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LIMITATIONS ON QUANTUM INFORMATIONFROM BLACK HOLE PHYSICS�Ja
ob D. BekensteinThe Ra
ah Institute of Physi
s, Hebrew University of JerusalemGivat Ram, Jerusalem 91904, Israel(Re
eived O
tober 12, 2001)After reviewing the relation of entropy to information, I derive the en-tropy bound as applied to bounded weakly gravitating systems, and reviewthe bound's appli
ations to 
osmology as well as its extensions to higherdimensions. I then dis
uss why bla
k holes behave as 1-D obje
ts whenemitting entropy, whi
h suggests that a bla
k hole swallows information ata rate restri
ted by the one-
hannel information 
apa
ity. I dis
uss fun-damental limitations on the information borne by signal pulses in 
urvedspa
etime, from whi
h I verify the mentioned bound on the rate of infor-mation disposal by a bla
k hole.PACS numbers: 04.70.�s, 89.70.+
, 03.67.Hk, 04.70.Dy1. Introdu
tionWere one looking for a logo to symbolize the �eld of gravity physi
s in thelast de
ade, none would be more apt than 't Hooft's holographi
 bound [1℄:the entropy S (or information � see below) that 
an be 
ontained in aphysi
al system is bounded in terms of the area A of a surfa
e en
losing it:S � A(4~)�1 : (1)(I assume units with G = 
 = 1.) Where does this 
omes from? A

ordingto Susskind [2℄, the holographi
 bound is required by the Generalized Se
ondLaw (GSL) [3℄ applied to the total 
ollapse of a physi
al system into a bla
khole of its own making. Granted that many systems do not like to 
ollapsespontaneously, so that this argument is not a general proof of the prin
iple[4℄, a similar argument of wider appli
ability 
an be given for quies
ent� Presented at the XXV International S
hool of Theoreti
al Physi
s �Parti
les andAstrophysi
s � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3555)



3556 J.D. Bekensteinsystems by 
onsidering either infall of the system into a large bla
k hole, ora tiny auxiliary bla
k hole whi
h devours the system [5℄. The holographi
bound as above stated 
an be violated by rapidly evolving systems, but withBousso's reinterpretation [6℄ of the meaning of A in Eq. (1), it works in these
ases also.Interest in the holographi
 bound, or the more en
ompassing holographi
prin
iple [1℄, is mostly for what it tells us about the stru
ture of physi
allaws. However, it is 
lear that the holographi
 bound also serves as the �nalarbitrator of the promise of any futuristi
 information storage te
hnology.Unfortunately, it is rather lenient in this respe
t: it merely requires that adevi
e with dimension 1 
m hold no more than some 1066 bits of information.By 
ontrast, all the books in the Library of Congress hold a paltry 1015 bitsof information, and no state-of-the-art 1 
m size memory 
an hold all that.So I would like to ask if one 
an devi
e a tighter bound on information storagethan the holographi
 one? As I will show, the answer is positive in the formof the universal entropy bound, a spino� of bla
k hole physi
s. In light of theexplosive development of fast 
ommuni
ations, a further interesting questionwould be: what fundamental bounds 
an be set on the �ow of information?I will show here that several new results in this well developed �eld 
an behad by 
onsidering bla
k holes.2. Information and entropyI want to start by re
apitulating how thermodynami
 entropy of a quan-tum system and the information it 
an store are related. In quantum theorya system's state, whether pure or mixed, is des
ribed by an Hermitian op-erator � with unit tra
e. The entropy of a pure state is zero (be
ause weknow what state we are dealing with). The thermodynami
 entropy of amixed state is given by von Neumann's formula S = �Tr � ln� (whi
h willproperly give zero if � 
orresponds to a pure state: Tr �2 = 1).Suppose we �nd the eigenstates of � and their respe
tive eigenvalues,whi
h must obviously sum to unity be
ause Tr � = 1. A

ording to quantumtheory, ea
h nonvanishing eigenvalue pi stands for the probability with whi
hthe 
orresponding eigenstate turns up in state �. Working in the basisfurnished by the eigenstates it is easy to see that �Tr � ln� = �Pi pi ln pi.Now 
ompare this result with Shannon's famous 1948 formula [7℄ for thepeak information 
apa
ity � or information entropy � in bits of a systemwith distinguishable states whi
h o

