated by the FRW model on aver-age, observed distribution of matter is far from isotropi and homogeneous.A large part of the matter is onentrated in galaxies, galaxies tend to formgroups and lusters, lusters form super-lusters. In suh an universe thelight may travel far away from all lumps through the intergalati spae,whih is nearly vauum. In this situation it is said, that the light prop-agates through an empty one in ontrast to a �lled one, when the lightpropagates through homogeneous and isotropi bakground with the uni-form matter density �. For these two ases the distane measures may beompletely di�erent, beause for empty one the light beam diverges fasterthan for �lled one.To take into aount a non homogeneous distribution of matter, onean assume, following Dyer�Roeder [12℄, that a mass-fration ~�, alled thesmoothness parameter or lumpiness parameter, of matter in the universe issmoothly distributed, while a fration 1� ~� is bound in galaxies. The ase~� = 0 orresponds to the vauum in the intergalati spae, while ~� = 1 tothe uniform FRW model. In suh an universe the largest possible (for givenredshift) angular-diameter distane DA is determined from the generalizedDyer�Roeder equation [12℄(1+z)(1+
mz)d2DAdz2 +�3 + 12
m + 72
mz� dDAdz + 32 ~�
mDA = 0 ; (11)with the initial onditions DA(z)jz=0 = 0, dDA(z)=dzjz=0 = =H0, soit is often alled the Dyer�Roeder distane. As we see the above equationdoes not take into aount the osmologial onstant �. The generalizedDyer�Roeder equation with � takes the form [13℄:



3120 P. Bielewiz
(1 + z) �
m(1 + z)3 +
k(1 + z)2 +
�� d2DAdz2+�72
m(1+z)3+3
k(1+z)2+2
�� dDAdz +32 ~�
m(1+z)2DA = 0 : (12)The Dyer�Roeder distane will be our referene distane in the alula-tion of the magni�ation fator (Se. 6.2).4. The �Swiss heese� modelThe �Swiss heese� model, also alled the Einstein�Strauss model [14℄,desribes an inhomogeneous universe. The name �Swiss heese� refers to thefat that in this model stati spherial voids are reated within a large, time-dependent spaetime. A void is onstruted by removing homogeneouslydistributed matter from a sphere and replaing it by a ompat objet withthe same mass, plaed at the entre of the sphere.Mathematially, the �Swiss heese� model is realized by mathing ofa FRW metri desribing the exterior spaetimeds2f = 2dt2 �R2(t)� dr21� kr2 + r2 �d�2 + sin2 �d'2��; (13)to a Shwarzshild metri with the osmologial onstant desribing the voidds2s = 2�1� rgrs � �3 r2s� dT 2� dr2s1� rgrs � �3 r2s �r2s �d�2 + sin2 � d'2� ; (14)where3 rg denotes the Shwarzshild's radius (rg = 2GM=2, M mass ofthe entral objet), aross a spherial boundary. The spherial boundary� stays at a �xed oordinate radius in the FRW frame (r� =onst.), buthanges with time in the Shwarzshild frame. The smooth mathing of thetwo spaetimes aross a boundary is guaranteed if juntion onditions aresatis�ed: the �rst fundamental forms and the seond fundamental forms areidential on both sides of the hypersurfae. From these onditions we obtainR(t)r� = rsjat � ; (15)dTdt =q1� kr2� �1� rgrs � �3 r2s��1��at � : (16)3 Indies f and s refer to, respetively, quantities in the FRW metri and theShwarzshild metri.



