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uss the global properties of stati
, spheri
ally symmetri
 
on�g-urations of a self-gravitating real s
alar �eld ' in General Relativity (GR),s
alar-tensor and high-order (
urvature-nonlinear) theories of gravity invarious dimensions. In GR, for s
alar �elds with an arbitrary potentialV ('), not ne
essarily positive-de�nite, it is shown that the list of all possi-ble types of spa
e-time 
ausal stru
ture in the models under 
onsiderationis the same as the one for ' = 
onst. In parti
ular, there are no regularbla
k holes with any asymptoti
s. These features are extended to s
alar-tensor and 
urvature-nonlinear gravity, 
onne
ted with GR by 
onformalmappings, unless there is a 
onformal 
ontinuation, i.e., a 
ase when asingularity in a solution of GR maps to a regular surfa
e in an alternativetheory, and the solution is 
ontinued through su
h a surfa
e. Su
h an e�e
tis exempli�ed by exa
t solutions in GR with a massless 
onformal s
alar�eld, 
onsidered as a spe
ial s
alar-tensor theory. Ne
essary 
onditionsare found for the existen
e of a 
onformal 
ontinuation; they only hold forspe
ial 
hoi
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3572 K.A. Bronnikov1. Introdu
tionThis paper des
ribes and 
ontinues the study of global properties ofs
alar-va
uum 
on�gurations in general relativity, des
ribed by the a
tionS = Z dDxpjgj [R+ (�')2 � 2V (')℄ (1)and similar systems in some alternative theories of gravity, begun inRefs. [1, 2℄. Here D is the number of spa
e-time dimensions, R is the s
alar
urvature, g = det(g��), ' is a real s
alar �eld, (�')2 = g����'��', and thefun
tion V (') is a potential. This a
tion in 
ase D = 4, with many parti
u-lar forms of V ('), is 
onventionally used to des
ribe the va
uum (sometimesinterpreted as a variable 
osmologi
al term) in in�ationary 
osmology, forthe des
ription of growing va
uum bubbles, et
., to say nothing of diverse�eld-theoreti
al studies of s
alar �elds with di�erent potentials. Where andwhen ' = 
onst, the potential V (') behaves as a 
osmologi
al 
onstant.In the latter 
ase, spheri
ally symmetri
 solutions to the Einstein equa-tions (the S
hwarzs
hild-(anti-)de Sitter metri
 and its multidimensionalextension) and their global properties in di�erent spe
ial 
ases are well-known [3℄, see also Se
. 2. They are stati
 due to the extended Birkho�theorem (see [4℄ and referen
es therein), and all of them, ex
ept the solu-tions with zero mass parameter m, 
ontain 
urvature singularities at the
entre.A wider set of spa
e-times is 
onne
ted with the so-
alled false va
uum,i.e., the system with the a
tion (1). One might expe
t that the in
lusion ofs
alar �elds with various potentials should 
onsiderably in
rease the 
hoi
eof possible qualitative behaviours of stati
, spheri
ally symmetri
 
on�g-urations. There are, however, very strong general restri
tions that followdire
tly from the �eld equations due to (1). Thus, if V � 0, the only asymp-toti
ally �at BH solution in 4 dimensions is S
hwarzs
hild, as follows fromthe well-known no-hair theorems (see Ref. [5℄ for a re
ent review). Anotherresult 
on
erns solitoni
 (parti
le-like) 
on�gurations with a regular 
entreand a �at asymptoti
: if V � 0, then su
h a 
on�guration 
annot have apositive mass [6℄.It is of interest what 
an happen if the asymptoti
 �atness and/orV � 0 assumptions are abandoned. Both assumptions are frequently vi-olated in modern studies. Negative potential energy densities, in parti
ular,the 
osmologi
al 
onstant V = � < 0 giving rise to the Anti�de Sitter (AdS)solution or AdS asymptoti
, do not lead to 
atastrophes (if restri
ted below),are often treated in various aspe
ts and quite readily appear from quantume�e
ts like va
uum polarization.Our previous papers [1,2℄ have provided some essential restri
tions on thepossible behaviour of solutions of the theory (1) with arbitrary V (') in D



