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After reviewing the relation of entropy to information, I derive the en-
tropy bound as applied to bounded weakly gravitating systems, and review
the bound’s applications to cosmology as well as its extensions to higher
dimensions. I then discuss why black holes behave as 1-D objects when
emitting entropy, which suggests that a black hole swallows information at
a rate restricted by the one-channel information capacity. I discuss fun-
damental limitations on the information borne by signal pulses in curved
spacetime, from which I verify the mentioned bound on the rate of infor-
mation disposal by a black hole.

PACS numbers: 04.70.—s, 89.70.+c, 03.67.Hk, 04.70.Dy

1. Introduction

Were one looking for a logo to symbolize the field of gravity physics in the
last decade, none would be more apt than 't Hooft’s holographic bound [1]:
the entropy S (or information — see below) that can be contained in a
physical system is bounded in terms of the area A of a surface enclosing it:

S < A(4R)~'. (1)

(T assume units with G = ¢ = 1.) Where does this comes from? According
to Susskind [2], the holographic bound is required by the Generalized Second
Law (GSL) [3] applied to the total collapse of a physical system into a black
hole of its own making. Granted that many systems do not like to collapse
spontaneously, so that this argument is not a general proof of the principle
[4], a similar argument of wider applicability can be given for quiescent
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systems by considering either infall of the system into a large black hole, or
a tiny auxiliary black hole which devours the system [5]. The holographic
bound as above stated can be violated by rapidly evolving systems, but with
Bousso’s reinterpretation [6] of the meaning of A in Eq. (1), it works in these
cases also.

Interest in the holographic bound, or the more encompassing holographic
principle [1], is mostly for what it tells us about the structure of physical
laws. However, it is clear that the holographic bound also serves as the final
arbitrator of the promise of any futuristic information storage technology.
Unfortunately, it is rather lenient in this respect: it merely requires that a
device with dimension 1 cm hold no more than some 10°¢ bits of information.
By contrast, all the books in the Library of Congress hold a paltry 10" bits
of information, and no state-of-the-art 1 cm size memory can hold all that.
So I would like to ask if one can device a tighter bound on information storage
than the holographic one? As I will show, the answer is positive in the form
of the universal entropy bound, a spinoff of black hole physics. In light of the
explosive development of fast communications, a further interesting question
would be: what fundamental bounds can be set on the flow of information?
I will show here that several new results in this well developed field can be
had by considering black holes.

2. Information and entropy

I want to start by recapitulating how thermodynamic entropy of a quan-
tum system and the information it can store are related. In quantum theory
a system’s state, whether pure or mixed, is described by an Hermitian op-
erator p with unit trace. The entropy of a pure state is zero (because we
know what state we are dealing with). The thermodynamic entropy of a
mixed state is given by von Neumann’s formula S = —Tr plnp (which will
properly give zero if p corresponds to a pure state: Tr p? = 1).

Suppose we find the eigenstates of p and their respective eigenvalues,
which must obviously sum to unity because Tr p = 1. According to quantum
theory, each nonvanishing eigenvalue p; stands for the probability with which
the corresponding eigenstate turns up in state p. Working in the basis
furnished by the eigenstates it is easy to see that —Tr plnp = —> ", p; Inp;.
Now compare this result with Shannon’s famous 1948 formula [7] for the
peak information capacity — or information entropy — in bits of a system
with distinguishable states which occur with a priori probabilities {p;}:

Irnax = - Zpi logQ Di - (2)
)
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We obviously have Ijax = Slog, e: generically thermodynamic entropy sets
an upper bound on the information storage capacity of the system, modulo
the factor log, e which converts from natural entropy units to bits.