In�uene of the Gravitational Lensing E�et on . . . 3121The above equation in terms of the osmologial parameters and the redshiftz takes on the formdTdz = � (1 + z)2q1� kr2�H(z) �(1 + z)22 �H20 (R0 r�)2(
m(1 + z)3 +
�)� ; (17)where H(z) = H0p
m(1 + z)3 +
k(1 + z)2 +
� .Radius Rs = R0 r� of the void desribed by the Shwarzshild metrian be alulated from the ondition that the average matter density in thevoid should be equal to the average matter density of the universe 
m%.It means that M = (4�=3)
m%R3s, what ould be rewritten in the formMG = 12
mH20R3s : (18)In ontrast to the �pure� �Swiss heese� model, where outside the spherethere are homogeneously and isotropily distributed matter with density %m,we assume that outside the sphere there are matter with uniform density~�%m as in the Dyer�Roeder approah presented in the previous setion.5. Model of the singular isothermal sphereIn our ase a ompat objet in the enter of the sphere models a galaxy.On the other hand observations of galaxies indiate that they are surroundedby dark matter halo in ranges muh larger than a visible part of galaxy, sotreating them as a point mass is too rude. We must onsider more realistimodel of the matter distribution.A simple model for the density pro�le � of a galaxy is the SingularIsothermal Sphere (SIS) � SIS(r) = �2�2�Gr2 ; (19)where �� is the line-of-sight veloity dispersion of the mass partiles. Massonservation implies that the veloity dispersion is related to the mass ofthe halo M and to the redshift by [15℄�� = M1=3 �H2(z)�(z)G2=16�1=6 ; (20)where �(z) is the mean density of the halo in units of the ritial densityat that redshift and, for a �at universe (
k = 0), it may be approximatedby [15℄ �(z) = 18�2 + 82x� 39x2 where x = H20
m(1 + z)3=H2(z)� 1.



3122 P. BielewizA SIS halo is trunated at radius d given by relationM = dZ0 � SIS(r)dV = 2�2�dG ; (21)where M is mass of the halo.The gravitational �eld inside the SIS is stati and spherially symmetriso it an be desribed by the line elementds2SIS = 2e2A(r)dT 2 � e2B(r)dr2 � r2 �d�2 + sin2 � d'2� ; (22)where oordinates T; r; �; ' are the same as in the Shwarzshild metri in-trodued in previous setion and funtions A(r); B(r) are given by equationse�2B(r) = 1� 13�r2 � 8�G2r rZ0 � SIS(r0)r02dr0 ; (23)2A(r) = rZ0  �8�Gp4 � �� r0e2B(r0) + e2B(r0) � 1r0 ! dr0 : (24)Taking the equation of state for the dust p = 0 and the density pro�leof the SIS we have e�2B(r) = 1� 13�r2 � 4�2�2 , so2A(r) = rZ0 �23�r02 + 4�2�2r0 �1� 13�r02 � 4�2�2 � dr0 : (25)Beause above integral is divergent at zero, we introdue some uto� radiusruto� � d below whih we assume the onstant density pro�le �uto� , suhthat M(ruto� ) = 4� ruto�R0 � SIS(r)r2dr = 4� ruto�R0 �uto�r2dr. Then we have�uto� = 3�2�2�Gr2uto� and onvergent integral (24) at zero.6. A proedure for alulating the orretion6.1. The Jaobi equationLet us onsider an in�nitesimal beam of light propagating from the soureto the observer, desribed by a ongruene of null geodesisk�k� = 0 ; Dk�d� � k�; �k� = 0 ; (26)



In�uene of the Gravitational Lensing E�et on . . . 3123where4 D=d� denotes ovariant di�erentiation, � is a�ne parameter, andk� is a wave vetor tangent to the ray. A vetor X�(�), alled the devia-tion vetor or the Jaobi vetor, onnets �entral� light ray to one of itsneighbors, whih belongs to the same ongruene. It has the property thatDX�(�)d� � X�; �k� = k�; �X� : (27)After di�erentiation of the above equation we obtain the geodesi deviationequation also alled the Jaobi equationD2X�(�)d�2 = �R����k�X�(�)k� ; (28)where R���� is the Riemann tensor5. As we see, the Jaobi equation de-sribes all gravitational fousing and shearing e�ets on an in�nitesimalbeam of light rays, so we will use it to study the in�uene of inhomogeneitiesand urvature of spaetime on the observed properties of light.We hoose the a�ne parameter � so that:� � = 0 at the point of observation,� � inreases from the observer to the soure,� for the observer with the 4-veloity u�, k�u� =  (1 + z).With this hoie, the a�ne parameter is related to the redshift bydzd� = H0(1 + z)2p(1 + z)2(1 +
mz)� z(z + 2)
� : (29)In the ase of null geodesis the Jaobi equation an be rewritten ina more onvenient form for alulations. One an always hoose a deviationvetor X� suh that, besides k�X� = 0, also X�u� = 0 at the point of ob-servation. The vetor X� hosen in this manner spans the two-dimensional,spae-like, subspae orthogonal to the ray, whih we all a sreen. TheJaobi vetor an then be written asX� = X1e�1 +X2e�2 +X3k� ; (30)where e�1 ; e�2 are vetors spanning an orthonormal basis on the sreenk�e�1 = k�e�2 = u�e�1 = u�e�2 = e�1e2� = 0 ; (31a)e�1e1� = e�2e2� = �1 : (31b)4 Greek indies run from 0 to 3.5 R� ��� � ����;� � ����;� + � ������� � � ������� .



