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LIMITATIONS ON QUANTUM INFORMATIONFROM BLACK HOLE PHYSICS�Jaob D. BekensteinThe Raah Institute of Physis, Hebrew University of JerusalemGivat Ram, Jerusalem 91904, Israel(Reeived Otober 12, 2001)After reviewing the relation of entropy to information, I derive the en-tropy bound as applied to bounded weakly gravitating systems, and reviewthe bound's appliations to osmology as well as its extensions to higherdimensions. I then disuss why blak holes behave as 1-D objets whenemitting entropy, whih suggests that a blak hole swallows information ata rate restrited by the one-hannel information apaity. I disuss fun-damental limitations on the information borne by signal pulses in urvedspaetime, from whih I verify the mentioned bound on the rate of infor-mation disposal by a blak hole.PACS numbers: 04.70.�s, 89.70.+, 03.67.Hk, 04.70.Dy1. IntrodutionWere one looking for a logo to symbolize the �eld of gravity physis in thelast deade, none would be more apt than 't Hooft's holographi bound [1℄:the entropy S (or information � see below) that an be ontained in aphysial system is bounded in terms of the area A of a surfae enlosing it:S � A(4~)�1 : (1)(I assume units with G =  = 1.) Where does this omes from? Aordingto Susskind [2℄, the holographi bound is required by the Generalized SeondLaw (GSL) [3℄ applied to the total ollapse of a physial system into a blakhole of its own making. Granted that many systems do not like to ollapsespontaneously, so that this argument is not a general proof of the priniple[4℄, a similar argument of wider appliability an be given for quiesent� Presented at the XXV International Shool of Theoretial Physis �Partiles andAstrophysis � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3555)



3556 J.D. Bekensteinsystems by onsidering either infall of the system into a large blak hole, ora tiny auxiliary blak hole whih devours the system [5℄. The holographibound as above stated an be violated by rapidly evolving systems, but withBousso's reinterpretation [6℄ of the meaning of A in Eq. (1), it works in theseases also.Interest in the holographi bound, or the more enompassing holographipriniple [1℄, is mostly for what it tells us about the struture of physiallaws. However, it is lear that the holographi bound also serves as the �nalarbitrator of the promise of any futuristi information storage tehnology.Unfortunately, it is rather lenient in this respet: it merely requires that adevie with dimension 1 m hold no more than some 1066 bits of information.By ontrast, all the books in the Library of Congress hold a paltry 1015 bitsof information, and no state-of-the-art 1 m size memory an hold all that.So I would like to ask if one an devie a tighter bound on information storagethan the holographi one? As I will show, the answer is positive in the formof the universal entropy bound, a spino� of blak hole physis. In light of theexplosive development of fast ommuniations, a further interesting questionwould be: what fundamental bounds an be set on the �ow of information?I will show here that several new results in this well developed �eld an behad by onsidering blak holes.2. Information and entropyI want to start by reapitulating how thermodynami entropy of a quan-tum system and the information it an store are related. In quantum theorya system's state, whether pure or mixed, is desribed by an Hermitian op-erator � with unit trae. The entropy of a pure state is zero (beause weknow what state we are dealing with). The thermodynami entropy of amixed state is given by von Neumann's formula S = �Tr � ln� (whih willproperly give zero if � orresponds to a pure state: Tr �2 = 1).Suppose we �nd the eigenstates of � and their respetive eigenvalues,whih must obviously sum to unity beause Tr � = 1. Aording to quantumtheory, eah nonvanishing eigenvalue pi stands for the probability with whihthe orresponding eigenstate turns up in state �. Working in the basisfurnished by the eigenstates it is easy to see that �Tr � ln� = �Pi pi ln pi.Now ompare this result with Shannon's famous 1948 formula [7℄ for thepeak information apaity � or information entropy � in bits of a systemwith distinguishable states whih our with a priori probabilities fpig:Imax = �Xi pi log2 pi : (2)