The key word in the above identification is “distinguishable”. The eigen-
states of p are all orthogonal by virtue of its Hermitian character, so they
are precisely distinguishable. Confusion can occur (and has often) if the
distinguishability condition is compromised. Consider the four states

[ 1141 =) )

of a spin 1/2 particle corresponding to “up” and “down” spin with respect
to spin components s, and s, respectively. If we assign each probability
i, Shannon’s formula would predict maximum information capacity Imax =
log, 4 = 2. Obviously here

p= LU+ 100 1+ =) 4] e D) 3)

Recalling that | —) = 271/2(] 1) + | 1)) while | =) = 27Y2(| 1) — | }))
and that | 1) and | |) are orthonormal states, we easily work out that p =
SN+ ), which form tells us immediately that p’s eigenvalues
are {1, 1} and its eigenstates {| 1),| |)}. Calculating in the basis {| 1),| 1)}
gives S = In2. We thus find that I ax = 25 log, e.

Does the above mean the spin system can store more information than
allowed by the thermodynamic entropy? Not at all! The four states used are
not independent, and so not mutually orthogonal. According to quantum
theory nonorthogonal states are not fully distinguishable experimentally [8].
Thus when reading out information encoded in our four states, errors can
occur, and this “noise” reduces the true information extractable below Shan-
non’s formal Ijpax. According to a fundamental theorem by Holevo [9], the
information that can actually be read out of a system is bounded from above
by S'logs e, as claimed above.

Some confusion can still arise if we ignore the fact that von Neumann’s
S can have various values depending on the level of structure at which it is
computed. The chemist, for instance, determines the entropy S of a piece of
iron by methods that reach down to the atomic level; for him the states {i}
are atomic states. The communication engineer, by contrast, is interested
in storing information in the magnetic domains of the iron in a magnetic
tape. He groups a multitude of atomic states into domain states, and the S
computed from the latter is definitely smaller than the chemist’s S. There
is no contradiction here; one must simply specify at which level S or the
corresponding information capacity are calculated. Obviously, the deeper
we go into the system’s structure, the higher the entropy and information
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capacity. In what follows I shall be interested in the entropy (information
capacity) Sx calculated at level X, the deepest level of structure (the level of
lepton, quark and gluon degrees of freedom). The corresponding Sx log, e
bounds from above the information capacity of material media accessible
with any achievable technology.

3. Poor man’s road to the universal entropy bound

Consider the following gedanken experiment [10]. Drop a physical sys-
tem U of unknown construction and constitution having mass-energy E and
radius R into a Schwarzschild black hole of mass M > FE from a large dis-
tance d > M away. This d is so chosen that the Hawking radiance carries
away energy (as measured at infinity) equal to E while U is falling to the
horizon where it is effectively assimilated by the black hole. At the end
of the process the black hole is back at mass M and its entropy has not
changed. Were the emission reversible, the radiated entropy would be E/Ti
with Ty = (87 M)~ L. Trreversibility of radiation and spacetime curvature
conspire to make the entropy emitted a factor v larger; typical values, de-
pending on particle species, are [11] v = 1.35+1.64. Thus the overall change
in world entropy is

E
0Sext = 0Spaa — S =v—— 5. (4)
Tw
One can certainly choose M larger than R, say, by an order of magnitude
so that the system will fall into the hole without being torn up: M = (R
with { = a few. Thus by the ordinary second law we obtain the bound

E
S < SWVCRE. (5)

Our simple argument here leaves the factor v{ somewhat fuzzy; but it is
safe to say that 4v¢ < 10%. Thus we have obtained a bound on the entropy
of an arbitrary system U in terms of just its total energy E and radius R.
This is the gist of the universal entropy bound [12].

Note that we could not derive (5) by using a heat reservoir in lieu of a
black hole. A reservoir which has gained energy F upon U’s assimilation, and
has returned to its initial energy by radiating, does not necessarily return
to its initial entropy, certainly not until U equilibrates with the rest of the
reservoir. But a (nonrotating uncharged) black hole whose mass has not
changed overall, retains its original entropy because that depends only on
mass. In addition, for the black hole mass and radius are related in a simple
way; this allowed us to replace Ty in terms of R. By contrast, for a generic
reservoir, size is not simply related to temperature.