S
alar Va
uum Stru
ture in General Relativity : : : 3573dimensions. It has been shown that, whatever is the potential, the variables
alar �eld adds nothing to the list of 
ausal stru
tures known for ' = 
onst.The possibility of regular 
on�gurations without a 
entre (wormholes andhorns) was also ruled out. Extensions of these results to some more general�eld models were indi
ated. Considered were (i) generalized s
alar �eldLagrangians in GR, with an arbitrary dependen
e on the ' �eld and itsgradient squared; (ii) multis
alar theories of sigma-model type; (iii) S
alar-Tensor Theories (STT) of gravity; (iv) 
urvature-nonlinear (High-Order)Gravity (HOG) with the Lagrangian of the form f(R) where f is an arbitraryfun
tion. In items (iii) and (iv), 
onformal mappings are used to redu
e theoriginal �eld equations to those following from (1).This paper pays spe
ial attention to the nature of these 
onformal map-pings. The point is that, when a manifold M [g�� ℄ is 
onformally mapped toanother manifold M [g�� ℄ (so that g�� = F (x)g��), the global properties ofboth manifolds are the same as long as the 
onformal fa
tor F is everywheresmooth and �nite. It 
an happen, however, that a singular surfa
e in Mmaps to a regular surfa
e in M due to a singularity in the 
onformal fa
torF . Then M 
an be 
ontinued in a regular manner through this surfa
e, andthe global properties if M 
an be 
onsiderably ri
her than those of M : inthe new region, one 
an possibly �nd, e.g., new horizons or another spatialin�nity. A known example of this phenomenon, to be 
alled 
onformal 
on-tinuation, is provided by the properties of the stati
, spheri
ally symmetri
solution for a 
onformally 
oupled s
alar �eld in GR [7,8℄ as 
ompared withthe 
orresponding solution for a minimally 
oupled s
alar �eld � see Se
. 6.It will be further shown that the mappings that 
onne
t STT and HOG(the so-
alled Jordan 
onformal frame) with GR with a minimally 
oupleds
alar �eld des
ribed by the a
tion (1) (the Einstein frame), provide 
onfor-mal 
ontinuations only under 
ertain spe
ial requirements upon the originaltheory. Under very general 
onditions, 
onformal 
ontinuations are absent,and the global stru
ture restri
tions obtained in GR are dire
tly extendedto STT and HOG.I will not dis
uss the question of whi
h 
onformal frame (Jordan, Einsteinor some other) in the alternative theories should be regarded as a physi
alone, refering to our paper [9℄ and referen
es therein.The paper is organized as follows. Se
. 2 gives the �eld equations. Se
. 3
ontains a brief des
ription of purely va
uum stru
tures in D dimensionswith a 
osmologi
al 
onstant. Se
. 4 represents the results of Refs. [1, 2℄ ons
alar va
uum in GR. Some no-go theorems are mentioned without proofs,but the main theorem on the possible horizons dispositions is given a newproof. Two examples of 
on�gurations admitted by the no-go theorems,are mentioned: a bla
k hole with a nontrivial s
alar �eld and a parti
lelikesolution, both with non-positive-de�nite potentials. In Se
. 5, the familiar



