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INFLUENCE OF THE GRAVITATIONALLENSING EFFECT ON DISTANCE DETERMINATIONP. Bielewi
zFa
ulty of Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: pbielew�fuw.edu.pl(Re
eived February 2, 2001; revised version re
eived July 2, 2001)In this paper we have estimated 
orre
tion to the distan
e modulus,derived from the generalized Dyer�Roeder equation, due to a single 
lumpof matter indu
ing gravitational lensing e�e
t. To des
ribe the in�uen
e ofthe gravitational lensing, we have used the �Swiss 
heese� model and theJa
obi equation. In the 
ase, when the sour
e is at redshift z = 1 andthe lensing obje
t is a galaxy modeled by the Singular Isothermal Sphere(SIS) with massM = 1011�M�, we have found that the 
orre
tion is about0.01 mag. We have also show relations between the des
ribed approa
h andthe 
onvenient approa
h using the gravitational lens equation. In parti
u-lar, we have derived the lens equation from the geodesi
 deviation equationand showed that the obtained dependen
e of the magni�
ation fa
tor onthe impa
t parameter is well approximated (with a

ura
y � 0:2%) bya fun
tion obtained from the lens equation for the SIS.PACS numbers: 98.62.Sb 1. Introdu
tionTo determine 
osmologi
al parameters and evolution of the universe,it has been 
ustomary to 
ompare observations of extragala
ti
 obje
tswith the predi
tions of the spatially homogeneous and isotropi
 Friedman�Robertson�Walker (FRW) 
osmologi
al models. However, the assumption,that the matter distribution is homogeneous and isotropi
, seems to be rea-sonable only for the largest distan
e s
ale (larger than 300 Mp
), on smallers
ale we observe many inhomogeneities su
h as 
lusters of galaxies and galax-ies. It is interesting to study the e�e
t of a lo
ally inhomogeneous massdistribution on the opti
al properties of distant obje
ts, in a universe whi
his homogeneous and isotropi
 on su�
iently large s
ale.(3115)
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zA beam of light propagating outside the mass 
lumps in su
h a universehas less mass within the beam, so it diverges faster than it would in thehomogeneous universe of the same mean density. A dis
ussion of this e�e
twas �rst published by Zel'dovi
h [1℄ and later taken up by Dashevskii andZel'dovi
h [2℄ and Dashevskii and Slysh [3℄. If the beam passes 
lose to any
lumps, it may be intensi�ed and sheared by the gravitational lens e�e
t ofthe 
lumps. These two e�e
ts were dis
ussed by Gunn [4℄. All of them usedmodels of the inhomogeneous universe, whi
h are approximate solutions ofthe �eld equations. The �rst appli
ation of an exa
t solution of the �eldequations to this problem was done by Kantowski [5℄. He 
onsidered the�Swiss 
heese� inhomogeneous model.Re
ent results [6�8℄ of two proje
ts: the Supernova Cosmology Proje
t(SCP) and High-Z supernova sear
h team (HIZ), whi
h main goals are ob-servations of high-redshift supernovae and determination of 
osmologi
alparameters through the distan
e-redshift relation for type Ia Supernova(SN Ia), indi
ate that the major energy density in the universe must beof the �va
uum� type related to a non-zero value of the 
osmologi
al 
on-stant. To 
he
k these results and determine 
osmologi
al parameters withhigher pre
ision we should study 
hanges in the distan
e measurements dueto the e�e
t of the gravitational lensing.In this paper we estimate 
orre
tion to the distan
e modulus obtainedfrom the Dyer�Roeder equation 
aused by a single gravitational lens. Todes
ribe the spa
etime 
ontaining a gravitational lens we use the �Swiss
heese� model. All interesting us properties of the light beam we derivefrom the geodesi
 deviation equation. This approa
h is applied to the ob-served sour
e at redshift z = 1 lensed by a galaxy modeled by the SIS withmass M = 1011 �M�. Obtained dependen
e of the magni�
ation fa
tor onthe impa
t parameter is 
ompared with the same dependen
e derived fromthe lens equation for the SIS. We also show how our approa
h relates withthe gravitational lens equation used in the 
onventional approa
h.The paper is organized as follow. Se
. 2 
ontains basi
 de�nitions andrelations between di�erent kinds of distan
es used in 
osmology. A briefreview of the FRW model, the distan
e-redshift relation in this model andthe Dyer�Roeder equation are presented in Se
. 3. The �Swiss 
heese� modelis des
ribed in Se
. 4 and the SIS in Se
. 5. The pro
edure of 
al
ulatingthe 
orre
tion is presented in Se
. 6. In Se
. 7 the derivation of the lensequation from the deviation equation is showed. Results of 
al
ulations arein Se
. 8 and 9.