Limitations on Quantum Information from Black Hole Physics 3559

Note also that in our argument U is not allowed to be strongly gravitating
(meaning R ~ F) because then M could not be large compared to E while
¢ is of order a few, as I assumed. We thus have to assume that R > F
in addition: the universal entropy bound applies, a priori, only to weakly
gravitating systems (but see below).

But what about Hawking radiation pressure. Is it important? Could it
blow U outwards? If we approximate the radiance as black-body radiance
of temperature Ty coming from a sphere of radius 2M, the energy flux at
Schwarzschild coordinate r from the hole is

Nh
Fr) = Si 2000 (6)

where N stands for the effective number of massless species radiated (pho-
tons contribute 1 to A and each neutrino species 7/16). This estimate is
known to be off by a factor of only a few [13]. This energy (and momentum)
flux results in a radiation pressure force fiaq(r) = TR?F(r) on U. More
precisely, species which reflect well off I are approximately twice as effec-
tive at exerting force as just stated, while those (neutrinos and gravitons)
which go right through U contribute very little; the A" must thus be reinter-
preted accordingly. I have ignored relativistic corrections so that the result,
as qualified, is correct mostly for r > M.

Writing the gravitational force on U in the Newtonian approximation,
ferav(r) = ME/r?, one sees that

frad('f') i Neff ﬁR2 (7)
forav(r) 61,4402 M3E

I have written Ngg here because, as mentioned, some species just pass
through U without exerting force on it. In addition, only those species
actually represented in the radiation flowing out during U’s infall have a
chance to exert forces. Now an Hawking quantum bears an energy of order
Tr, so the number of quanta radiated together with energy FE is approxi-
mately 87 M E/h. However, for any bound system i/E < R (system larger
than its own Compton length), so by our stipulation that M = (R > R, the
number of species can be large compared to unity. Since a species can exert
pressure only if it is represented by at least one quantum, one obviously has
Negt < 8t M E/h. Therefore,
2

fraal) R (8)

ferav(r) 7680w M?
Radiation pressure is thus negligible, and U’s fall is very nearly on a geodesic,
at least until U/ approaches to within a few Schwarzschild radii. It is intu-
itively clear that if d > M, the last (relativistic) stage cannot make any
difference, and U must plunge to the horizon.
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Whether d > M as assumed must be checked. I have taken d such that
the infall time equals the time ¢ for the hole to radiate energy E. Newtonially
d =~ 2(t>M /7?)'/3, while Eq. (6) gives the estimate t ~ 5 x 10*EM?h N1
with A/ now the full species number. From these equations and M = (R
we get that d ~ 1.2 x 103(CER/NE)?/3* M. Thus for N < 10% (conservative
estimate of our world’s massless particle content), we have d > 57TM > M
for all systems U satisfying our assumption R > h/E.

4. Ramifications of the universal entropy bound

In asymptotically flat four-dimensional spacetime (D = n + 1 = 4) the
holographic bound restricts the entropy of a finite system U with energy F
and circumscribing radius R (E and R measured in proper frame) by Eq. (1).
For weakly gravitating systems (R < F) the universal entropy bound in its
original version [12] is

S < 27TE—hR. ()

Typically for laboratory sized systems £ < 107?R, while for astronomical
systems — barring neutron stars and black holes — E < 107°R. Thus, with
few exceptions, the entropy bound is many orders of magnitude tighter than
the holographic one. For instance, it limits the information capacity of a
1 cm device made of ordinary matter to be less than 1037 bits, which limit
no longer looks unreachable.

In the original derivation of bound (9) T imagined that U is lowered
slowly from far away to the horizon of a stationary black hole, while all the
freed potential energy is allowed to do work on a distant agent (a Geroch
process [14]). I then applied the GSL to infer the bound. This derivation
was criticized [15] for not taking into account the buoyancy of U in the
Unruh radiation surrounding it by virtue of its acceleration. However, I have
shown [16] that correction for buoyancy — itself an intricate calculation —
merely increases the 27 coefficient in Eq. (9) by a tiny amount provided only
that one assumes that R > h/FE, as done in Sec. 3.