3574 K.A. BronnikovSTT 7! GR and HOG 7! GR mappings are re
alled and dis
ussed, while inSe
. 6 possible 
onformal 
ontinuations are studied.To 
on
lude, with all theorems and examples at hand, we now have, evenwithout solving the �eld equations, rather a 
lear pi
ture of what 
an andwhat 
annot be expe
ted from stati
, spheri
ally symmetri
 s
alar-va
uum
on�gurations in various theories of gravity with various s
alar �eld poten-tials.Throughout the paper all statements apply to stati
, spheri
ally symmet-ri
 
on�gurations, and all relevant fun
tions are assumed to be su�
ientlysmooth, unless otherwise indi
ated.2. Field equationsThe �eld equations due to (1) arer�r�'+ V' = 0; (2)R�� � 12Æ��R+ T �� = 0; (3)where V' � dV=d', R�� is the Ri

i tensor and T �� is the energy-momentumtensor of the ' �eld:T �� = ';�';� � 12Æ��(�')2 + Æ��V ('): (4)Consider a stati
, spheri
ally symmetri
 
on�guration, with the spa
e-time stru
ture M d+2 = Rt � R� � Sd; (5)where Rt is the time axis, R� � R is the range of the radial 
oordinate �and Sd (d = D� 2) is a d-dimensional sphere. The metri
 
an be written inthe form ds2 = A(�)dt2 � d�2A(�) � r2(�)d
d2; (6)where d
d2 is the linear element on Sd of unit radius, and ' = '(�). (With-out loss of generality, we suppose that large � 
orresponds to large r.) A
-
ordingly, Eq. (2) and 
ertain 
ombinations of Eqs. (3) lead to�Ard'0�0 = rdV' ; (7)�A0rd�0 = ��4d� rdV ; (8)d r00r = �'02 ; (9)A(r2)00 � r2A00 + (d� 2)r0(2Ar0 �A0r) = 2(d � 1) ; (10)d(d� 1)(1 �Ar02)� dA0rr0 = �Ar2'02 + 2r2V ; (11)



S
alar Va
uum Stru
ture in General Relativity : : : 3575where the prime denotes d=d�. Only three of these �ve equations are inde-pendent: the s
alar equation (7) follows from the Einstein equations, whileEq. (11) is a �rst integral of the others. Given a potential V ('), this is adetermined set of equations for the unknowns: r; A; '.The 
hoi
e of the radial 
oordinate � su
h that gttg�� = �1 is 
onvenientfor a number of reasons. First, we are going to deal with horizons, whi
h
orrespond to zeros of the fun
tion A(�). One 
an noti
e that su
h zeros areregular points of Eqs. (7)�(11), therefore, one 
an jointly 
onsider regionsat both sides of a horizon. Se
ond, in a 
lose neighbourhood of a hori-zon � varies (up to a positive 
onstant fa
tor) like manifestly well-behavedKruskal-like 
oordinates used for an analyti
 
ontinuation of the metri
 [10℄.Third, with the same 
oordinate, horizons also 
orrespond to regular pointsin geodesi
 equations [10℄. Last but not least, this 
hoi
e well simpli�es theequations, in parti
ular, (10) 
an be integrated, giving, for d � 2,B0 � �Ar2�0 = �2(d� 1)rd+2 Z rd�2d� : (12)Our interest will be in the generi
 global behaviour of the solutions andthe existen
e of BHs and globally regular 
on�gurations.In these issues, a 
ru
ial role belongs to Killing horizons, regular surfa
eswhere the Killing ve
tor �t is null. For the metri
 (6), a horizon � = h isa sphere of nonzero radius r = rh where A = 0. The spa
e-time regularityimplies the �niteness of T �� , so that V and A'02 are �nite at � = h. TheC2-smoothness requirement for r(�) at � = h means that r00 is �nite, and(9) leads to j'0j <1.The horizon is simple or multiple (or higher-order) a

ording to whetherthe zero of the fun
tion A(�) is simple or multiple. Thus, the S
hwarzs
hildhorizon is simple while the extreme Reissner�Nordström one is double.As usual, we shall 
all the spa
e-time regions where A > 0 and A < 0stati
 (R) and nonstati
 (T) regions, respe
tively. The T regions representhomogeneous 
osmologi
al models of Kantowski�Sa
hs type. A simple orodd-order horizon separates a stati
 region from a nonstati
 one, whereasan even-order horizon separates two regions of the same nature. On the
onstru
tion of Carter�Penrose diagrams, 
hara
terizing the 
ausal stru
tureof arbitrary stati
 2-dimensional spa
e-times [su
h as the (t; �) se
tion of (6)℄see Refs. [11, 12℄ and more re
ent and more 
omprehensive papers [13, 14℄.