In�uen
e of the Gravitational Lensing E�e
t on . . . 31172. Luminosity and angular-diameter distan
esIn 
osmology distan
e is not dire
tly measurable quantity. Thus there isno unique de�nition of the distan
e. Two typi
al ones whi
h are frequentlyused are the luminosity and angular-diameter distan
es.If one knows the sour
e luminosity L and observes the �ux S, one 
andetermine the luminosity distan
e DL using relationS = L4�D2L : (1)The angular-diameter distan
e is de�ned asDA :=r dASd
O ; (2)where d
O is the solid angle at the observation point subtended by thesurfa
e element dAS.Similarly, inter
hanging the roles of sour
e and observer, one de�nes, so
alled, the �
orre
ted� luminosity distan
e D0LD0L :=rdAOd
S ; (3)whi
h 
onne
ts with the luminosity distan
e by relation DL = (1 + z)D0L,where z is the redshift of the sour
e.It is known that the �
orre
ted� luminosity distan
e and the angular-diameter distan
e are not mutually independent but they are related by theEtherington's re
ipro
ity relation [9℄ D0L = (1 + z)DA, so one hasDL = (1 + z)2DA : (4)The re
ipro
ity relation means that study of a future-dire
ted null geo-desi
 
ongruen
e, whi
h starts expanding from the sour
e S to the observer O(its Ja
obi ve
tor vanish at S), is equivalent to study of a past-dire
tednull geodesi
 
ongruen
e, whi
h starts expanding from the observer O tothe sour
e S (its Ja
obi ve
tor vanish at O). The latter approa
h is more
onveniently for observer, so we will use it.
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z3. The distan
e-redshift relations in homogeneous andinhomogeneous models of universe3.1. The distan
e-redshift relation in the FRW modelsGeometry of a homogeneous and isotropi
 universe is des
ribed by theFRW metri
ds2 = 
2dt2 �R2(t)� dr21� kr2 + r2 �d�2 + sin2 � d'2�� ; (5)where 
 is the speed of light, t is a time 
oordinate, (r; �; ') � spatial
oordinates, R(t) � a s
ale fa
tor, k = 0;+1;�1 depend on, respe
tively,zero, positive or negative 
urvature of spa
e.After inserting this metri
 in the Einstein's equation one obtains theFriedman's equation _R(t)R(t)!2 = 8�G3 %� k
2R(t)2 + 13�
2 ; (6)where _� ddt , G is the gravitational 
onstant, % = %(t) is density of matter,� is the 
osmologi
al 
onstant.The above equation 
an be written in terms of four parameters1: theHubble 
onstantH(t) := _R(t)R(t) and density parameters 
m := %m0%
 , 
k := �k
2R20H20and 
� := %�%
 , where %m0 is matter density at the present time2, %� := �
28�Gdensity of �matter� 
onne
ted with the 
osmologi
al 
onstant, %
 = 3H208�G the
riti
al density, thenH2(z) = H20 �
m(1 + z)3 +
k(1 + z)2 +
�� ; (7)where z = R0R � 1 is the redshift. Using the relation 
m +
k +
� = 1 weobtain H2(z) = H20 �(1 + z)2(1 +
mz)� z(z + 2)
�� : (8)As we see the three parameters H0, 
m, 
� uniquely determine evolutionof the universe.Values of the 
osmologi
al parameters may be determined through thedistan
e-redshift relation. In the FRW dust models the luminosity distan
eDL is a fun
tion of redshift and 
osmologi
al parameters and is given by [10℄:1 We negle
t a radiation energy density.2 Index 0 means evaluated at the present age of the universe.