Limitations on Quantum Information from Blak Hole Physis 3557We obviously have Imax = S log2 e: generially thermodynami entropy setsan upper bound on the information storage apaity of the system, modulothe fator log2 e whih onverts from natural entropy units to bits.The key word in the above identi�ation is �distinguishable�. The eigen-states of � are all orthogonal by virtue of its Hermitian harater, so theyare preisely distinguishable. Confusion an our (and has often) if thedistinguishability ondition is ompromised. Consider the four statesj "i; j #i; j !i; j  iof a spin 1=2 partile orresponding to �up� and �down� spin with respetto spin omponents sz and sx, respetively. If we assign eah probability14 , Shannon's formula would predit maximum information apaity Imax =log2 4 = 2. Obviously here� = 14 (j "ih" j+ j #ih# j+ j !ih! j+ j  ih j) : (3)Realling that j !i = 2�1=2(j "i + j #i) while j !i = 2�1=2(j "i � j #i)and that j "i and j #i are orthonormal states, we easily work out that � =12 (j "ih" j+ j #ih# j), whih form tells us immediately that �'s eigenvaluesare f12 ; 12g and its eigenstates fj "i; j #ig. Calulating in the basis fj "i; j #iggives S = ln2. We thus �nd that Imax = 2S log2 e.Does the above mean the spin system an store more information thanallowed by the thermodynami entropy? Not at all! The four states used arenot independent, and so not mutually orthogonal. Aording to quantumtheory nonorthogonal states are not fully distinguishable experimentally [8℄.Thus when reading out information enoded in our four states, errors anour, and this �noise� redues the true information extratable below Shan-non's formal Imax. Aording to a fundamental theorem by Holevo [9℄, theinformation that an atually be read out of a system is bounded from aboveby S log2 e, as laimed above.Some onfusion an still arise if we ignore the fat that von Neumann'sS an have various values depending on the level of struture at whih it isomputed. The hemist, for instane, determines the entropy S of a piee ofiron by methods that reah down to the atomi level; for him the states figare atomi states. The ommuniation engineer, by ontrast, is interestedin storing information in the magneti domains of the iron in a magnetitape. He groups a multitude of atomi states into domain states, and the Somputed from the latter is de�nitely smaller than the hemist's S. Thereis no ontradition here; one must simply speify at whih level S or theorresponding information apaity are alulated. Obviously, the deeperwe go into the system's struture, the higher the entropy and information



3558 J.D. Bekensteinapaity. In what follows I shall be interested in the entropy (informationapaity) SX alulated at level X, the deepest level of struture (the level oflepton, quark and gluon degrees of freedom). The orresponding SX log2 ebounds from above the information apaity of material media aessiblewith any ahievable tehnology.3. Poor man's road to the universal entropy boundConsider the following gedanken experiment [10℄. Drop a physial sys-tem U of unknown onstrution and onstitution having mass-energy E andradius R into a Shwarzshild blak hole of mass M � E from a large dis-tane d � M away. This d is so hosen that the Hawking radiane arriesaway energy (as measured at in�nity) equal to E while U is falling to thehorizon where it is e�etively assimilated by the blak hole. At the endof the proess the blak hole is bak at mass M and its entropy has nothanged. Were the emission reversible, the radiated entropy would be E=THwith TH � ~(8�M)�1. Irreversibility of radiation and spaetime urvatureonspire to make the entropy emitted a fator � larger; typial values, de-pending on partile speies, are [11℄ � = 1:35�1:64. Thus the overall hangein world entropy is ÆSext = ÆSrad � S = � ETH � S : (4)One an ertainly hooseM larger than R, say, by an order of magnitudeso that the system will fall into the hole without being torn up: M = �Rwith � = a few. Thus by the ordinary seond law we obtain the boundS < 8���RE~ : (5)Our simple argument here leaves the fator �� somewhat fuzzy; but it issafe to say that 4�� < 102. Thus we have obtained a bound on the entropyof an arbitrary system U in terms of just its total energy E and radius R.This is the gist of the universal entropy bound [12℄.Note that we ould not derive (5) by using a heat reservoir in lieu of ablak hole. A reservoir whih has gained energy E upon U 's assimilation, andhas returned to its initial energy by radiating, does not neessarily returnto its initial entropy, ertainly not until U equilibrates with the rest of thereservoir. But a (nonrotating unharged) blak hole whose mass has nothanged overall, retains its original entropy beause that depends only onmass. In addition, for the blak hole mass and radius are related in a simpleway; this allowed us to replae TH in terms of R. By ontrast, for a generireservoir, size is not simply related to temperature.