3124 P. Bielewize�1 and e�2 are parallel transported along the raye�1 ;�k� = 0 ; e�2 ;�k� = 0 : (32)Using the fat, that deviation vetors di�ering by a onstant multiple of k�represent displaements to the same nearby ray, we hoose X3 = 0 so thatX� = X1e�1 +X2e�2 : (33)The equation DX�(�)d� = k�; �X�(�) ; (34)in terms of the sreen omponents X1 and X2 takes on the form_Xi(�) = SijXj(�); Sij = �e�i k�;� e�j ; i; j = 1; 2 (35)where _� dd� . In the matrix notation we have_X(�) = SX(�) ; (36)where the matrix S after introduing quantities, whih more onvenientlydesribe hanges in the ross-setion of the beam, suh as: the expansionparameter � � 12 k�; �, whih desribes the rate of expansion, the shear� � 12 k�;�"��"�� , where "� = e�1 + ie�2 , desribing the rate of distortionthe shape of the ross-setion, takes on the formS = � � �Re � Im�Im� � +Re� � : (37)Di�erentiation of (36) gives�X(�) = TX(�) ; (38)where T = _S + S2 ; (39)and after ombining the last equation with Sahs' equations for � and � [16℄_� + �2 + j�j2 = �12R��k�k� ; (40a)_� + 2�� = �12C����"��k�"��k� ; (40b)we obtain T = � R�ReF ImFImF R+ReF � ; (41)



In�uene of the Gravitational Lensing E�et on . . . 3125where R � �12R��k�k� , F � �12C����"��k�"��k� = F ei� (R�� � theRii tensor, C���� � the Weyl tensor).In this manner we obtain an equation, whih is equivalent to the geodesideviation equation (28). As we see one may distinguish two forms of matterin�uene on the beam: the Rii fousing (desribed by the quantity R),whih is due to the matter ontained in the beam and the Weyl fousing(desribed by the quantity F), whih is due to tidal e�ets produed bydistant lumps of matter.Beause the phase of the Weyl term �, is onstant along the beam ina spherially symmetri �eld, we an set it equal to zero. Thus we haveImF = 0. In the FRW metri R = �4�G%m0(1 + zl)2 and C���� = 0, soF = 0. In the Shwarzshild metri R = 0 (R�� = 0) and F = 3b22(1+zl)2rg2r5 .In the SIS R = �4�G(1 + zl)2e�2A(r) �� SIS(r) + p2� ;andF = 4�Gb2(1 + zl)2r2 0� 3r3 rZ0 � SIS(r0)r02dr0 � � SIS(r)1A = 4�2�b2(1 + zl)2r4 ;where b is the impat parameter and the last equation is valid for r > ruto�� the uto� radius introdued in Se. 5.To solve equation (38) it is neessary to speify initial onditions X(0)and _X(0). If we assume that we knew the Jaobi vetors at the observationpoint X(0) and at the point of the soure X(�s), we may estimate _X(0)from the integrated form of equation (38) [17℄_X(0) = 1�s (X(�s)�X(0)) � 1�s �sZ0 (�s � �)T (�)X(�)d� (42)� 1�s (X(�s)�X(0))� 1�2s �sZ0 (�s � �)T (�) ((�s � �)X(0) + �X(�s)) d� ;where �s is the value of a�ne parameter at the point of the soure.