In�uen
e of the Gravitational Lensing E�e
t on . . . 3119DL(z;H0; 
m; 
�) =(1 + z)
H0pj
kjS0�pj
kj zZ0 dz0p(1 + z0)2(1 +
mz0)� z0(z0 + 2)
�1A; (9)where S(x) denotes sin(x) for 
k < 0 (k = +1), x for 
k = 0 (k = 0), orsinh(x) for 
k > 0 (k = �1). When 
� = 0 it simpli�es to the Mattig'sformula [11℄DL(z;H0; 
m) = 2
H0
2m h
mz + (
m � 2)�p1 +
mz � 1�i : (10)3.2. The Dyer�Roeder equationAlthough the universe may be approximated by the FRW model on aver-age, observed distribution of matter is far from isotropi
 and homogeneous.A large part of the matter is 
on
entrated in galaxies, galaxies tend to formgroups and 
lusters, 
lusters form super-
lusters. In su
h an universe thelight may travel far away from all 
lumps through the intergala
ti
 spa
e,whi
h is nearly va
uum. In this situation it is said, that the light prop-agates through an empty 
one in 
ontrast to a �lled 
one, when the lightpropagates through homogeneous and isotropi
 ba
kground with the uni-form matter density �. For these two 
ases the distan
e measures may be
ompletely di�erent, be
ause for empty 
one the light beam diverges fasterthan for �lled 
one.To take into a

ount a non homogeneous distribution of matter, one
an assume, following Dyer�Roeder [12℄, that a mass-fra
tion ~�, 
alled thesmoothness parameter or 
lumpiness parameter, of matter in the universe issmoothly distributed, while a fra
tion 1� ~� is bound in galaxies. The 
ase~� = 0 
orresponds to the va
uum in the intergala
ti
 spa
e, while ~� = 1 tothe uniform FRW model. In su
h an universe the largest possible (for givenredshift) angular-diameter distan
e DA is determined from the generalizedDyer�Roeder equation [12℄(1+z)(1+
mz)d2DAdz2 +�3 + 12
m + 72
mz� dDAdz + 32 ~�
mDA = 0 ; (11)with the initial 
onditions DA(z)jz=0 = 0, dDA(z)=dzjz=0 = 
=H0, soit is often 
alled the Dyer�Roeder distan
e. As we see the above equationdoes not take into a