Limitations on Quantum Information from Blak Hole Physis 3559Note also that in our argument U is not allowed to be strongly gravitating(meaning R � E) beause then M ould not be large ompared to E while� is of order a few, as I assumed. We thus have to assume that R � Ein addition: the universal entropy bound applies, a priori , only to weaklygravitating systems (but see below).But what about Hawking radiation pressure. Is it important? Could itblow U outwards? If we approximate the radiane as blak-body radianeof temperature TH oming from a sphere of radius 2M , the energy �ux atShwarzshild oordinate r from the hole isF (r) = N~61; 440(�Mr)2 ; (6)where N stands for the e�etive number of massless speies radiated (pho-tons ontribute 1 to N and eah neutrino speies 7=16). This estimate isknown to be o� by a fator of only a few [13℄. This energy (and momentum)�ux results in a radiation pressure fore frad(r) = �R2F (r) on U . Morepreisely, speies whih re�et well o� U are approximately twie as e�e-tive at exerting fore as just stated, while those (neutrinos and gravitons)whih go right through U ontribute very little; the N must thus be reinter-preted aordingly. I have ignored relativisti orretions so that the result,as quali�ed, is orret mostly for r �M .Writing the gravitational fore on U in the Newtonian approximation,fgrav(r) = ME=r2, one sees thatfrad(r)fgrav(r) = Ne� ~R261; 440�2M3E : (7)I have written Ne� here beause, as mentioned, some speies just passthrough U without exerting fore on it. In addition, only those speiesatually represented in the radiation �owing out during U 's infall have ahane to exert fores. Now an Hawking quantum bears an energy of orderTH, so the number of quanta radiated together with energy E is approxi-mately 8�ME=~. However, for any bound system ~=E < R (system largerthan its own Compton length), so by our stipulation that M = �R > R, thenumber of speies an be large ompared to unity. Sine a speies an exertpressure only if it is represented by at least one quantum, one obviously hasNe� < 8�ME=~. Therefore,frad(r)fgrav(r) < R27680�M2 � 1 : (8)Radiation pressure is thus negligible, and U 's fall is very nearly on a geodesi,at least until U approahes to within a few Shwarzshild radii. It is intu-itively lear that if d � M , the last (relativisti) stage annot make anydi�erene, and U must plunge to the horizon.



3560 J.D. BekensteinWhether d�M as assumed must be heked. I have taken d suh thatthe infall time equals the time t for the hole to radiate energy E. Newtoniallyd � 2(t2M=�2)1=3, while Eq. (6) gives the estimate t � 5�104EM2~�1N�1with N now the full speies number. From these equations and M = �Rwe get that d � 1:2� 103(�ER=N~)2=3M . Thus for N < 102 (onservativeestimate of our world's massless partile ontent), we have d > 57M � Mfor all systems U satisfying our assumption R > ~=E.4. Rami�ations of the universal entropy boundIn asymptotially �at four-dimensional spaetime (D = n + 1 = 4) theholographi bound restrits the entropy of a �nite system U with energy Eand irumsribing radius R (E and R measured in proper frame) by Eq. (1).For weakly gravitating systems (R� E) the universal entropy bound in itsoriginal version [12℄ is S � 2�ER~ : (9)Typially for laboratory sized systems E < 10�23R, while for astronomialsystems � barring neutron stars and blak holes � E < 10�5R. Thus, withfew exeptions, the entropy bound is many orders of magnitude tighter thanthe holographi one. For instane, it limits the information apaity of a1 m devie made of ordinary matter to be less than 1037 bits, whih limitno longer looks unreahable.In