3576 K.A. Bronnikov3. GR: va
uum with a 
osmologi
al 
onstantIn 
ase ' = 
onst; V = 
onst = �, one 
an without loss of generalitytake r = �, then Eq. (11) be
omes a linear �rst-order equation with respe
tto A(r) whose integration givesA(r) = 1� 2mrd�1 � 2�r2d(d+ 1) : (13)The metri
 has the formds2 = A(r)dt2 � dr2A(r) � r2 d
d2 : (14)This is the multidimensional S
hwarzs
hild�de Sitter solution. Its spe
ial
ases 
orrespond to the S
hwarzs
hild (d = 2, � = 0) and Tangherlini(d arbitrary, � = 0) solutions and the de Sitter solution in arbitrary di-mension (m = 0). The latter is often 
alled anti-de Sitter in 
ase � < 0.The di�erent qualitative behaviours of A(r) for di�erent values of � andm 
orrespond to the following stru
tures:1. � = 0; m � 0: 
urves 1a and 1b in Fig. 1, diagram 1 in Fig. 2(Minkowski and m < 0 S
hwarzs
hild, respe
tively).2. � < 0; m � 0: 
urves 2a and 2b in Fig. 1, diagram 2 in Fig. 2 (AdSand m < 0 S
hwarzs
hild-AdS).3. � < 0; m > 0: 
urve 3 in Fig. 1, diagram 3 in Fig. 2 (S
hwarzs
hild-AdS).4. � = 0; m > 0: 
urve 4 in Fig. 1, diagram 4 in Fig. 2 (S
hwarzs
hild).5. � > 0; m � 0: 
urves 5a and 5b in Fig. 1, diagram 5 in Fig. 2 (m < 0S
hwarzs
hild�de Sitter).6. � > 0; m > 0: 
urves 6a, 6b and 6
 in Fig. 1, and the 
orrespondingdiagrams in Fig. 2 (S
hwarzs
hild�de Sitter in 
ase 6a and Kantowski�Sa
hs 
osmologies in 
ases 6b and 6
).The 
entre r = 0 is regular for m = 0 and singular for m 6= 0.In 
ase 6, given a parti
ular value of � > 0, the solution behaviourdepends on the mass parameter m. When m is smaller than the 
riti
alvalue m
r = 1d+ 1�d(d� 1)2� �(d�1)=2; (15)there are two horizons, the smaller one being interpreted as a bla
k holehorizon and the greater one as a 
osmologi
al horizon. If m = m
r, thesetwo horizons merge, and one has two homogeneous T regions separated bya double horizon. Lastly, the solution with m > m
r is purely 
osmologi
al,having no Killing horizons.
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T� T� T+Fig. 2. Carter-Penrose diagrams for di�erent 
ases of the metri
 (14), (13), labelleda

ording to Fig. 1. The R and T letters 
orrespond to R and T spa
e-time regions;T+ and T� denote expanding and 
ontra
ting T region ( i.e., with r in
reasingand de
reasing with time, respe
tively). Single lines on the border of the diagramsdenote r = 0, double lines � r =1. Diagrams 6b and 6
 are drawn for the 
ase ofexpanding KS 
osmologies; to obtain diagrams for 
ontra
ting models, one shouldmerely inter
hange r = 0 and r =1 and repla
e T+ with T�.