The entropy in bounds (5) or (9) refers to the Sx defined in Sec. 2. This is
because gravitation plays a crucial role in many generic ways of deriving the
entropy bound [12,16]. And gravitation is unique among the interactions
in that it is aware of all degrees of freedom in its sources (according to
the equivalence principle all energy gravitates). It would thus be odd if the
entropy bound took into account only entropy corresponding to intermediate
degrees of freedom, and so ignored energy carrying states at the deeper
levels?

Of late it has been realized that the entropy bound also applies in higher
dimensions. For instance, Bousso [17] has shown, via the Geroch process
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argument, that bound (9) applies verbatim in asymptotically flat spacetime
with any D = n + 1 dimensions. Bousso rewrites the bound in terms of U’s
gravitational radius 7y as inferred from the D-dimensional Schwarzschild

solution,
_ 8I'(n/2)E
2 _
ry" 2 = e (10)

whereby it takes the form

(n — 1)71'"/2 rg_QR
4TI (n/2) h(n=1)/2

(11)

According to Bousso this form of the bound applies to all systems in D-
dimensional de Sitter spacetime which occupy a small part of the space
inside the cosmological horizon whose radius is denoted by R.

As mentioned in Sec. 3, when we come to strongly gravitating systems
(E ~ R), we cannot derive the bound (9) or even the weaker version (5) by
the methods just expounded. However, it so happens that the bound (9)
is actually obeyed — and saturated at that — by all D = 4 Kerr—Newman
black holes provided one interprets E as the black hole’s mass and R as
the Boyer—-Lindquist coordinate of the horizon, r; (see references in [19]).
Further, spherical black holes in D > 4 spacetime (for which the horizon has
a (n—1) dimensional “area”) also obey (9) in asymptotically flat spacetimes,
and the bound (11) in asymptotically de Sitter spacetimes. However, black
holes in higher dimensions no longer saturate these bounds as for D = 4 [17].

The sway of the entropy bound also extends to cosmology. For example,
Verlinde [18| has shown that the entropy S of a complete closed Robertson—
Walker Universe in D spacetime dimensions whose contents are described by
a Conformal Field Theory (CFT) — the deeper description of a number of
massless fields possibly in interaction — with large central charge (essentially
many particle species), is subject to the generic bound

2mR 1/2’

S < W[EC(QE — Ec)]

(12)

where R is the radius of the S™ space, E the total energy in the fields and
E¢ the Casimir (vacuum) energy (which shows up because the cosmological
space is compact). Verlinde points out that for fixed E the maximum of
his bound is 2rRE/(nh), which never exceeds the original entropy bound
(9); indeed Verlinde adopts S < 2wRE/(nh) as the fiducial form of that
bound. A number of recent papers (see [19] for references) have substan-
tiated Verlinde’s bound; they culminate years of efforts by many to make
meaningful statements about the entropy (and by implication the maximum
information) that can be contained in a whole Universe.
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For strongly gravitating systems in asymptotically flat spacetime with
D = 4, the holographic bound and the formal entropy bound make very
similar predictions, but for D > 4 the holographic bound is the tighter of
the two. Unless D is very large, the entropy bound is the tighter bound for
weakly gravitating systems, such as those we meet in everyday life.

5. Black holes as information pipes

If the holographic bound (1) can be construed as telling us that a generic
physical system in 4-D spacetime is fundamentally two-dimensional in space,
then a black hole in 4-D spacetime when viewed as an information absorber
or entropy emitter, is fundamentally one-dimensional in space [20]. I proceed
to explain.