the original derivation of bound (9) I imagined that U is loweredslowly from far away to the horizon of a stationary blak hole, while all thefreed potential energy is allowed to do work on a distant agent (a Gerohproess [14℄). I then applied the GSL to infer the bound. This derivationwas ritiized [15℄ for not taking into aount the buoyany of U in theUnruh radiation surrounding it by virtue of its aeleration. However, I haveshown [16℄ that orretion for buoyany � itself an intriate alulation �merely inreases the 2� oe�ient in Eq. (9) by a tiny amount provided onlythat one assumes that R � ~=E, as done in Se. 3.The entropy in bounds (5) or (9) refers to the SX de�ned in Se. 2. This isbeause gravitation plays a ruial role in many generi ways of deriving theentropy bound [12, 16℄. And gravitation is unique among the interationsin that it is aware of all degrees of freedom in its soures (aording tothe equivalene priniple all energy gravitates). It would thus be odd if theentropy bound took into aount only entropy orresponding to intermediatedegrees of freedom, and so ignored energy arrying states at the deeperlevels?Of late it has been realized that the entropy bound also applies in higherdimensions. For instane, Bousso [17℄ has shown, via the Geroh proess



Limitations on Quantum Information from Blak Hole Physis 3561argument, that bound (9) applies verbatim in asymptotially �at spaetimewith any D = n+ 1 dimensions. Bousso rewrites the bound in terms of U 'sgravitational radius rg as inferred from the D-dimensional Shwarzshildsolution, rgn�2 = 8� (n=2)E(n� 1)�n=2�1 ; (10)whereby it takes the formS � (n� 1)�n=2 rn�2g R4� (n=2) ~(n�1)=2 : (11)Aording to Bousso this form of the bound applies to all systems in D-dimensional de Sitter spaetime whih oupy a small part of the spaeinside the osmologial horizon whose radius is denoted by R.As mentioned in Se. 3, when we ome to strongly gravitating systems(E � R), we annot derive the bound (9) or even the weaker version (5) bythe methods just expounded. However, it so happens that the bound (9)is atually obeyed � and saturated at that � by all D = 4 Kerr�Newmanblak holes provided one interprets E as the blak hole's mass and R asthe Boyer�Lindquist oordinate of the horizon, r+ (see referenes in [19℄).Further, spherial blak holes in D > 4 spaetime (for whih the horizon hasa (n�1) dimensional �area�) also obey (9) in asymptotially �at spaetimes,and the bound (11) in asymptotially de Sitter spaetimes. However, blakholes in higher dimensions no longer saturate these bounds as for D = 4 [17℄.The sway of the entropy bound also extends to osmology. For example,Verlinde [18℄ has shown that the entropy S of a omplete losed Robertson�Walker Universe in D spaetime dimensions whose ontents are desribed bya Conformal Field Theory (CFT) � the deeper desription of a number ofmassless �elds possibly in interation � with large entral harge (essentiallymany partile speies), is subjet to the generi boundS � 2�Rn~ [EC(2E �EC)℄1=2; (12)where R is the radius of the Sn spae, E the total energy in the �elds andEC the Casimir (vauum) energy (whih shows up beause the osmologialspae is ompat). Verlinde points out that for �xed E the maximum ofhis bound is 2�RE=(n~), whih never exeeds the original entropy bound(9); indeed Verlinde adopts S � 2�RE=(n~) as the �duial form of thatbound. A number of reent papers (see [19℄ for referenes) have substan-tiated Verlinde's bound; they ulminate years of e�orts by many to makemeaningful statements about the entropy (and by impliation the maximuminformation) that an be ontained in a whole Universe.