ount the 
osmologi
al 
onstant �. The generalizedDyer�Roeder equation with � takes the form [13℄:
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z
(1 + z) �
m(1 + z)3 +
k(1 + z)2 +
�� d2DAdz2+�72
m(1+z)3+3
k(1+z)2+2
�� dDAdz +32 ~�
m(1+z)2DA = 0 : (12)The Dyer�Roeder distan
e will be our referen
e distan
e in the 
al
ula-tion of the magni�
ation fa
tor (Se
. 6.2).4. The �Swiss 
heese� modelThe �Swiss 
heese� model, also 
alled the Einstein�Strauss model [14℄,des
ribes an inhomogeneous universe. The name �Swiss 
heese� refers to thefa
t that in this model stati
 spheri
al voids are 
reated within a large, time-dependent spa
etime. A void is 
onstru
ted by removing homogeneouslydistributed matter from a sphere and repla
ing it by a 
ompa
t obje
t withthe same mass, pla
ed at the 
entre of the sphere.Mathemati
ally, the �Swiss 
heese� model is realized by mat
hing ofa FRW metri
 des
ribing the exterior spa
etimeds2f = 
2dt2 �R2(t)� dr21� kr2 + r2 �d�2 + sin2 �d'2��; (13)to a S
hwarzs
hild metri
 with the 
osmologi
al 
onstant des
ribing the voidds2s = 
2�1� rgrs � �3 r2s� dT 2� dr2s1� rgrs � �3 r2s �r2s �d�2 + sin2 � d'2� ; (14)where3 rg denotes the S
hwarzs
hild's radius (rg = 2GM=
2, M mass ofthe 
entral obje
t), a
ross a spheri
al boundary. The spheri
al boundary� stays at a �xed 
oordinate radius in the FRW frame (r� =
onst.), but
hanges with time in the S
hwarzs
hild frame. The smooth mat
hing of thetwo spa
etimes a
ross a boundary is guaranteed if jun
tion 
onditions aresatis�ed: the �rst fundamental forms and the se
ond fundamental forms areidenti
al on both sides of the hypersurfa
e. From these 
onditions we obtainR(t)r� = rsjat � ; (15)dTdt =q1� kr2� �1� rgrs � �3 r2s��1��at � : (16)3 Indi
es f and s refer to, respe
tively, quantities in the FRW metri
 and theS
hwarzs
hild metri
.



In�uen
e of the Gravitational Lensing E�e
t on . . . 3121The above equation in terms of the 
osmologi
al parameters and the redshiftz takes on the formdTdz = � (1 + z)
2q1� kr2�H(z) �(1 + z)2
2 �H20 (R0 r�)2(
m(1 + z)3 +
�)� ; (17)where H(z) = H0p
m(1 + z)3 +
k(1 + z)2 +
� .Radius Rs = R0 r� of the void des
ribed by the S
hwarzs
hild metri

an be 
al
ulated from the 
ondition that the average matter density in thevoid should be equal to the average matter density of the universe 
m%
.It means that M = (4�=3)
m%
R3s, what 
ould be rewritten in the formMG = 12
mH20R3s : (18)In 
ontrast to the �pure� �Swiss 
heese� model, where outside the spherethere are homogeneously and isotropi
ly distributed matter with density %m,we assume that outside the sphere there are matter with uniform density~�%m as in the Dyer�Roeder approa
h presented in the previous se
tion.5. Model of the singular isothermal sphereIn our 
ase a 
ompa
t obje
t in the 
enter of the sphere models a galaxy.On the other hand observations of galaxies indi
ate that they are surroundedby dark matter halo in ranges mu
h larger than a visible part of galaxy, sotreating them as a point mass is too 
rude. We must 
onsider more realisti
model of the matter distribution.A simple model for the density pro�le � of a galaxy is the SingularIsothermal Sphere (SIS) � SIS(r) = �2�2�Gr2 ; (19)where �� is the line-of-sight velo
ity dispersion of the mass parti
les. Mass
onservation implies that the velo
ity dispersion is related to the mass ofthe halo M and to the redshift by [15℄�� = M1=3 �H2(z)�(z)G2=16�1=6 ; (20)where �(z) is the mean density of the halo in units of the 
riti
al densityat that redshift and, for a �at universe (
k = 0), it may be approximatedby [15℄ �(z) = 18�2 + 82x� 39x2 where x = H20
m(1 + z)3=H2(z)� 1.