In the discipline treating information flow — communication theory —
the notion of a channel is central. In flat spacetime a channel is a complete
set of unidirectionally propagating modes of some field, with the modes enu-
merated by a single parameter. For example, all electromagnetic modes in
free space with fixed wave vector direction and particular linear polariza-
tion constitute a channel; the modes are parametrized solely by frequency.
An example would be a straight infinitely long coaxial cable (which is well
known to transmit all frequencies) capped at its entrance by the analog of
a polaroid filter. Acoustic and neutrino channels can also be defined. Note
that a channel is intrinsically one-dimensional.

What is the maximum rate, in quantum theory, at which information
may be transmitted through a channel for prescribed power P? The answer
has been known since the 1960’s; however, let me work with the particularly
lucid version given by Pendry [21]. Pendry thinks of a possible signal state
as corresponding to a particular set of occupation numbers for the various
propagating modes. He assumes the channel is uniform in the direction of
propagation, which allows him to label the modes by momentum p. But he
allows for dispersion, so that a quantum with momentum p has some energy
e(p). Then the propagation velocity of the quanta is the group velocity
v(p) = de(p)/dp. Up to a factor log, e the information rate capacity must
equal the maximal one-way entropy current for given P, which obviously
occurs for the thermal state, if one discards from the latter the modes moving
opposite the direction of interest.

Now the entropy s(p) of any boson mode of momentum p in a thermal
state (temperature T') is [22]

£(p)
s(p) = ——L—— —In (1 - efe(p)/T) (13)
es(P)/T — 1 ’
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so the entropy current in one direction is

T dp [ de dp
s=0/s<p)v< ) _O/S(p)% e (14)

where dp/27h is the number of modes per unit length in the interval dp
which propagate in one direction. This factor, when multiplied by the group
velocity, gives the one-way current of modes.

Suppose £(p) is monotonic and extends over the range [0,00); we may
then cancel dp and integrate over e. Then after substitution of Eq. (13) and
integration by parts we have

.27 e de 2] dp
5= _/eE/T— 1 27h f/ef 2 2nh (15)
0 0

The first factor in each integrand is the mean energy per mode, so that the
integral represents the one-way power P in the channel. Thus

S=" (16)

The integral for P in the first form of Eq. (15) can easily be done:

n(T)?
 12h

Eliminating T between the last two expressions gives Pendry’s limit

‘ P\ /2 ‘ P\ /2
S = <7;_ﬁ) or Imax = <7;—ﬁ> log, e. (18)

For a fermion channel P in Eq. (17) is a factor 2 smaller, and consequently
S in Eq. (18) is reduced by a factor /2.

The function S(P) in Eq. (18) is the so called capacity of a noiseless
quantum channel. Surprisingly, it is independent, not only of the form of
the mode velocity v(p), but also of its scale. Thus the phonon channel
capacity is as large as the photon channel capacity despite the difference
in speeds. Why? Although phonons convey information at lower speed,
the energy of a phonon is proportionately smaller than that of a photon
in the equivalent mode. Thus when the capacities of channels harnessing
various carriers are expressed in terms of power, they turn out to involve
the same constants. Formula (18) neatly characterizes what we mean by one-
dimensional transmission of entropy or information. It refers to transmission
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by use of a single species of quantum and a specific polarization; different
species and alternative polarizations engender separate channels. Although
framed in a flat spacetime context, its lack of sensitivity to the dispersion
relation of the transmitting milieu should make Pendry’s limit relevant to
curved spacetime also. This because electrodynamics in curved spacetime
is equivalent to flat spacetime electrodynamics in a suitable dielectric and
paramagnetic medium [23]. We shall see in Sec. 7 that this hunch is justified.