ur with a priori probabilities fpig:Imax = �Xi pi log2 pi : (2)
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k Hole Physi
s 3557We obviously have Imax = S log2 e: generi
ally thermodynami
 entropy setsan upper bound on the information storage 
apa
ity of the system, modulothe fa
tor log2 e whi
h 
onverts from natural entropy units to bits.The key word in the above identi�
ation is �distinguishable�. The eigen-states of � are all orthogonal by virtue of its Hermitian 
hara
ter, so theyare pre
isely distinguishable. Confusion 
an o

ur (and has often) if thedistinguishability 
ondition is 
ompromised. Consider the four statesj "i; j #i; j !i; j  iof a spin 1=2 parti
le 
orresponding to �up� and �down� spin with respe
tto spin 
omponents sz and sx, respe
tively. If we assign ea
h probability14 , Shannon's formula would predi
t maximum information 
apa
ity Imax =log2 4 = 2. Obviously here� = 14 (j "ih" j+ j #ih# j+ j !ih! j+ j  ih j) : (3)Re
alling that j !i = 2�1=2(j "i + j #i) while j !i = 2�1=2(j "i � j #i)and that j "i and j #i are orthonormal states, we easily work out that � =12 (j "ih" j+ j #ih# j), whi
h form tells us immediately that �'s eigenvaluesare f12 ; 12g and its eigenstates fj "i; j #ig. Cal
ulating in the basis fj "i; j #iggives S = ln2. We thus �nd that Imax = 2S log2 e.Does the above mean the spin system 
an store more information thanallowed by the thermodynami
 entropy? Not at all! The four states used arenot independent, and so not mutually orthogonal. A

ording to quantumtheory nonorthogonal states are not fully distinguishable experimentally [8℄.Thus when reading out information en
oded in our four states, errors 
ano

ur, and this �noise� redu
es the true information extra
table below Shan-non's formal Imax. A

ording to a fundamental theorem by Holevo [9℄, theinformation that 
an a
tually be read out of a system is bounded from aboveby S log2 e, as 
laimed above.Some 
onfusion 
an still arise if we ignore the fa
t that von Neumann'sS 
an have various values depending on the level of stru
ture at whi
h it is
omputed. The 
hemist, for instan
e, determines the entropy S of a pie
e ofiron by methods that rea
h down to the atomi
 level; for him the states figare atomi
 states. The 
ommuni
ation engineer, by 
ontrast, is interestedin storing information in the magneti
 domains of the iron in a magneti
tape. He groups a multitude of atomi
 states into domain states, and the S
omputed from the latter is de�nitely smaller than the 
hemist's S. Thereis no 
ontradi
tion here; one must simply spe
ify at whi
h level S or the
orresponding information 
apa
ity are 
al
ulated. Obviously, the deeperwe go into the system's stru
ture, the higher the entropy and information
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apa
ity. In what follows I shall be interested in the entropy (information
apa
ity) SX 
al
ulated at level X, the deepest level of stru
ture (the level oflepton, quark and gluon degrees of freedom). The 
orresponding SX log2 ebounds from above the information 
apa
ity of material media a