3578 K.A. Bronnikov4. S
alar va
uum in GR. No-go theorems and global stru
tures4.1. Regular models without a 
entre?The �rst important restri
tion for the system (1) in the general 
ase isthat su
h 
on�gurations as wormholes, horns or �ux tubes do not exist underour assumptions.For the metri
 (6), a (traversable, Lorentzian) wormhole is, by de�nition,a 
on�guration with two asymptoti
s at whi
h r ! 1, hen
e with r(�)having at least one regular minimum. A horn is a region where, as � tendsto some value ��, r(�) 6= 
onst and gtt = A have �nite limits while the lengthintegral l = R d�=A diverges. In other words, a horn is an in�nitely long(d + 1)-dimensional �tube� of �nite radius, with the 
lo
k rate remaining�nite everywhere. Su
h �horned parti
les� were, in parti
ular, dis
ussed aspossible remnants of bla
k hole evaporation [15℄. Lastly, a �ux tube is a
on�guration with r = 
onst.Theorem 1 The �eld equations due to (1) do not admit (i) solutions wherethe fun
tion r(�) has a regular minimum, (ii) solutions des
ribing a horn,and (iii) �ux-tube solutions with ' 6= 
onst.The formulation of the theorem and its proof [1,2℄ do not refer to any kindof asymptoti
, therefore wormhole throats or horns are absent in solutionshaving any large r behaviour � �at, de Sitter or any other, or having nolarge r asymptoti
 at all.It also follows that the full range of the � 
oordinate 
overs all valuesof r, from the 
entre (� = �
, r(�
) = 0), regular or singular, to in�nity,unless (whi
h is not ex
luded) there is a singularity at �nite r due to a�pathologi
al� 
hoi
e of the potential.The latter opportunity deserves attention sin
e, being singular at zeroor �nite r, the spa
e-time may in prin
iple be still geodesi
ally 
omplete. Inother words, any geodesi
 
an only rea
h the singularity at an in�nite valueof its 
anoni
al parameter. No freely moving parti
le 
an then attain su
h asingularity (to be 
alled a remote singularity in �nite proper time. Examplesof remote singularities are known in solutions of 2-dimensional gravity [16℄).We 
an, however, state the following [2℄:Theorem 2 If a solution to Eqs. (7)�(11) has a spatial asymptoti
 (r !1),it 
annot 
ontain a remote singularity at r <1.Thus remote singularities 
an only exist in 
on�gurations like 
losed 
os-mologi
al models, unable to des
ribe isolated bodies observable from outside.
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alar Va
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turesNow, taking into a

ount Theorem 1, the global spa
e-time stru
ture
orresponding to any parti
ular solution is unambiguously determined (upto identi�
ation of isometri
 surfa
es, if any) by the disposition of stati
(A > 0) and nonstati
 (A < 0) regions. The following theorem severelyrestri
ts the 
hoi
e of horizon dispositions in the theory under study.Theorem 3 Consider solutions of the theory (1), D � 4, with the metri
(6) and ' = '(�). Let there be a stati
 region a < � < b � 1. Then:(i) all horizons are simple;(ii) no horizons exist at � < a and at � > b.Proof Eq. (10) may be rewritten as follows:r4B00 + �d+ 2� r3r0B0 = �2 �d� 1� ; (16)where B(�) = A=r2. Evidently, zeros of A(�) su
h that r 6= 0 are zeros ofthe same order of the fun
tion B(�). By (16), B(�) 
annot have a regularminimum sin
e B0 = 0 implies B00(h) = �2(d� 1)=r4 < 0.Therefore, if � = h is a horizon of at least order, B(h) = B0(h) = 0, it isa maximum of B(�), hen
e a double horizon separating two T regions. Theabsen
e of regular minima of B then means that B < 0 for all � 6= h, i.e.,there is no stati
 region � item (i) is proved.Consider now the boundary � = a of the stati
 region. If r(a) = 0, it isthe 
entre; be it regular or singular, it is then the left boundary of the rangeof �. If r(a) 6= 0, then it is a simple horizon: B(a) = 0, B0(a) > 0. Sin
eB has no minima, it is negative and non-de
reasing for all � < a, i.e., thereis no horizon. In a similar way one obtains that horizons are absent to theright of b, thus 
ompleting the proof.This theorem shows that the possible disposition of zeros of the fun
-tion A(�) (or B(�)) is the same as in the va
uum 
ase des
ribed in Se
. 3.Therefore the list of possible global stru
tures is also the same.Theorem 3 shows, in parti
ular, that the attra
tive idea of repla
ingthe bla
k hole singularity by a nonsingular va
uum 
ore [16�20℄ 
annot berealized in the theory (1). Indeed, su
h a BH, with any large r behavior,must have stati
 regions at small and large r, separated by at least twosimple or one double horizon, i.e., the fun
tion B(�) must have at least oneregular minimum. This is impossible due to Eq. (16).More generally, one 
an 
on
lude that if spatial in�nity is stati
, thereis at most one simple horizon; the same is true if the 
entre is in a stati
region.