It is instructive to contrast the results just obtained with the power
and entropy emission rate in a single boson polarization of a closed black
body surface with temperature T and area A in flat 4-D spacetime. By the
Stefan—Boltzmann law this is

T4 A . 4P

pP=__- " = 1
120A3 5 3T’ (19)

whereby
52 <2772AP3>1/4

= 2
3 1503 (20)

[for fermions P carries an extra factor 7/8 and formula (20) an extra factor
(8/7)'/*]. Our manifestly 3-D transmission system deviates from the sleek
formula (18) in the exponent of P and in the appearance of the measure A of
the system. In emission from a closed curve of length L in two-dimensional
space, the factor (LP?)'/? would replace (AP3)'/*. We may thus gather the
dimensionality of the transmission system from the exponent of P in the
expression S(P) [it is n/(n + 1) for D = n + 1 spacetime dimensions|, as
well as from the value of the coefficient of P/T in expressions for S like (16)
or (19) [it is (n + 1)/n].

Radiation from a Schwarzschild black hole in 4-D spacetime is also given
by Eqgs. (19) (or their fermion version) with A = 47(2M)? and T = Ty,
except we must correct the expression for P by a species dependent factor r
of order unity [13], and replace the 4/3 in the expression for S by the species
dependent factor v already mentioned in Sec. 4. Eliminating M between the
equations we obtain, in lieu of Eq. (20),

5 <V2]_"7TP)1/2‘ o)

480h

(For fermions there is an extra factor 7/8 inside the radical.) This looks
completely different from the law (20) for the hot closed surface because,
unlike for a hot body, a black hole’s temperature is related to its mass.
However, (21) is of the same form as Pendry’s limit (18) for one-channel
transmission. From Page [11,13] we get I' = 1.6267 and v = 1.5003 for one
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photon polarization, so the numerical coefficient of (21) is 15.1 times that in
(18). Repeating the above exercise for one species of neutrinos we again find
formulae like (21) and (18), this time with I' = 18.045 and v = 1.6391; the
numerical coefficient of (21) is 48.1 times that of the fermion version of (18).

Thus when judged by its entropy emission properties, a black hole in
4-D spacetime is more like a 1-D channel than like a surface in 3-D space.
Why is this? A formal answer is that, because of the way Ty is related
to the black hole’s radius 2M, Hawking emission prefers to emerge in the
lowest angular momentum mode possible. To exit with impact parameter
< 2M and angular momentum j#, a quantum must have energy (momen-
tum) hw > jhA/2M. But in the Hawking thermal distribution the dominant
hiw is of order Ty = A(87M)~!. Thus the emerging j’s tend to be small. For
example, 97.9% of the photon energy emerges in the j = 1 modes (j = 0
is forbidden for photons), and 96.3% of the neutrino power is in the j = %
modes [13]. Thus the black hole emits as close to radially as possible. This
means that, crudely speaking, it does so through just one channel.

If a black hole emits entropy like a one-dimensional system, we might
guess it should absorb information like a one dimensional system. This
hunch will be verified in Sec. 7. As a first step I extend to curved spacetime
some of the insights regarding information flow.

6. Information pulses in curved spacetime

The discussion in Sec. 5 tacitly assumed steady state streaming of infor-
mation and energy. But what if information is delivered in pulses? Can one
state a bound generalizing (18)7 Can one include effects of gravitation on
the information transfer rate? To answer these questions let us extend the
notion of channel to curved spacetime, at least to stationary curved space-
time. Again, a channel will be a complete set of unidirectional modes of
some field that can be enumerated with a single parameter. Each channel
is characterized by species of quanta, polarization (helicity), trajectory, etc.
In Sec. 5 I characterized the signal in a particular channel by power. For
a pulse it seems a better idea to use both the signal’s duration 7 and its
energy F. Since in curved spacetime a channel is not generally uniform, I
choose to measure these parameters in a local Lorentz frame (I shall show
presently that it does not matter which one). With this precaution sections
of the channel may be treated as in flat spacetime.