essiblewith any a
hievable te
hnology.3. Poor man's road to the universal entropy boundConsider the following gedanken experiment [10℄. Drop a physi
al sys-tem U of unknown 
onstru
tion and 
onstitution having mass-energy E andradius R into a S
hwarzs
hild bla
k hole of mass M � E from a large dis-tan
e d � M away. This d is so 
hosen that the Hawking radian
e 
arriesaway energy (as measured at in�nity) equal to E while U is falling to thehorizon where it is e�e
tively assimilated by the bla
k hole. At the endof the pro
ess the bla
k hole is ba
k at mass M and its entropy has not
hanged. Were the emission reversible, the radiated entropy would be E=THwith TH � ~(8�M)�1. Irreversibility of radiation and spa
etime 
urvature
onspire to make the entropy emitted a fa
tor � larger; typi
al values, de-pending on parti
le spe
ies, are [11℄ � = 1:35�1:64. Thus the overall 
hangein world entropy is ÆSext = ÆSrad � S = � ETH � S : (4)One 
an 
ertainly 
hooseM larger than R, say, by an order of magnitudeso that the system will fall into the hole without being torn up: M = �Rwith � = a few. Thus by the ordinary se
ond law we obtain the boundS < 8���RE~ : (5)Our simple argument here leaves the fa
tor �� somewhat fuzzy; but it issafe to say that 4�� < 102. Thus we have obtained a bound on the entropyof an arbitrary system U in terms of just its total energy E and radius R.This is the gist of the universal entropy bound [12℄.Note that we 
ould not derive (5) by using a heat reservoir in lieu of abla
k hole. A reservoir whi
h has gained energy E upon U 's assimilation, andhas returned to its initial energy by radiating, does not ne
essarily returnto its initial entropy, 
ertainly not until U equilibrates with the rest of thereservoir. But a (nonrotating un
harged) bla
k hole whose mass has not
hanged overall, retains its original entropy be
ause that depends only onmass. In addition, for the bla
k hole mass and radius are related in a simpleway; this allowed us to repla
e TH in terms of R. By 
ontrast, for a generi
reservoir, size is not simply related to temperature.
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k Hole Physi
s 3559Note also that in our argument U is not allowed to be strongly gravitating(meaning R � E) be
ause then M 
ould not be large 
ompared to E while� is of order a few, as I assumed. We thus have to assume that R � Ein addition: the universal entropy bound applies, a priori , only to weaklygravitating systems (but see below).But what about Hawking radiation pressure. Is it important? Could itblow U outwards? If we approximate the radian
e as bla
k-body radian
eof temperature TH 
oming from a sphere of radius 2M , the energy �ux atS
hwarzs
hild 
oordinate r from the hole isF (r) = N~61; 440(�Mr)2 ; (6)where N stands for the e�e
tive number of massless spe
ies radiated (pho-tons 
ontribute 1 to N and ea
h neutrino spe
ies 7=16). This estimate isknown to be o� by a fa
tor of only a few [13℄. This energy (and momentum)�ux results in a radiation pressure for
e frad(r) = �R2F (r) on U . Morepre
isely, spe
ies whi
h re�e
t well o� U are approximately twi
e as e�e
-tive at exerting for
e as just stated, while those (neutrinos and gravitons)whi
h go right through U 
ontribute very little; the N must thus be reinter-preted a

ordingly. I have ignored relativisti
 
orre
tions so that the result,as quali�ed, is 
orre
t mostly for r �M .Writing the gravitational for
e on U in the Newtonian approximation,fgrav(r) = ME=r2, one sees thatfrad(r)fgrav(r) = Ne� ~R261; 440�2M3E : (7)I have written Ne� here be
ause, as mentioned, some spe
ies just passthrough U without exerting for
e on it. In addition, only those spe
iesa
tually represented in the radiation �owing out during U 's infall have a
han
e to exert for
es. Now an Hawking quantum bears an energy of orderTH, so the number of quanta radiated together with energy E is approxi-mately 8�ME=~. However, for any bound system ~=E < R (system largerthan its own Compton length), so by our stipulation that M = �R > R, thenumber of spe
ies 
an be large 
ompared to unity. Sin
e a spe
ies 
an exertpressure only if it is represented by at least one quantum, one obviously hasNe� < 8�ME=~. Therefore,frad(r)fgrav(r) < R27680�M2 � 1 : (8)Radiation pressure is thus negligible, and U 's fall is very nearly on a geodesi
,at least until U approa
hes to within a few S
hwarzs
hild radii. It is intu-itively 
lear that if d � M , the last (relativisti
) stage 
annot make anydi�eren
e, and U must plunge to the horizon.
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he
ked. I have taken d su
h thatthe infall time equals the time t for the hole to radiate energy E. Newtoniallyd � 2(t2M=�2)1=3, while Eq. (6) gives the estimate t � 5�104EM2~�1N�1with N now the full spe
ies number. From these equations and M = �Rwe get that d � 1:2� 103(�ER=N~)2=3M . Thus for N < 102 (
onservativeestimate of our world's massless parti
le 
ontent), we have d > 57M � Mfor all systems U satisfying our assumption R > ~=E.4. Rami�
ations of the universal entropy boundIn asymptoti
ally �at four-dimensional spa
etime (D = n + 1 = 4) theholographi
 bound restri
ts the entropy of a �nite system U with energy Eand 
ir
ums
ribing radius R (E and R measured in proper frame) by Eq. (1).For weakly gravitating systems (R� E) the universal entropy bound in itsoriginal version [12℄ is S � 2�ER~ : (9)Typi
ally for laboratory sized systems E < 10�23R, while for astronomi
alsystems � barring neutron stars and bla
k holes � E < 10�5R. Thus, withfew ex
eptions, the entropy bound is many orders of magnitude tighter thanthe holographi
 one. For instan
e, it limits the information 
apa
ity of a1 
m devi
e made of ordinary matter to be less than 1037 bits, whi
h limitno longer looks unrea
hable.In the original derivation of bound (9) I imagined that U is loweredslowly from far away to the horizon of a stationary bla
k hole, while all thefreed potential energy is allowed to do work on a distant agent (a Gero
hpro
ess [14℄). I then applied the GSL to infer the bound. This derivationwas 
riti
ized [15℄ for not taking into a