3122 P. Bielewi
zA SIS halo is trun
ated at radius d given by relationM = dZ0 � SIS(r)dV = 2�2�dG ; (21)where M is mass of the halo.The gravitational �eld inside the SIS is stati
 and spheri
ally symmetri
so it 
an be des
ribed by the line elementds2SIS = 
2e2A(r)dT 2 � e2B(r)dr2 � r2 �d�2 + sin2 � d'2� ; (22)where 
oordinates T; r; �; ' are the same as in the S
hwarzs
hild metri
 in-trodu
ed in previous se
tion and fun
tions A(r); B(r) are given by equationse�2B(r) = 1� 13�r2 � 8�G
2r rZ0 � SIS(r0)r02dr0 ; (23)2A(r) = rZ0  �8�Gp
4 � �� r0e2B(r0) + e2B(r0) � 1r0 ! dr0 : (24)Taking the equation of state for the dust p = 0 and the density pro�leof the SIS we have e�2B(r) = 1� 13�r2 � 4�2�
2 , so2A(r) = rZ0 �23�r02 + 4�2�
2r0 �1� 13�r02 � 4�2�
2 � dr0 : (25)Be
ause above integral is divergent at zero, we introdu
e some 
uto� radiusr
uto� � d below whi
h we assume the 
onstant density pro�le �
uto� , su
hthat M(r
uto� ) = 4� r
uto�R0 � SIS(r)r2dr = 4� r
uto�R0 �
uto�r2dr. Then we have�
uto� = 3�2�2�Gr2
uto� and 
onvergent integral (24) at zero.6. A pro
edure for 
al
ulating the 
orre
tion6.1. The Ja
obi equationLet us 
onsider an in�nitesimal beam of light propagating from the sour
eto the observer, des
ribed by a 
ongruen
e of null geodesi
sk�k� = 0 ; Dk�d� � k�; �k� = 0 ; (26)



In�uen
e of the Gravitational Lensing E�e
t on . . . 3123where4 D=d� denotes 
ovariant di�erentiation, � is a�ne parameter, andk� is a wave ve
tor tangent to the ray. A ve
tor X�(�), 
alled the devia-tion ve
tor or the Ja
obi ve
tor, 
onne
ts �
entral� light ray to one of itsneighbors, whi
h belongs to the same 
ongruen
e. It has the property thatDX�(�)d� � X�; �k� = k�; �X� : (27)After di�erentiation of the above equation we obtain the geodesi
 deviationequation also 
alled the Ja
obi equationD2X�(�)d�2 = �R����k�X�(�)k� ; (28)where R���� is the Riemann tensor5. As we see, the Ja
obi equation de-s
ribes all gravitational fo
using and shearing e�e
ts on an in�nitesimalbeam of light rays, so we will use it to study the in�uen
e of inhomogeneitiesand 
urvature of spa
etime on the observed properties of light.We 
hoose the a�ne parameter � so that:� � = 0 at the point of observation,� � in
reases from the observer to the sour
e,� for the observer with the 4-velo
ity u�, k�u� = 
 (1 + z).With this 
hoi
e, the a�ne parameter is related to the redshift bydzd� = H0(1 + z)2p(1 + z)2(1 +
mz)� z(z + 2)
� : (29)In the 
ase of null geodesi
s the Ja
obi equation 
an be rewritten ina more 
onvenient form for 
al
ulations. One 
an always 
hoose a deviationve
tor X� su
h that, besides k�X� = 0, also X�u� = 0 at the point of ob-servation. The ve
tor X� 
hosen in this manner spans the two-dimensional,spa
e-like, subspa
e orthogonal to the ray, whi
h we 
all a s
reen. TheJa
obi ve
tor 
an then be written asX� = X1e�1 +X2e�2 +X3k� ; (30)where e�1 ; e�2 are ve
tors spanning an orthonormal basis on the s
reenk�e�1 = k�e�2 = u�e�1 = u�e�2 = e�1e2� = 0 ; (31a)e�1e1� = e�2e2� = �1 : (31b)4 Greek indi
es run from 0 to 3.5 R� ��� � ����;� � ����;� + � ������� � � ������� .
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ze�1 and e�2 are parallel transported along the raye�1 ;�k� = 0 ; e�2 ;�k� = 0 : (32)Using the fa
t, that deviation ve
tors di�ering by a 
onstant multiple of k�represent displa
ements to the same nearby ray, we 
hoose X3 = 0 so thatX� = X1e�1 +X2e�2 : (33)The equation DX�(�)d� = k�; �X�(�) ; (34)in terms of the s
reen 
omponents X1 and X2 takes on the form_Xi(�) = SijXj(�); Sij = �e�i k�;� e�j ; i; j = 1; 2 (35)where _� dd� . In the matrix notation we have_X(�) = SX(�) ; (36)where the matrix S after introdu
ing quantities, whi
h more 
onvenientlydes
ribe 
hanges in the 
ross-se
tion of the beam, su
h as: the expansionparameter � � 12 k�; �, whi
h des
ribes the rate of expansion, the shear� � 12 k�;�"��"�� , where "� = e�1 + ie�2 , des
ribing the rate of distortionthe shape of the 
ross-se
tion, takes on the formS = � � �Re � Im�Im� � +Re� � : (37)Di�erentiation of (36) gives�X(�) = TX(�) ; (38)where T = _S + S2 ; (39)and after 
ombining the last equation with Sa
hs' equations for � and � [16℄_� + �2 + j�j2 = �12R��k�k� ; (40a)_� + 2�� = �12C����"��k�"��k� ; (40b)we obtain T = � R�ReF ImFImF R+ReF � ; (41)