3126 P. Bielewiz6.2. The magni�ation fatorGravitational lenses an magnify images of distant objets. This e�etan be desribed by the so-alled magni�ation fator � [18℄, suh that� = SlS ; (43)where Sl is the observed �ux hanged by gravitational lensing, and S isthe �ux that would be reeived if the same soure was observed throughan empty one. Using the relation between the luminosity distane and theobserved �ux (1) and equation (4), we obtain� = �D2AD2A ; (44)where �DA is the Dyer�Roeder distane, relative to whih is determined themagni�ation, and DA is the angular-diameter distane measured on thebasis of �ux Sl. The distane DA ould be omputed from the de�nition (2),where one takes dAS=X1(�s)X2(�s) and d
O= dX1(0)d� dX2(0)d� , then one hasD2A = 2X1(�s)X2(�s)_X1(0) _X2(0) ; (45)where X1(�s);X2(�s); _X1(0); _X2(0) are oordinates of the Jaobi vetor inthe universe desribed by the Einstein�Strauss model.The magni�ation �e of an extended soure, onsidered as an assembly ofradiating point soures with surfae brightness pro�le I(y), is given generallyas �e = RR I(y)�p(y)d2yRR I(y)d2y ; (46)where y is a vetor of position at the oordinate frame with the origin atthe enter of the soure, �p(y) is the magni�ation of a point soure atposition y. Let us assume that ross-setion of the soure is irular andI(y) =onst., then in the polar oordinates we obtain�e = 2�R0 RsR0 �p(r; ')rdrd'�R2s ; (47)where Rs is the radius of the soure.



In�uene of the Gravitational Lensing E�et on . . . 31277. Relation between the geodesi deviation equation and thegravitational lens equationLet us see how presented above approah to the gravitational lensing re-lates with the gravitational lens equation used in the onventional approah.We will restrit our onsideration to the �pure� Einstein�Strauss model with-out the SIS inside the void desribed by the Shwarzshild metri and to theplane ontaining the soure, lens and observer. Then the gravitational lensequation is given by � = � � 2rg DlsDsDl � ; (48)where rg is the Shwarzshild's radius for a body de�eting light, Dls, Ds,Dl are the angular-diameter distanes6 of, respetively, the soure from thelens, the soure from the observer and the lens from the observer, � is theangular separation of the soure from the lens, whih would be observed inthe absene of lensing, � is the observed angular separation between the lensand the de�eted ray.Under the thin-lens approximation, we assume that the hange in7 _X1(�)in the viinity of the de�etion point �l may be approximated by a stepfuntion _X1jl+ � _X1jl� =� �l+"Z�l�" X1(�)ReF d� (49a)� 2 RZrmin 3b2(1 + zl)rgX1jldr2r5r�1� kr2���1� b2(1�kr2�)r2� (49b)� 2 (1 + zl)rgq1� kr2�r2min X1jl ; (49)where b is the impat parameter and in equation (49b) we use relation be-tween the radius and the a�ne parameterd�dr = (1 + z)s(1� kr2�)�1� b2(1� kr2�)r2 �1� rgr � �3 r2�� ;where as regards assumptions r � rg and 
� . 1, we neglet termsrgr ,�3 r2 � 1. Inserting this into relation between the deviation vetor at6 Whih one may identify with the generalized Dyer�Roeder distanes.7 As was mentioned in Se. 6.1 � = 0, then the vetor e�1 lies in the onsidered planesoure-lens-observer.



3128 P. Bielewizthe soure X1js and the deviation vetor whih would be in the absene oflens �X1js [19℄X1js= �X1js+ Dls(1+zl) � _X1jl+� _X1jl�� �X1js+ 2Dlsrgq1�kr2�r2min X1jl ; (50)and using relations between the in�nitesimal angles and the Jaobi vetorsX1js = Dsd� ; (51a)�X1js = Dsd� ; (51b)X1jl = Dld� ; (51)one has d� = d� + 2DlDlsDs rgq1� kr2�r2min d� :Finally, beause rmin = Dl� and q1� kr2� � 1 we haved� = d�� � 2rg DlsDsDl �� : (52)We see that this is just the di�erential form of the lens equation (48).8. ResultsNow we will use the presented above proedure of alulating the mag-ni�ation fator to ompute di�erene between the distane modulus basedon the generalized Dyer�Roeder equation (12) and the distane modulusobtained from the presented approah using the �Swiss heese� model. Allalulations were done numerially due to a lak of analytial solutions ofequation (38).Let us onsider the beam of light propagating from a soure with red-shift zs = 1, and passing a galaxy with mass M = 1011 �M� and redshiftzG = 0:4. On the basis of the measurements of the osmi bakground ra-diation and predition of the theory of in�ation in the Big Bang model, weassume a �at universe 
k = 0, and from the measurements based on themotions of lusters of galaxies, we have 
m = 0:3. Then, from the relation
k + 
m + 
� = 1, we obtain 
� = 0:7. We take also the most favorableat the present time value of the Hubble onstant H0 = 65 km s�1Mp�1.The di�erene between distanes �(m � M) depends very weak on thelumpiness parameter ~�, so we an hoose it arbitrary. We assume that