3562 J.D. BekensteinFor strongly gravitating systems in asymptotially �at spaetime withD = 4, the holographi bound and the formal entropy bound make verysimilar preditions, but for D > 4 the holographi bound is the tighter ofthe two. Unless D is very large, the entropy bound is the tighter bound forweakly gravitating systems, suh as those we meet in everyday life.5. Blak holes as information pipesIf the holographi bound (1) an be onstrued as telling us that a generiphysial system in 4-D spaetime is fundamentally two-dimensional in spae,then a blak hole in 4-D spaetime when viewed as an information absorberor entropy emitter, is fundamentally one-dimensional in spae [20℄. I proeedto explain.In the disipline treating information �ow � ommuniation theory �the notion of a hannel is entral. In �at spaetime a hannel is a ompleteset of unidiretionally propagating modes of some �eld, with the modes enu-merated by a single parameter. For example, all eletromagneti modes infree spae with �xed wave vetor diretion and partiular linear polariza-tion onstitute a hannel; the modes are parametrized solely by frequeny.An example would be a straight in�nitely long oaxial able (whih is wellknown to transmit all frequenies) apped at its entrane by the analog ofa polaroid �lter. Aousti and neutrino hannels an also be de�ned. Notethat a hannel is intrinsially one-dimensional.What is the maximum rate, in quantum theory, at whih informationmay be transmitted through a hannel for presribed power P ? The answerhas been known sine the 1960's; however, let me work with the partiularlyluid version given by Pendry [21℄. Pendry thinks of a possible signal stateas orresponding to a partiular set of oupation numbers for the variouspropagating modes. He assumes the hannel is uniform in the diretion ofpropagation, whih allows him to label the modes by momentum p. But heallows for dispersion, so that a quantum with momentum p has some energy"(p). Then the propagation veloity of the quanta is the group veloity�(p) = d"(p)=dp. Up to a fator log2 e the information rate apaity mustequal the maximal one-way entropy urrent for given P , whih obviouslyours for the thermal state, if one disards from the latter the modes movingopposite the diretion of interest.Now the entropy s(p) of any boson mode of momentum p in a thermalstate (temperature T ) is [22℄s(p) = "(p)Te"(p)=T � 1 � ln�1� e�"(p)=T� ; (13)



Limitations on Quantum Information from Blak Hole Physis 3563so the entropy urrent in one diretion is_S = 1Z0 s(p) �(p) dp2�~ = 1Z0 s(p) d"dp dp2�~ ; (14)where dp=2�~ is the number of modes per unit length in the interval dpwhih propagate in one diretion. This fator, when multiplied by the groupveloity, gives the one-way urrent of modes.Suppose "(p) is monotoni and extends over the range [0;1); we maythen anel dp and integrate over ". Then after substitution of Eq. (13) andintegration by parts we have_S = 2T 1Z0 "e"=T � 1 d"2�~ = 2T 1Z0 "(p)e"(p)=T � 1 �(p) dp2�~ : (15)The �rst fator in eah integrand is the mean energy per mode, so that theintegral represents the one-way power P in the hannel. Thus_S = 2PT : (16)The integral for P in the �rst form of Eq. (15) an easily be done:P = �(T )212~ : (17)Eliminating T between the last two expressions gives Pendry's limit_S = ��P3~ �1=2 or _Imax = ��P3~ �1=2 log2 e : (18)For a fermion hannel P in Eq. (17) is a fator 2 smaller, and onsequently_S in Eq. (18) is redued by a fator p2.The funtion _S(P ) in Eq. (18) is the so alled apaity of a noiselessquantum hannel . Surprisingly, it is independent, not only of the form ofthe mode veloity �(p), but also of its sale. Thus the phonon hannelapaity is as large as the photon hannel apaity despite the di�erenein speeds. Why? Although phonons onvey information at lower speed,the energy of a phonon is proportionately smaller than that of a photonin the equivalent mode. Thus when the apaities of hannels harnessingvarious arriers are expressed in terms of power, they turn out to involvethe same onstants. Formula (18) neatly haraterizes what we mean by one-dimensional transmission of entropy or information. It refers to transmission