In�uen
e of the Gravitational Lensing E�e
t on . . . 3125where R � �12R��k�k� , F � �12C����"��k�"��k� = F ei� (R�� � theRi

i tensor, C���� � the Weyl tensor).In this manner we obtain an equation, whi
h is equivalent to the geodesi
deviation equation (28). As we see one may distinguish two forms of matterin�uen
e on the beam: the Ri

i fo
using (des
ribed by the quantity R),whi
h is due to the matter 
ontained in the beam and the Weyl fo
using(des
ribed by the quantity F), whi
h is due to tidal e�e
ts produ
ed bydistant 
lumps of matter.Be
ause the phase of the Weyl term �, is 
onstant along the beam ina spheri
ally symmetri
 �eld, we 
an set it equal to zero. Thus we haveImF = 0. In the FRW metri
 R = �4�G%m0(1 + zl)2 and C���� = 0, soF = 0. In the S
hwarzs
hild metri
 R = 0 (R�� = 0) and F = 3b2
2(1+zl)2rg2r5 .In the SIS R = �4�G(1 + zl)2e�2A(r) �� SIS(r) + p
2� ;andF = 4�Gb2(1 + zl)2r2 0� 3r3 rZ0 � SIS(r0)r02dr0 � � SIS(r)1A = 4�2�b2(1 + zl)2r4 ;where b is the impa
t parameter and the last equation is valid for r > r
uto�� the 
uto� radius introdu
ed in Se
. 5.To solve equation (38) it is ne
essary to spe
ify initial 
onditions X(0)and _X(0). If we assume that we knew the Ja
obi ve
tors at the observationpoint X(0) and at the point of the sour
e X(�s), we may estimate _X(0)from the integrated form of equation (38) [17℄_X(0) = 1�s (X(�s)�X(0)) � 1�s �sZ0 (�s � �)T (�)X(�)d� (42)� 1�s (X(�s)�X(0))� 1�2s �sZ0 (�s � �)T (�) ((�s � �)X(0) + �X(�s)) d� ;where �s is the value of a�ne parameter at the point of the sour
e.
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z6.2. The magni�
ation fa
torGravitational lenses 
an magnify images of distant obje
ts. This e�e
t
an be des
ribed by the so-
alled magni�
ation fa
tor � [18℄, su
h that� = SlS ; (43)where Sl is the observed �ux 
hanged by gravitational lensing, and S isthe �ux that would be re
eived if the same sour
e was observed throughan empty 
one. Using the relation between the luminosity distan
e and theobserved �ux (1) and equation (4), we obtain� = �D2AD2A ; (44)where �DA is the Dyer�Roeder distan
e, relative to whi
h is determined themagni�
ation, and DA is the angular-diameter distan
e measured on thebasis of �ux Sl. The distan
e DA 
ould be 
omputed from the de�nition (2),where one takes dAS=X1(�s)X2(�s) and d
O= dX1(0)
d� dX2(0)
d� , then one hasD2A = 
2X1(�s)X2(�s)_X1(0) _X2(0) ; (45)where X1(�s);X2(�s); _X1(0); _X2(0) are 
oordinates of the Ja
obi ve
tor inthe universe des
ribed by the Einstein�Strauss model.The magni�
ation �e of an extended sour
e, 
onsidered as an assembly ofradiating point sour
es with surfa
e brightness pro�le I(y), is given generallyas �e = RR I(y)�p(y)d2yRR I(y)d2y ; (46)where y is a ve
tor of position at the 
oordinate frame with the origin atthe 
enter of the sour
e, �p(y) is the magni�
ation of a point sour
e atposition y. Let us assume that 
ross-se
tion of the sour
e is 
ir
ular andI(y) =
onst., then in the polar 
oordinates we obtain�e = 2�R0 RsR0 �p(r; ')rdrd'�R2s ; (47)where Rs is the radius of the sour
e.