How is the true I,ax of a pulse related to its £ and 77 Since information
is dimensionless, I,a,x must be a function of dimensionless combinations of
E, 7, channel parameters and the fundamental constants ¢, 2 and G:

E
Inax = S <% GEC_5T_1> . (22)
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Here (&, w) is some nonnegative valued function of the dimensionless pa-
rameters ¢ and w characteristic of the channel. This is called the Char-
acteristic Information Function (CIF) [24,25]. The shape of & depend on
things like the polarization and nature of the transmitting medium. I shall
assume this medium, if any, is nondissipative and nondispersive. Thus it
is characterized by a single signal velocity cs; the dimensionless parameter
¢s/c is one of the determinants of the shape of . I shall exclude channels
which transmit massive quanta, e.g. electrons, because rest mass is energy
in a form not useful for communication, so that the strictest limits on in-
formation flow should emerge for massless signal carriers. Hence masses do
not enter into the shape of 3. The variable w = GEc™®7~! is of order of
FE divided by the signal’s self-potential energy, and very large for ordinary
signals. So I first work with the limiting formula as @ — oc.

Let us check what happens in flat spacetime for steady state signaling.
This implies we deal with a long stream of information and that the signal
can be characterized in a suitable frame as statistically stationary. The
peak information transfer rate and power can then be inferred from a finite
section of the signal of duration 7 bearing information Iax and energy F.
It should matter little how long a stretch in 7 is used so long as it is not
too short, and Imax = E7 ! should come out fully determined by the power
P = E7'. But this is consistent with Eq. (22) only if I(&,00) oc /£, for
only then does 7 cancel out. With this form we recover Pendry’s formula
Imax o (P/B)Y/2, which we know to be the correct answer for steady state
flow in flat spacetime.

The dividing line between steady state signaling and signaling by means
of very long pulses is fuzzy. This suggests that long pulse signals must also
obey a Pendry type formula, albeit approximately, cf. [26]. The law Iy o
(P/h)'/? is evidently inapplicable to brief information pulses. For such it
may be replaced by a linear upper bound [27] which may even transcend some
of the limitations I imposed to define (&, w). Consider the information I to
be encoded in some material structure V of radius R and rest energy F which
maintains its integrity and dimensions as it travels from emitter to receiver.
From Eq. (9) we have the strict inequality I < 2rERA ! log,e. The rate at
which the information is assimilated by the receiver is obviously restricted
by the local time 7 it takes for V to sweep by it. From special relativity
7 > 2Ry~ ! with Lorentz’s 7y accounting for the Fitzgerald contraction of V
in the frame of the receiver. Thus the peak information reception rate is
I/7 < myER 'logye, or

Liee < TEech ! log, e, (23)
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where Epoc = vE is V’s energy as measured in the receiver’s frame. Bound
(23) replaces the information version of Eq. (18) when it comes to pulses.
Since ¢ = EreeTh ! we have the strict linear bound (¢, 00) < (mlogs e)¢,
a bound which is supported by much evidence [24,25] even when the signal
has no rest frame. I must stress that the linear bound applies only for small
&; for £ > 1 one may use Pendry’s formula.

Detailed calculations [19,25] show that E7 is unchanged in the passage
between Lorentz frames, regardless of whether transmission is through a
medium or vacuum. Thus the law Iax = S(E7/k,00) is Lorentz invariant
not only in vacuum where this is required by relativity, but also in the
presence of a preferred frame established by the medium. We can thus
use Imax = S(ET/h,00) both in the medium’s and in the signal emitter’s
(receiver’s) Lorentz frame, provided we do so at a fixed point.

But how is the information transmission rate related at two point along
the channel? In flat spacetime, and in the absence of dispersion, E and 7
are evidently conserved with propagation. And in the absence of dissipation
so is the information, so that Imax = S(ET/k,00) is valid at every point
along the channel. Once we are in stationary curved spacetime, F and 7
are subject to redshift and dilation effects, respectively. However, the two
effects act in opposite senses so that E7 is again conserved throughout the
signal’s flight. Therefore, the formula is meaningful throughout the channel.
In fact one can use global values (as measured at infinity) of E and 7 in
the formula. In conclusion, one and the same formula limits information
transmission, propagation and reception rates.