3564 J.D. Bekensteinby use of a single speies of quantum and a spei� polarization; di�erentspeies and alternative polarizations engender separate hannels. Althoughframed in a �at spaetime ontext, its lak of sensitivity to the dispersionrelation of the transmitting milieu should make Pendry's limit relevant tourved spaetime also. This beause eletrodynamis in urved spaetimeis equivalent to �at spaetime eletrodynamis in a suitable dieletri andparamagneti medium [23℄. We shall see in Se. 7 that this hunh is justi�ed.It is instrutive to ontrast the results just obtained with the powerand entropy emission rate in a single boson polarization of a losed blakbody surfae with temperature T and area A in �at 4-D spaetime. By theStefan�Boltzmann law this isP = �2T 4A120~3 _S = 43 PT ; (19)whereby _S = 23 �2�2AP 315~3 �1=4 ; (20)[for fermions P arries an extra fator 7=8 and formula (20) an extra fator(8=7)1=4℄. Our manifestly 3-D transmission system deviates from the sleekformula (18) in the exponent of P and in the appearane of the measure A ofthe system. In emission from a losed urve of length L in two-dimensionalspae, the fator (LP 2)1=3 would replae (AP 3)1=4. We may thus gather thedimensionality of the transmission system from the exponent of P in theexpression _S(P ) [it is n=(n + 1) for D = n + 1 spaetime dimensions℄, aswell as from the value of the oe�ient of P=T in expressions for _S like (16)or (19) [it is (n+ 1)=n℄.Radiation from a Shwarzshild blak hole in 4-D spaetime is also givenby Eqs. (19) (or their fermion version) with A = 4�(2M)2 and T = TH,exept we must orret the expression for P by a speies dependent fator ��of order unity [13℄, and replae the 4=3 in the expression for _S by the speiesdependent fator � already mentioned in Se. 4. Eliminating M between theequations we obtain, in lieu of Eq. (20),_S = ��2 ���P480~ �1=2 : (21)(For fermions there is an extra fator 7=8 inside the radial.) This looksompletely di�erent from the law (20) for the hot losed surfae beause,unlike for a hot body, a blak hole's temperature is related to its mass.However, (21) is of the same form as Pendry's limit (18) for one-hanneltransmission. From Page [11, 13℄ we get �� = 1:6267 and � = 1:5003 for one



Limitations on Quantum Information from Blak Hole Physis 3565photon polarization, so the numerial oe�ient of (21) is 15:1 times that in(18). Repeating the above exerise for one speies of neutrinos we again �ndformulae like (21) and (18), this time with �� = 18:045 and � = 1:6391; thenumerial oe�ient of (21) is 48:1 times that of the fermion version of (18).Thus when judged by its entropy emission properties, a blak hole in4-D spaetime is more like a 1-D hannel than like a surfae in 3-D spae.Why is this? A formal answer is that, beause of the way TH is relatedto the blak hole's radius 2M , Hawking emission prefers to emerge in thelowest angular momentum mode possible. To exit with impat parameter< 2M and angular momentum j~, a quantum must have energy (momen-tum) ~! > j~=2M . But in the Hawking thermal distribution the dominant~! is of order TH = ~(8�M)�1. Thus the emerging j's tend to be small. Forexample, 97:9% of the photon energy emerges in the j = 1 modes (j = 0is forbidden for photons), and 96:3% of the neutrino power is in the j = 12modes [13℄. Thus the blak hole emits as lose to radially as possible. Thismeans that, rudely speaking, it does so through just one hannel.If a blak hole emits entropy like a one-dimensional system, we mightguess it should absorb information like a one dimensional system. Thishunh will be veri�ed in Se. 7. As a �rst step I extend to urved spaetimesome of the insights regarding information �ow.6. Information pulses in urved spaetimeThe disussion in Se. 5 taitly assumed steady state streaming of infor-mation and energy. But what if information is delivered in pulses? Can onestate a bound generalizing (18)? Can one inlude e�ets of gravitation onthe information transfer rate? To answer these questions let us extend thenotion of hannel to urved spaetime, at least to stationary urved spae-time. Again, a hannel will be a omplete set of unidiretional modes ofsome �eld that an be enumerated with a single parameter. Eah hannelis haraterized by speies of quanta, polarization (heliity), trajetory, et.In Se. 5 I haraterized the signal in a partiular hannel by power. Fora pulse it seems a better idea to use both the signal's duration � and itsenergy E. Sine in urved spaetime a hannel is not generally uniform, Ihoose to measure these parameters in a loal Lorentz frame (I shall showpresently that it does not matter whih one). With this preaution setionsof the hannel may be treated as in �at spaetime.How is the true Imax of a pulse related to its E and �? Sine informationis dimensionless, Imax must be a funtion of dimensionless ombinations ofE, � , hannel parameters and the fundamental onstants ; ~ and G:Imax = =�E�~ ; GE�5��1� : (22)