In�uen
e of the Gravitational Lensing E�e
t on . . . 31277. Relation between the geodesi
 deviation equation and thegravitational lens equationLet us see how presented above approa
h to the gravitational lensing re-lates with the gravitational lens equation used in the 
onventional approa
h.We will restri
t our 
onsideration to the �pure� Einstein�Strauss model with-out the SIS inside the void des
ribed by the S
hwarzs
hild metri
 and to theplane 
ontaining the sour
e, lens and observer. Then the gravitational lensequation is given by � = � � 2rg DlsDsDl � ; (48)where rg is the S
hwarzs
hild's radius for a body de�e
ting light, Dls, Ds,Dl are the angular-diameter distan
es6 of, respe
tively, the sour
e from thelens, the sour
e from the observer and the lens from the observer, � is theangular separation of the sour
e from the lens, whi
h would be observed inthe absen
e of lensing, � is the observed angular separation between the lensand the de�e
ted ray.Under the thin-lens approximation, we assume that the 
hange in7 _X1(�)in the vi
inity of the de�e
tion point �l may be approximated by a stepfun
tion _X1jl+ � _X1jl� =� �l+"Z�l�" X1(�)ReF d� (49a)� 2 RZrmin 3b2
(1 + zl)rgX1jldr2r5r�1� kr2���1� b2(1�kr2�)r2� (49b)� 2 
(1 + zl)rgq1� kr2�r2min X1jl ; (49
)where b is the impa
t parameter and in equation (49b) we use relation be-tween the radius and the a�ne parameterd�dr = 
(1 + z)s(1� kr2�)�1� b2(1� kr2�)r2 �1� rgr � �3 r2�� ;where as regards assumptions r � rg and 
� . 1, we negle
t termsrgr ,�3 r2 � 1. Inserting this into relation between the deviation ve
tor at6 Whi
h one may identify with the generalized Dyer�Roeder distan
es.7 As was mentioned in Se
. 6.1 � = 0, then the ve
tor e�1 lies in the 
onsidered planesour
e-lens-observer.
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zthe sour
e X1js and the deviation ve
tor whi
h would be in the absen
e oflens �X1js [19℄X1js= �X1js+ Dls
(1+zl) � _X1jl+� _X1jl�� �X1js+ 2Dlsrgq1�kr2�r2min X1jl ; (50)and using relations between the in�nitesimal angles and the Ja
obi ve
torsX1js = Dsd� ; (51a)�X1js = Dsd� ; (51b)X1jl = Dld� ; (51
)one has d� = d� + 2DlDlsDs rgq1� kr2�r2min d� :Finally, be
ause rmin = Dl� and q1� kr2� � 1 we haved� = d�� � 2rg DlsDsDl �� : (52)We see that this is just the di�erential form of the lens equation (48).8. ResultsNow we will use the presented above pro
edure of 
al
ulating the mag-ni�
ation fa
tor to 
ompute di�eren
e between the distan
e modulus basedon the generalized Dyer�Roeder equation (12) and the distan
e modulusobtained from the presented approa
h using the �Swiss 
heese� model. All
al
ulations were done numeri
ally due to a la
k of analyti
al solutions ofequation (38).Let us 
onsider the beam of light propagating from a sour
e with red-shift zs = 1, and passing a galaxy with mass M = 1011 �M� and redshiftzG = 0:4. On the basis of the measurements of the 
osmi
 ba
kground ra-diation and predi
tion of the theory of in�ation in the Big Bang model, weassume a �at universe 
k = 0, and from the measurements based on themotions of 
lusters of galaxies, we have 
m = 0:3. Then, from the relation
k + 
m + 
� = 1, we obtain 
� = 0:7. We take also the most favorableat the present time value of the Hubble 
onstant H0 = 65 km s�1Mp
�1.The di�eren
e between distan
es �(m � M) depends very weak on the
lumpiness parameter ~�, so we 
an 
hoose it arbitrary. We assume that