When self-gravity of the signal pulse is not negligible, w reappears as
a possible argument of &. However, it is clear that E/7 is not a Lorentz
scalar, so inclusion of w would spoil the local Lorentz invariance of Eq. (22)
and violate special relativity for signals propagating in vacuum in a flat
background. In a curved background there are further arguments against
inclusion of @ in &. In vacuum we can use the requirement of local Lorentz
invariance to bar w’s appearance, for a sufficiently brief signal should ad-
mit being encompassed in its entirety by local Lorentz frames. Further, w
evidently decreases as the signal propagates outward in the gravitational po-
tential. Thus, S(FE7/h, w) would decrease either outwardly (if & increases
with @) or inwardly (if it decreases as w increases). If a signal’s informa-
tion saturates the bound S (E7/h, w) at some point in the potential, then by
conservation of information it will exceed the bound once it has propagated
somewhat in the direction in which & decreases. This leads to a contradic-
tion. One could try to resolve the problem by defining Iy, only in terms of
the minimum value of w in the channel. But it seems strange that, at least
for brief signals, one cannot state I,y in terms of local quantities.
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Thus for signals propagating in vacuum in flat or curved spacetime, w
cannot appear in . It is unclear whether this conclusion extends to signal
propagation in a medium. For one thing in curved spacetime a medium is
never homogeneous, which means, among other things, that ¢, varies. This
in itself puts in doubt our argument for simplicity of the formula (22).

7. Dumping information into a black hole

Suppose we are granted a certain power P to accomplish the task of
getting rid of a stream of possibly compromising information by dumping it
into a black hole. What is the maximum information dumping rate?

To answer this I first argue that if the signal comes from a distance,
it is transmitted down the hole through a single channel — more or less
— per field species and polarization. Let us recall the rule for field mode
counting. In one space dimension a length L contains (27) 'LAk modes
in the wave vector interval Ak. In 3-D we have (277)*3LmLyLZAkxAkyAkz
modes. From this we may conclude that if a flat 2-surface of area A radiates
into a narrow solid angle A{? about its normal, the number of modes out to
a distance L from it whose wave vector magnitudes lie between k£ and k +
Ak is (2r) 3ALK?AQAE. The factor (2r) ' LAE is obviously the number
of modes emitted sequentially in each direction and distinguished by their
values of k. One can thus think of W = (27) 2Ak2A as the number of
active channels.

Now let a transmitter with effective area A send an information bearing
signal towards a Schwarzschild black hole of mass M surrounded by vacuum
and situated at distance d > 2M. Let A be oriented with its normal towards
the black hole; evidently A < 4mwd?. As viewed from the transmitter the
black hole subtends solid angle A2 = 7(2M)%/d?>. What should we take
for k£ in the formula for W? Being interested in the highest information
for given energy (other things being equal), we certainly want to use the
smallest k (smallest fiw) possible. But signals composed of too small £’s will
just be scattered by the black hole. The borderline is k = 27 /A ~ 27 /(2M).
With this we find W < 472, which means that, optimally, information is
transmitted down a black hole through just a few channels per field species
and polarization. This is independent of the scales M and d of the problem.

In light of this we employ the one-channel formula (22); according to our
argument in Sec. 6, we drop the argument w. Further, since E7 is conserved
in Schwarzschild (stationary) spacetime, and closely equals £t, the values
being measured at infinity, we have Ina = (Et/h). This for a pulse of
duration ¢ as seen from infinity. If we are dealing with a steady state stream
of energy and information (¢ — oo and £ — oo with P = lim(&/t) finite), we
have, by the logic of the paragraph following Eq. (22), that the maximum
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information disposal rate into the black hole is Imax ~ (P/h)'/2, as hinted
at the end of Sec. 5. We thus discover that the power required to dispose
of information into a black hole grows gquadratically with the information
dumping rate.
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