In�uene of the Gravitational Lensing E�et on . . . 3129~� = 0:5. For above parameters of the model the radius of the hole is about900 kp and the radius of the SIS halo is about 100 kp.On Fig. 1 we ould see that with these assumptions the magni�ationfator dereases from value 1.01, for the impat parameter b = 15 kp or-responding to the radius of the galaxy disk, with inreasing impat param-eter b. The dependene �(b) ould be well approximated with auray� 0:2% in the range from 15 kp to 100 kp (the radius of the SIS) bya funtion obtained for the SIS in the onventional approah using the grav-itational lens equation [20℄ �(b) = 1 + onst:=b.

1

1.002

1.004

1.006

1.008

1.01

1.012

10 20 30 40 50 60 70 80 90 100

µ

b[kpc]

 µ

b [kpc]Fig. 1. Relation between the magni�ation fator � and the impat parameter b.The ontinuous line orresponds to the dependene �(b) derived from the lensequation for the SIS, and the dashed line desribes the dependene obtained fromthe presented approah.The di�erene �(m�M) between the Dyer�Roeder distane modulus(m�M)DR = 5 log(1 + z)2DA + 25 ; (53)and the distane modulus hanged by gravitational lensing magni�ation(m�M)lensing = 5 log((1 + z)2DA=p�) + 25 ; (54)is equal �(m�M) = 5 logp� ; (55)



3130 P. Bielewizwhere DA is the Dyer�Roeder distane derived from (12) and is expressedin Mp. Taking the largest obtained values of the magni�ation fator� = 1:01, we estimate the orretion as equal 0:01 mag.9. Summary and onlusionsUsing the �Swiss heese� model to desribe the inhomogeneous universeand the geodesi deviation equation, we have investigated the in�uene ofa single lump of matter on the distane modulus for the soure observedthrough an empty one. The advantage of this approah is the use of a knownexat solution of the �eld equations and the general relativity formalism.Beause in pratie there are used more realisti models of the gravitationallens based on the weak �eld approximation and the lens equation, we havealso showed how the presented approah relates with onventional approah.In partiular we have derived the lens equation from the Jaobi equationand showed that the dependene of the magni�ation fator on the impatparameter, �(b), for the soure at redshift z = 1 and a galaxy modeled bythe SIS with mass M = 1011 �M� as the objet aused the gravitationallensing e�et, is well approximated (with auray � 0:2%) by the relation�(b) = 1 + onst:=b obtained from the lens equation for the SIS.I would like to thank M. Demia«ski for patiene and useful omments,whih allow to publish this work in the present form.REFERENCES[1℄ Ya.B. Zel'dovih, Sov. Astron. 8, 13 (1964).[2℄ V.M. Dashevskii, Ya.B. Zel'dovih, Sov. Astron. 8, 854 (1965).[3℄ V.M. Dashevskii, V.I. Slysh, Sov. Astron. 9, 671 (1966).[4℄ J.E. Gunn, Ap. J., 150 737 (1967).[5℄ R. Kantowski, Ap. J. 155, 89 (1969).[6℄ P. Garnavih, et al., Ap. J. 493, 53 (1998).[7℄ S. Perlmutter, et al., Nature 391, 51 (1998), astro-ph/9712212.[8℄ A.G. Reiss, Astron. J. 116, 3, 1009 (1998).[9℄ I.M.H. Etherington, Philos. Mag. 15, 761 (1933).[10℄ S.M. Carroll, W.H. Press, E.L. Turner, Annu. Rev. Astron. Astrophys. 30,499 (1992).[11℄ W. Mattig, Astron. Nahr. 284, 109 (1958).[12℄ C.C. Dyer, R.C. Roeder, Ap. J. 180, L31 (1973).[13℄ M. Demianski, et al., astro-ph/0004376.
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