3580 K.A. BronnikovSpe
ial 
ase: (2+1)-dimensional gravityIn 3 dimensions we have d = 1, and integration of (10) leads to anexpression simpler than (12):B0 � �Ar2�0 = Cr3 ; C = 
onst: (17)In Theorem 1, items (i) and (iii) hold due to Eq. (9), as before. Still,the proof of item (ii) does not work: a horn is possible if, in (17), C = 0.Though, due to r00 < 0, the horn radius r� is the maximum of r(�), so thata horned 
on�guration has no large r asymptoti
.By virtue of (17), B0 has a 
onstant sign 
oin
iding with signC, and,instead of Theorem 3, we have a still more severe restri
tion:Theorem 3a A stati
, 
ir
ularly symmetri
 
on�guration in the theory (1),D = 3, has either no horizon or one simple horizon.A

ordingly, the list of possible global stru
tures is even shorter thanthe previous one: the stru
tures 
orresponding to the 
urves 6a and 6b areabsent. 4.3. 4-dimensional GR: restri
tions and examplesThe above theorems did not use any assumptions on the asymptoti
behaviour of the solutions or the shape and even sign of the potential. Let usnow mention some more spe
i�
 but also very signi�
ant results for positive-semide�nite potentials.Consider, for simpli
ity, D = 4. The �eld fun
tions at a regular 
entreand at a �at asymptoti
 (if they exist) behave as follows.A regular 
entre, where r = 0, implies a �nite time rate and lo
alspatial �atness. This means that at some �nite � = �
Ar02 ! 1 ; A = A
 +O �r2� ; (18)where A
 = A(�
) and r0(�
) are �nite and positive. Moreover, the values ofV , ' and '0 should be �nite there. Then from (9) and (12) one obtains:r00(�
) = 0 ; �0 = �
 : (19)At a �at asymptoti
, the metri
 should behave as the S
hwarzs
hildone with a 
ertain mass M , while ' should tend to a �nite value. Thus wehave �!1 ; r0 ! 1 ; A(�) = 1� 2M� +O ���2� ;'0 = o���3=2� ; V = o ���3� : (20)