ount the buoyan
y of U in theUnruh radiation surrounding it by virtue of its a

eleration. However, I haveshown [16℄ that 
orre
tion for buoyan
y � itself an intri
ate 
al
ulation �merely in
reases the 2� 
oe�
ient in Eq. (9) by a tiny amount provided onlythat one assumes that R � ~=E, as done in Se
. 3.The entropy in bounds (5) or (9) refers to the SX de�ned in Se
. 2. This isbe
ause gravitation plays a 
ru
ial role in many generi
 ways of deriving theentropy bound [12, 16℄. And gravitation is unique among the intera
tionsin that it is aware of all degrees of freedom in its sour
es (a

ording tothe equivalen
e prin
iple all energy gravitates). It would thus be odd if theentropy bound took into a

ount only entropy 
orresponding to intermediatedegrees of freedom, and so ignored energy 
arrying states at the deeperlevels?Of late it has been realized that the entropy bound also applies in higherdimensions. For instan
e, Bousso [17℄ has shown, via the Gero
h pro
ess
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k Hole Physi
s 3561argument, that bound (9) applies verbatim in asymptoti
ally �at spa
etimewith any D = n+ 1 dimensions. Bousso rewrites the bound in terms of U 'sgravitational radius rg as inferred from the D-dimensional S
hwarzs
hildsolution, rgn�2 = 8� (n=2)E(n� 1)�n=2�1 ; (10)whereby it takes the formS � (n� 1)�n=2 rn�2g R4� (n=2) ~(n�1)=2 : (11)A

ording to Bousso this form of the bound applies to all systems in D-dimensional de Sitter spa
etime whi
h o

upy a small part of the spa
einside the 
osmologi
al horizon whose radius is denoted by R.As mentioned in Se
. 3, when we 
ome to strongly gravitating systems(E � R), we 
annot derive the bound (9) or even the weaker version (5) bythe methods just expounded. However, it so happens that the bound (9)is a
tually obeyed � and saturated at that � by all D = 4 Kerr�Newmanbla
k holes provided one interprets E as the bla
k hole's mass and R asthe Boyer�Lindquist 
oordinate of the horizon, r+ (see referen
es in [19℄).Further, spheri
al bla
k holes in D > 4 spa
etime (for whi
h the horizon hasa (n�1) dimensional �area�) also obey (9) in asymptoti
ally �at spa
etimes,and the bound (11) in asymptoti
ally de Sitter spa
etimes. However, bla
kholes in higher dimensions no longer saturate these bounds as for D = 4 [17℄.The sway of the entropy bound also extends to 
osmology. For example,Verlinde [18℄ has shown that the entropy S of a 
omplete 
losed Robertson�Walker Universe in D spa
etime dimensions whose 
ontents are des
ribed bya Conformal Field Theory (CFT) � the deeper des
ription of a number ofmassless �elds possibly in intera
tion � with large 
entral 
harge (essentiallymany parti
le spe
ies), is subje
t to the generi
 boundS � 2�Rn~ [EC(2E �EC)℄1=2; (12)where R is the radius of the Sn spa
e, E the total energy in the �elds andEC the Casimir (va
uum) energy (whi
h shows up be
ause the 
osmologi
alspa
e is 
ompa
t). Verlinde points out that for �xed E the maximum ofhis bound is 2�RE=(n~), whi
h never ex
eeds the original entropy bound(9); indeed Verlinde adopts S � 2�RE=(n~) as the �du
ial form of thatbound. A number of re
ent papers (see [19℄ for referen
es) have substan-tiated Verlinde's bound; they 
ulminate years of e�orts by many to makemeaningful statements about the entropy (and by impli
ation the maximuminformation) that 
an be 
ontained in a whole Universe.