3566 J.D. BekensteinHere =(�;$) is some nonnegative valued funtion of the dimensionless pa-rameters � and $ harateristi of the hannel. This is alled the Char-ateristi Information Funtion (CIF) [24, 25℄. The shape of = depend onthings like the polarization and nature of the transmitting medium. I shallassume this medium, if any, is nondissipative and nondispersive. Thus itis haraterized by a single signal veloity s; the dimensionless parameters= is one of the determinants of the shape of =. I shall exlude hannelswhih transmit massive quanta, e.g. eletrons, beause rest mass is energyin a form not useful for ommuniation, so that the stritest limits on in-formation �ow should emerge for massless signal arriers. Hene masses donot enter into the shape of =. The variable $ � GE�5��1 is of order ofE divided by the signal's self-potential energy, and very large for ordinarysignals. So I �rst work with the limiting formula as $ !1.Let us hek what happens in �at spaetime for steady state signaling.This implies we deal with a long stream of information and that the signalan be haraterized in a suitable frame as statistially stationary. Thepeak information transfer rate and power an then be inferred from a �nitesetion of the signal of duration � bearing information Imax and energy E.It should matter little how long a streth in � is used so long as it is nottoo short, and _Imax � E��1 should ome out fully determined by the powerP � E��1. But this is onsistent with Eq. (22) only if =(�;1) / p�, foronly then does � anel out. With this form we reover Pendry's formula_Imax / (P=~)1=2, whih we know to be the orret answer for steady state�ow in �at spaetime.The dividing line between steady state signaling and signaling by meansof very long pulses is fuzzy. This suggests that long pulse signals must alsoobey a Pendry type formula, albeit approximately, f. [26℄. The law _Imax /(P=~)1=2 is evidently inappliable to brief information pulses. For suh itmay be replaed by a linear upper bound [27℄ whih may even transend someof the limitations I imposed to de�ne =(�;$). Consider the information I tobe enoded in some material struture V of radius R and rest energy E whihmaintains its integrity and dimensions as it travels from emitter to reeiver.From Eq. (9) we have the strit inequality I < 2�ER~�1 log2 e. The rate atwhih the information is assimilated by the reeiver is obviously restritedby the loal time � it takes for V to sweep by it. From speial relativity� > 2R�1 with Lorentz's  aounting for the Fitzgerald ontration of Vin the frame of the reeiver. Thus the peak information reeption rate isI=� < �E~�1 log2 e, or _Ire < �Ere~�1 log2 e ; (23)



Limitations on Quantum Information from Blak Hole Physis 3567where Ere � E is V's energy as measured in the reeiver's frame. Bound(23) replaes the information version of Eq. (18) when it omes to pulses.Sine � � Ere�~�1 we have the strit linear bound =(�;1) < (� log2 e)�,a bound whih is supported by muh evidene [24,25℄ even when the signalhas no rest frame. I must stress that the linear bound applies only for small�; for � � 1 one may use Pendry's formula.Detailed alulations [19, 25℄ show that E� is unhanged in the passagebetween Lorentz frames, regardless of whether transmission is through amedium or vauum. Thus the law Imax = =(E�=~;1) is Lorentz invariantnot only in vauum where this is required by relativity, but also in thepresene of a preferred frame established by the medium. We an thususe Imax = =(E�=~;1) both in the medium's and in the signal emitter's(reeiver's) Lorentz frame, provided we do so at a �xed point.But how is the information transmission rate related at two point alongthe hannel? In �at spaetime, and in the absene of dispersion, E and �are evidently onserved with propagation. And in the absene of dissipationso is the information, so that Imax = =(E�=~;1) is valid at every pointalong the hannel. One we are in stationary urved spaetime, E and �are subjet to redshift and dilation