S
alar Va
uum Stru
ture in General Relativity : : : 3581One of the known restri
tions is the no-hair theorem:Theorem 4 (no-hair) Suppose V � 0. Then the only asymptoti
ally �atBH solution to Eqs. (7)�(11) in the range (h;1) (where � = h is the eventhorizon) 
omprises the S
hwarzs
hild metri
, ' = 
onst and V � 0.This theorem was �rst proved by Bekenstein [22℄ for the 
ase of V (')without lo
al maxima and was later re�ned for any V � 0 and for 
ertainmore general Lagrangians � see e.g. Ref. [5℄ for proofs and referen
es.Another restri
tion 
an be 
alled the generalized Rosen theorem (Rosen[23℄ studied similar restri
tions for �at-spa
e nonlinear �eld 
on�gurations):Theorem 5 [6℄ An asymptoti
ally �at solution with positive mass M and aregular 
entre is impossible if V (') � 0.The above theorems leave some opportunities of interest, in parti
ular:1. BHs with ' 6= 
onst, potentials V (') � 0 but non-�at large r asymp-toti
s;2. asymptoti
ally �at BHs with ' 6= 
onst but at least partly negativepotentials V (');3. asymptoti
ally �at parti
lelike solutions (solitons) with positive massbut at least partly negative potentials V (').That su
h solutions do exist, one 
an prove by presenting proper exam-ples. For item 1, su
h examples have been given in Ref. [24℄, where, amongother results, BHs with non-�at asymptoti
s were found for the Liouville(V = 2�e2b') and double Liouville (V = 2�1e2b1' + 2�2e2b2') potentials,where the �'s and b's are positive 
onstants.Spe
ial analyti
al solutions to Eqs. (7)�(11) for d = 2, exemplifying items2 and 3 (Appendix B), were given in Ref. [2℄. Unlike Ref. [24℄, where spe
ialsolutions were sought for by making the ansatz r(�) / �N , N = 
onst (in ournotation), we have used in Ref. [2℄ the following approa
h. Suppose V (') isone of the unknowns. Then our set of equations is underdeterminate, andwe 
an 
hoose one of the unknowns arbitrarily trying to provide the properbehaviour of the solution. Thus, one 
an 
hoose a parti
ular fun
tion r(�):assigning it arbitrarily and substituting into (12), by single integration weobtain A(�), after whi
h '(�) and V (�) are determined from (9) and (8),respe
tively. Thus V (') is obtained in a parametri
 form; it 
an be madeexpli
it if '(�) resolves with respe
t to �.A bla
k hole solution was obtained [2℄ by 
hoosingr(�) =p�2 � a2 ; a = 
onst > 0 ; (21)



3582 K.A. Bronnikovwhereas a solitoni
 solution with positive mass was found under the assump-tion r2(�) = a2�2 tanh�a� + 
�tanh 
 ; (22)with some positive 
onstants a and 
. These assumptions lead to potentialsV (') < 0 whi
h do not seem quite realisti
. However, the purpose of givingthese examples was to merely demonstrate the existen
e of su
h kinds ofsolutions. After this demonstration, it makes sense to seek similar solutionsfor more plausible potentials using numeri
al methods.4.4. More general Lagrangians in GR. Sigma modelsOne 
an noti
e that Theorems 1�3 a
tually rest on two Einstein equa-tions, (9) or (10), whi
h in turn follow from the properties of the energy-momentum tensor. Namely, the property T tt �T �� � 0 expresses the validityof the null energy 
ondition for systems with the metri
 (6). The 
orre-sponding Einstein equation then implies r00 � 0. Eq. (10), whi
h leads toTheorem 3, follows from the propertyT tt = T �� ; (23)where � is any of the 
oordinate angles that parametrize the sphere Sd.Therefore these three theorems hold for all kinds of matter whose energy-momentum tensors satisfy these two 
onditions.Consider, for instan
e, the following a
tion, more general than (1):S = Z dDxp�g [R+ F (I; ')℄ ; (24)where I = (�')2 and F (I; ') is an arbitrary fun
tion. The s
alar �eldenergy-momentum tensor isT �� = �F�I ';�';� + 12Æ��F ('): (25)In the stati
, spheri
ally symmetri
 
ase, Eq. (23) holds automati
ally dueto ' = '(�), while the null energy 
ondition holds as long as �F=�I � 0,whi
h a
tually means that the kineti
 energy is nonnegative. Under this 
on-dition, all Theorems 1�3 are valid for the theory (24). Otherwise Theorem3 alone holds; it 
orre
tly des
ribes the � dependen
e of A and 
onsequentlythe possible horizons disposition, but the situation is more 
omplex due topossible non-monotoni
ity of r(�).Another important and frequently dis
ussed 
lass of theories are theso-
alled sigma models, where a set of N s
alar �elds ' = f'ag, a = 1; N
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onsidered as 
oordinates of a target spa
e with a 
ertain metri
Gab = Gab('). The s
alar va
uum a
tion is then written in the formS� = Z dDxpjgj [R+Gabg����'a��'b � 2V (')℄ ; (26)where, in general, Gab and V are arbitrary fun
tions of N variables, butin pra
ti
e they possess symmetries that follow from the nature of spe
i�
systems.It is easily seen that, provided the metri
 Gab(') is positive-de�nite,Theorems 1�3 for stati
, spheri
ally symmetri
 