3562 J.D. BekensteinFor strongly gravitating systems in asymptoti
ally �at spa
etime withD = 4, the holographi
 bound and the formal entropy bound make verysimilar predi
tions, but for D > 4 the holographi
 bound is the tighter ofthe two. Unless D is very large, the entropy bound is the tighter bound forweakly gravitating systems, su
h as those we meet in everyday life.5. Bla
k holes as information pipesIf the holographi
 bound (1) 
an be 
onstrued as telling us that a generi
physi
al system in 4-D spa
etime is fundamentally two-dimensional in spa
e,then a bla
k hole in 4-D spa
etime when viewed as an information absorberor entropy emitter, is fundamentally one-dimensional in spa
e [20℄. I pro
eedto explain.In the dis
ipline treating information �ow � 
ommuni
ation theory �the notion of a 
hannel is 
entral. In �at spa
etime a 
hannel is a 
ompleteset of unidire
tionally propagating modes of some �eld, with the modes enu-merated by a single parameter. For example, all ele
tromagneti
 modes infree spa
e with �xed wave ve
tor dire
tion and parti
ular linear polariza-tion 
onstitute a 
hannel; the modes are parametrized solely by frequen
y.An example would be a straight in�nitely long 
oaxial 
able (whi
h is wellknown to transmit all frequen
ies) 
apped at its entran
e by the analog ofa polaroid �lter. A
ousti
 and neutrino 
hannels 
an also be de�ned. Notethat a 
hannel is intrinsi
ally one-dimensional.What is the maximum rate, in quantum theory, at whi
h informationmay be transmitted through a 
hannel for pres
ribed power P ? The answerhas been known sin
e the 1960's; however, let me work with the parti
ularlylu
id version given by Pendry [21℄. Pendry thinks of a possible signal stateas 
orresponding to a parti
ular set of o

upation numbers for the variouspropagating modes. He assumes the 
hannel is uniform in the dire
tion ofpropagation, whi
h allows him to label the modes by momentum p. But heallows for dispersion, so that a quantum with momentum p has some energy"(p). Then the propagation velo
ity of the quanta is the group velo
ity�(p) = d"(p)=dp. Up to a fa
tor log2 e the information rate 
apa
ity mustequal the maximal one-way entropy 
urrent for given P , whi
h obviouslyo