e�ets, respetively. However, the twoe�ets at in opposite senses so that E� is again onserved throughout thesignal's �ight. Therefore, the formula is meaningful throughout the hannel.In fat one an use global values (as measured at in�nity) of E and � inthe formula. In onlusion, one and the same formula limits informationtransmission, propagation and reeption rates.When self-gravity of the signal pulse is not negligible, $ reappears asa possible argument of =. However, it is lear that E=� is not a Lorentzsalar, so inlusion of $ would spoil the loal Lorentz invariane of Eq. (22)and violate speial relativity for signals propagating in vauum in a �atbakground. In a urved bakground there are further arguments againstinlusion of $ in =. In vauum we an use the requirement of loal Lorentzinvariane to bar $'s appearane, for a su�iently brief signal should ad-mit being enompassed in its entirety by loal Lorentz frames. Further, $evidently dereases as the signal propagates outward in the gravitational po-tential. Thus, =(E�=~;$) would derease either outwardly (if = inreaseswith $) or inwardly (if it dereases as $ inreases). If a signal's informa-tion saturates the bound =(E�=~;$) at some point in the potential, then byonservation of information it will exeed the bound one it has propagatedsomewhat in the diretion in whih = dereases. This leads to a ontradi-tion. One ould try to resolve the problem by de�ning Imax only in terms ofthe minimum value of $ in the hannel. But it seems strange that, at leastfor brief signals, one annot state Imax in terms of loal quantities.



3568 J.D. BekensteinThus for signals propagating in vauum in �at or urved spaetime, $annot appear in =. It is unlear whether this onlusion extends to signalpropagation in a medium. For one thing in urved spaetime a medium isnever homogeneous, whih means, among other things, that s varies. Thisin itself puts in doubt our argument for simpliity of the formula (22).7. Dumping information into a blak holeSuppose we are granted a ertain power P to aomplish the task ofgetting rid of a stream of possibly ompromising information by dumping itinto a blak hole. What is the maximum information dumping rate?To answer this I �rst argue that if the signal omes from a distane,it is transmitted down the hole through a single hannel � more or less� per �eld speies and polarization. Let us reall the rule for �eld modeounting. In one spae dimension a length L ontains (2�)�1L�k modesin the wave vetor interval �k. In 3-D we have (2�)�3LxLyLz�kx�ky�kzmodes. From this we may onlude that if a �at 2-surfae of area A radiatesinto a narrow solid angle �
 about its normal, the number of modes out toa distane L from it whose wave vetor magnitudes lie between k and k +�k is (2�)�3ALk2�
�k. The fator (2�)�1L�k is obviously the numberof modes emitted sequentially in eah diretion and distinguished by theirvalues of k. One an thus think of W = (2�)�2Ak2�
 as the number ofative hannels.Now let a transmitter with e�etive area A send an information bearingsignal towards a Shwarzshild blak hole of mass M surrounded by vauumand situated at distane d� 2M . Let A be oriented with its normal towardsthe blak hole; evidently A < 4�d2. As viewed from the transmitter theblak hole subtends solid angle �
 = �(2M)2=d2. What should we takefor k in the formula for W? Being interested in the highest informationfor given energy (other things being equal), we ertainly want to use thesmallest k (smallest ~!) possible. But signals omposed of too small k's willjust be sattered by the blak hole. The borderline is k = 2�=� � 2�=(2M).With this we �nd W < 4�2, whih means that, optimally, information istransmitted down a blak hole through just a few hannels per �eld speiesand polarization. This is independent of the sales M and d of the problem.In light of this we employ the one-hannel formula (22); aording to ourargument in Se. 6, we drop the argument $. Further, sine E� is onservedin Shwarzshild (stationary) spaetime, and losely equals Et, the valuesbeing measured at in�nity, we have Imax = =(Et=~). This for a pulse ofduration t as seen from in�nity. If we are dealing with a steady state streamof energy and information (t!1 and E ! 1 with P � lim(E=t) �nite), wehave, by the logi of the paragraph following Eq. (22), that the maximum
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