In�uen
e of the Gravitational Lensing E�e
t on . . . 3129~� = 0:5. For above parameters of the model the radius of the hole is about900 kp
 and the radius of the SIS halo is about 100 kp
.On Fig. 1 we 
ould see that with these assumptions the magni�
ationfa
tor de
reases from value 1.01, for the impa
t parameter b = 15 kp
 
or-responding to the radius of the galaxy disk, with in
reasing impa
t param-eter b. The dependen
e �(b) 
ould be well approximated with a

ura
y� 0:2% in the range from 15 kp
 to 100 kp
 (the radius of the SIS) bya fun
tion obtained for the SIS in the 
onventional approa
h using the grav-itational lens equation [20℄ �(b) = 1 + 
onst:=b.
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b [kpc]Fig. 1. Relation between the magni�
ation fa
tor � and the impa
t parameter b.The 
ontinuous line 
orresponds to the dependen
e �(b) derived from the lensequation for the SIS, and the dashed line des
ribes the dependen
e obtained fromthe presented approa
h.The di�eren
e �(m�M) between the Dyer�Roeder distan
e modulus(m�M)DR = 5 log(1 + z)2DA + 25 ; (53)and the distan
e modulus 
hanged by gravitational lensing magni�
ation(m�M)lensing = 5 log((1 + z)2DA=p�) + 25 ; (54)is equal �(m�M) = 5 logp� ; (55)
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zwhere DA is the Dyer�Roeder distan
e derived from (12) and is expressedin Mp
. Taking the largest obtained values of the magni�
ation fa
tor� = 1:01, we estimate the 
orre
tion as equal 0:01 mag.9. Summary and 
on
lusionsUsing the �Swiss 
heese� model to des
ribe the inhomogeneous universeand the geodesi
 deviation equation, we have investigated the in�uen
e ofa single 
lump of matter on the distan
e modulus for the sour
e observedthrough an empty 
one. The advantage of this approa
h is the use of a knownexa
t solution of the �eld equations and the general relativity formalism.Be
ause in pra
ti
e there are used more realisti
 models of the gravitationallens based on the weak �eld approximation and the lens equation, we havealso showed how the presented approa
h relates with 
onventional approa
h.In parti
ular we have derived the lens equation from the Ja
obi equationand showed that the dependen
e of the magni�
ation fa
tor on the impa
tparameter, �(b), for the sour
e at redshift z = 1 and a galaxy modeled bythe SIS with mass M = 1011 �M� as the obje
t 
aused the gravitationallensing e�e
t, is well approximated (with a

ura
y � 0:2%) by the relation�(b) = 1 + 
onst:=b obtained from the lens equation for the SIS.I would like to thank M. Demia«ski for patien
e and useful 
omments,whi
h allow to publish this work in the present form.REFERENCES[1℄ Ya.B. Zel'dovi
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