urs for the thermal state, if one dis
ards from the latter the modes movingopposite the dire
tion of interest.Now the entropy s(p) of any boson mode of momentum p in a thermalstate (temperature T ) is [22℄s(p) = "(p)Te"(p)=T � 1 � ln�1� e�"(p)=T� ; (13)
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k Hole Physi
s 3563so the entropy 
urrent in one dire
tion is_S = 1Z0 s(p) �(p) dp2�~ = 1Z0 s(p) d"dp dp2�~ ; (14)where dp=2�~ is the number of modes per unit length in the interval dpwhi
h propagate in one dire
tion. This fa
tor, when multiplied by the groupvelo
ity, gives the one-way 
urrent of modes.Suppose "(p) is monotoni
 and extends over the range [0;1); we maythen 
an
el dp and integrate over ". Then after substitution of Eq. (13) andintegration by parts we have_S = 2T 1Z0 "e"=T � 1 d"2�~ = 2T 1Z0 "(p)e"(p)=T � 1 �(p) dp2�~ : (15)The �rst fa
tor in ea
h integrand is the mean energy per mode, so that theintegral represents the one-way power P in the 
hannel. Thus_S = 2PT : (16)The integral for P in the �rst form of Eq. (15) 
an easily be done:P = �(T )212~ : (17)Eliminating T between the last two expressions gives Pendry's limit_S = ��P3~ �1=2 or _Imax = ��P3~ �1=2 log2 e : (18)For a fermion 
hannel P in Eq. (17) is a fa
tor 2 smaller, and 
onsequently_S in Eq. (18) is redu
ed by a fa
tor p2.The fun
tion _S(P ) in Eq. (18) is the so 
alled 
apa
ity of a noiselessquantum 
hannel . Surprisingly, it is independent, not only of the form ofthe mode velo
ity �(p), but also of its s
ale. Thus the phonon 
hannel
apa
ity is as large as the photon 
hannel 
apa
ity despite the di�eren
ein speeds. Why? Although phonons 
onvey information at lower speed,the energy of a phonon is proportionately smaller than that of a photonin the equivalent mode. Thus when the 
apa
ities of 
hannels harnessingvarious 
arriers are expressed in terms of power, they turn out to involvethe same 
onstants. Formula (18) neatly 
hara
terizes what we mean by one-dimensional transmission of entropy or information. It refers to transmission
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ies of quantum and a spe
i�
 polarization; di�erentspe
ies and alternative polarizations engender separate 
hannels. Althoughframed in a �at spa
etime 
ontext, its la
k of sensitivity to the dispersionrelation of the transmitting milieu should make Pendry's limit relevant to
urved spa
etime also. This be
ause ele
trodynami
s in 
urved spa
etimeis equivalent to �at spa
etime ele
trodynami
s in a suitable diele
tri
 andparamagneti
 medium [23℄. We shall see in Se
. 7 that this hun
h is justi�ed.It is instru
tive to 
ontrast the results just obtained with the powerand entropy emission rate in a single boson polarization of a 
losed bla
kbody surfa
e with temperature T and area A in �at 4-D spa
etime. By theStefan�Boltzmann law this isP = �2T 4A120~3 _S = 43 PT ; (19)whereby _S = 23 �2�2AP 315~3 �1=4 ; (20)[for fermions P 
arries an extra fa
tor 7=8 and formula (20) an extra fa
tor(8=7)1=4℄. Our manifestly 3-D transmission system deviates from the sleekformula (18) in the exponent of P and in the appearan
e of the measure A ofthe system. In emission from a 
losed 
urve of length L in two-dimensionalspa
e, the fa
tor (LP 2)1=3 would repla
e (AP 3)1=4. We may thus gather thedimensionality of the transmission system from the exponent of P in theexpression _S(P ) [it is n=(n + 1) for D = n + 1 spa
etime dimensions℄, aswell as from the value of the 
oe�
ient of P=T in expressions for _S like (16)or (19) [it is (n+ 1)=n℄.Radiation from a S
hwarzs
hild bla
k hole in 4-D spa
etime is also givenby Eqs. (19) (or their fermion version) with A = 4�(2M)2 and T = TH,ex
ept we must 
orre
t the expression for P by a spe
ies dependent fa
tor ��of order unity [13℄, and repla
e the 4=3 in the expression for _S by the spe
iesdependent fa
tor � already mentioned in Se
. 4. Eliminating M between theequations we obtain, in lieu of Eq. (20),_S = ��2 ���P480~ �1=2 : (21)(For fermions there is an extra fa
tor 7=8 inside the radi
al.) This looks
ompletely di�erent from the law (20) for the hot 
losed surfa
e be
ause,unlike for a hot body, a bla
k hole's temperature is related to its mass.However, (21) is of the same form as Pendry's limit (18) for one-
hanneltransmission. From Page [11, 13℄ we get �� = 1:6267 and � = 1:5003 for one
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k Hole Physi
s 3565photon polarization, so the numeri
al 
oe�
ient of (21) is 15:1 times that in(18). Repeating the above exer
ise for one spe
ies of neutrinos we again �ndformulae like (21) and (18), this time with �� = 18:045 and � = 1:6391; thenumeri
al 
oe�
ient of (21) is 48:1 times that of the fermion version of (18).Thus when judged by its entropy emission properties, a bla
k hole in4-D spa
etime is more like a 1-D 
hannel than like a surfa
e in 3-D spa
e.Why is this? A formal answer is that, be
ause of the way TH is relatedto the bla
k hole's radius 2M , Hawking emission prefers to emerge in thelowest angular momentum mode possible. To exit with impa
t parameter< 2M and angular momentum j~, a quantum must have energy (momen-tum) ~! > j~=2M . But in the Hawking thermal distribution the dominant~! is of order TH = ~(8�M)�1. Thus the emerging j's tend to be small. Forexample, 97:9% of the photon energy emerges in the j = 1 modes (j = 0is forbidden for photons), and 96:3% of the neutrino power is in the j = 12modes [13℄. Thus the bla
k hole emits as 
lose to radially as possible. Thismeans that, 
rudely speaking, it does so through just one 
hannel.If a bla
k hole emits entropy like a one-dimensional system, we mightguess it should absorb information like a one dimensional system. Thishun
h will be veri�ed in Se
. 7. As a �rst step I extend to 
urved spa
etimesome of the insights regarding information �ow.6. Information pulses in 
urved spa
etimeThe dis
ussion in Se
. 5 ta
itly assumed steady state streaming of infor-mation and energy. But what if information is delivered in pulses? Can onestate a bound generalizing (18)? Can one in
lude e�e
ts of gravitation onthe information transfer rate? To answer these questions let us extend thenotion of 
hannel to 
urved spa
etime, at least to stationary 
urved spa
e-time. Again, a 
hannel will be a 
omplete set of unidire
tional modes ofsome �eld that 
an be enumerated with a single parameter. Ea
h 
hannelis 
hara
terized by spe
ies of quanta, polarization (heli
ity), traje
tory, et
.In Se
. 5 I 
hara
terized the signal in a parti
ular 
hannel by power. Fora pulse it seems a better idea to use both the signal's duration � and itsenergy E. Sin
e in 
urved spa
etime a 
hannel is not generally uniform, I
hoose to measure these parameters in a lo
al Lorentz frame (I shall showpresently that it does not matter whi
h one). With this pre
aution se
tionsof the 
hannel may be treated as in �at spa
etime.How is the true Imax of a pulse related to its E and �? Sin
e informationis dimensionless, Imax must be a fun
tion of dimensionless 
ombinations ofE, � , 
hannel parameters and the fundamental 
onstants 
; ~ and G:Imax = =�E�~ ; GE
�5��1� : (22)
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tion of the dimensionless pa-rameters � and $ 
hara
teristi
 of the 
hannel. This is 
alled the Char-a
teristi
 Information Fun
tion (CIF) [24, 25℄. The shape of = depend onthings like the polarization and nature of the transmitting medium. I shallassume this medium, if any, is nondissipative and nondispersive. Thus itis 
hara
terized by a single signal velo
ity 
s; the dimensionless parameter
s=
 is one of the determinants of the shape of =. I shall ex
lude 
hannelswhi
h transmit massive quanta, e.g. ele
trons, be
ause rest mass is energyin a form not useful for 
ommuni
ation, so that the stri
test limits on in-formation �ow should emerge for massless signal 
arriers. Hen
e masses donot enter into the shape of =. The variable $ � GE
�5��1 is of order ofE divided by the signal's self-potential energy, and very large for ordinarysignals. So I �rst work with the limiting formula as $ !1.Let us 
he
k what happens in �at spa
etime for steady state signaling.This implies we deal with a long stream of information and that the signal
an be 
hara
terized in a suitable frame as statisti
ally stationary. Thepeak information transfer rate and power 
an then be inferred from a �nitese
tion of the signal of duration � bearing information Imax and energy E.It should matter little how long a stret
h in � is used so long as it is nottoo short, and _Imax � E��1 should 
ome out fully determined by the powerP � E��1. But this is 
onsistent with Eq. (22) only if =(�;1) / p�, foronly then does � 
an
el out. With this form we re
over Pendry's formula_Imax / (P=~)1=2, whi
h we know to be the 
orre
t answer for steady state�ow in �at spa
etime.The dividing line between steady state signaling and signaling by meansof very long pulses is fuzzy. This suggests that long pulse signals must alsoobey a Pendry type formula, albeit approximately, 
f. [26℄. The law _Imax /(P=~)1=2 is evidently inappli
able to brief information pulses. For su
h itmay be repla
ed by a linear upper bound [27℄ whi
h may even trans
end someof the limitations I imposed to de�ne =(�;$). Consider the information I tobe en
oded in some material stru
ture V of radius R and rest energy E whi
hmaintains its integrity and dimensions as it travels from emitter to re
eiver.From Eq. (9) we have the stri
t inequality I < 2�ER~�1 log2 e. The rate atwhi
h the information is assimilated by the re
eiver is obviously restri
tedby the lo
al time � it takes for V to sweep by it. From spe
ial relativity� > 2R
�1 with Lorentz's 
 a

ounting for the Fitzgerald 
ontra
tion of Vin the frame of the re
eiver. Thus the peak information re
eption rate isI=� < �
E~�1 log2 e, or _Ire
 < �Ere
~�1 log2 e ; (23)
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s 3567where Ere
 � 
E is V's energy as measured in the re
eiver's frame. Bound(23) repla
es the information version of Eq. (18) when it 
omes to pulses.Sin
e � � Ere
�~�1 we have the stri
t linear bound =(�;1) < (� log2 e)�,a bound whi
h is supported by mu
h eviden
e [24,25℄ even when the signalhas no rest frame. I must stress that the linear bound applies only for small�; for � � 1 one may use Pendry's formula.Detailed 
al
ulations [19, 25℄ show that E� is un
hanged in the passagebetween Lorentz frames, regardless of whether transmission is through amedium or va
uum. Thus the law Imax = =(E�=~;1) is Lorentz invariantnot only in va
uum where this is required by relativity, but also in thepresen
e of a preferred frame established by the medium. We 
an thususe Imax = =(E�=~;1) both in the medium's and in the signal emitter's(re
eiver's) Lorentz frame, provided we do so at a �xed point.But how is the information transmission rate related at two point alongthe 
hannel? In �at spa
etime, and in the absen
e of dispersion, E and �are evidently 
onserved with propagation. And in the absen
e of dissipationso is the information, so that Imax = =(E�=~;1) is valid at every pointalong the 
hannel. On
e we are in stationary 
urved spa
etime, E and �are subje
t to redshift and dilation e�e
ts, respe
tively. However, the twoe�e
ts a
t in opposite senses so that E� is again 
onserved throughout thesignal's �ight. Therefore, the formula is meaningful throughout the 
hannel.In fa
t one 
an use global values (as measured at in�nity) of E and � inthe formula. In 
on
lusion, one and the same formula limits informationtransmission, propagation and re
eption rates.When self-gravity of the signal pulse is not negligible, $ reappears asa possible argument of =. However, it is 
lear that E=� is not a Lorentzs
alar, so in
lusion of $ would spoil the lo
al Lorentz invarian
e of Eq. (22)and violate spe
ial relativity for signals propagating in va
uum in a �atba
kground. In a 
urved ba
kground there are further arguments againstin
lusion of $ in =. In va
uum we 
an use the requirement of lo
al Lorentzinvarian
e to bar $'s appearan
e, for a su�
iently brief signal should ad-mit being en
ompassed in its entirety by lo
al Lorentz frames. Further, $evidently de
reases as the signal propagates outward in the gravitational po-tential. Thus, =(E�=~;$) would de
rease either outwardly (if = in
reaseswith $) or inwardly (if it de
reases as $ in
reases). If a signal's informa-tion saturates the bound =(E�=~;$) at some point in the potential, then by
onservation of information it will ex
eed the bound on
e it has propagatedsomewhat in the dire
tion in whi
h = de
reases. This leads to a 
ontradi
-tion. One 
ould try to resolve the problem by de�ning Imax only in terms ofthe minimum value of $ in the 
hannel. But it seems strange that, at leastfor brief signals, one 
annot state Imax in terms of lo
al quantities.
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uum in �at or 
urved spa
etime, $
annot appear in =. It is un
lear whether this 
on
lusion extends to signalpropagation in a medium. For one thing in 
urved spa
etime a medium isnever homogeneous, whi
h means, among other things, that 
s varies. Thisin itself puts in doubt our argument for simpli
ity of the formula (22).7. Dumping information into a bla
k holeSuppose we are granted a 
ertain power P to a

omplish the task ofgetting rid of a stream of possibly 
ompromising information by dumping itinto a bla
k hole. What is the maximum information dumping rate?To answer this I �rst argue that if the signal 
omes from a distan
e,it is transmitted down the hole through a single 
hannel � more or less� per �eld spe
ies and polarization. Let us re
all the rule for �eld mode
ounting. In one spa
e dimension a length L 
ontains (2�)�1L�k modesin the wave ve
tor interval �k. In 3-D we have (2�)�3LxLyLz�kx�ky�kzmodes. From this we may 
on
lude that if a �at 2-surfa
e of area A radiatesinto a narrow solid angle �
 about its normal, the number of modes out toa distan
e L from it whose wave ve
tor magnitudes lie between k and k +�k is (2�)�3ALk2�
�k. The fa
tor (2�)�1L�k is obviously the numberof modes emitted sequentially in ea
h dire
tion and distinguished by theirvalues of k. One 
an thus think of W = (2�)�2Ak2�
 as the number ofa
tive 
hannels.Now let a transmitter with e�e
tive area A send an information bearingsignal towards a S
hwarzs
hild bla
k hole of mass M surrounded by va
uumand situated at distan
e d� 2M . Let A be oriented with its normal towardsthe bla
k hole; evidently A < 4�d2. As viewed from the transmitter thebla
k hole subtends solid angle �
 = �(2M)2=d2. What should we takefor k in the formula for W? Being interested in the highest informationfor given energy (other things being equal), we 
ertainly want to use thesmallest k (smallest ~!) possible. But signals 
omposed of too small k's willjust be s
attered by the bla
k hole. The borderline is k = 2�=� � 2�=(2M).With this we �nd W < 4�2, whi
h means that, optimally, information istransmitted down a bla
k hole through just a few 
hannels per �eld spe
iesand polarization. This is independent of the s
ales M and d of the problem.In light of this we employ the one-
hannel formula (22); a

ording to ourargument in Se
. 6, we drop the argument $. Further, sin
e E� is 
onservedin S
hwarzs
hild (stationary) spa
etime, and 
losely equals Et, the valuesbeing measured at in�nity, we have Imax = =(Et=~). This for a pulse ofduration t as seen from in�nity. If we are dealing with a steady state streamof energy and information (t!1 and E ! 1 with P � lim(E=t) �nite), wehave, by the logi
 of the paragraph following Eq. (22), that the maximum
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s 3569information disposal rate into the bla
k hole is _Imax � (P=~)1=2, as hintedat the end of Se
. 5. We thus dis
over that the power required to disposeof information into a bla
k hole grows quadrati
ally with the informationdumping rate.This resear
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