on�gurations are valid asbefore.IfGab is not positive-de�nite, or if some of 'a are allowed to be imaginary,only Theorem 3 holds.5. S
alar-tensor and higher-order gravityOther extensions of the above results 
on
ern theories 
onne
ted with (1)and (24) via '-dependent 
onformal transformations, su
h as S
alar-TensorTheories (STT) and the so-
alled High-Order Gravity (HOG) (e.g., with theLagrangian fun
tion f(R)).Above all, it should be noted that if a spa
e-time M [g℄ with the metri
(6) is 
onformally mapped into another spa
e-time M [g℄, equipped with thesame 
oordinates, a

ording to the lawg�� = F (�)g�� ; (27)then it is easily veri�ed that a horizon � = h in M passes into a horizon of thesame order in M , (ii) a 
entre (r = 0), an asymptoti
 (r!1) and a remotesingularity in M passes into a 
enter, an asymptoti
 and a remote singularity,respe
tively, in M if the 
onformal fa
tor F (�) is regular (i.e., �nite, at leastC2-smooth and positive) at the 
orresponding values of �. A regular 
entrepasses to a regular 
entre and a �at asymptoti
 to a �at asymptoti
 underevident additional requirements, but we will not 
on
entrate on them here.The general (Bergmann�Wagoner�Nordtvedt) STT a
tion in D dimen-sions 
an be written as follows:SSTT = Z dDxpjgj [f(�)R + h(�)(��)2 � 2U(�) + Lm℄ ; (28)where f , h and U are fun
tions of the s
alar �eld � and Lm is the mat-ter Lagrangian. The metri
 g�� here 
orresponds to the so-
alled Jordan
onformal frame. The standard transition to the Einstein frame [25℄,g�� = F (')g�� ; F = jf j�2=(D�2) ; (29)
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alar-tensor 
oupling expressed in a �-dependent
oe�
ient before R. Putting Lm = 0 (va
uum), one 
an write the a
tion(28) in terms of the new metri
 g�� and the new s
alar �eld ' as follows (upto a boundary term):SE = Z dDxpjgj [RE + �l(�')2 � 2V (')℄ ; (31)where RE and (�')2 are 
al
ulated using g�� ,V (') = �fF 2(')U(�) ; (32)and �l;f are sign fa
tors:�l = sign l(�) ; �f = sign f(�) : (33)Note that �l = �1 
orresponds to the so-
alled anomalous STT, witha wrong sign of s
alar �eld kineti
 energy, while �f = �1 means that thee�e
tive gravitational 
onstant in the Jordan frame is negative. So thenormal 
hoi
e of signs is �l;f = 1.The a
tion (31) obviously 
oin
ides with (1) up to the fa
tor �l. ThusEq. (23) holds, and we 
an assert that, for stati
, spheri
ally symmetri

on�gurations, Theorem 3 is valid for the Einstein-frame metri
 g�� .Theorems 1 and 2 hold for g�� only in the �normal� 
ase �l = 1; let usadopt this restri
tion.The validity of the theorems for the Jordan-frame metri
 g�� dependson the nature of the 
onformal mapping (29) between the spa
e-times M [g℄(Jordan) and M [g℄ (Einstein). There are four variants:I. M  ! M ,II. M  ! (M 1 � M ) ,III. (M 1 � M )  ! M ,IV. (M 1 � M )  ! (M 1 � M ) ,where  ! denotes a di�eomorphism preserving the metri
 signature. Thelast three variants are possible if the 
onformal fa
tor F vanishes or blowsup at some values of �, whi
h then mark the boundary of M 1 or M 1.Theorem 3 on horizon dispositions is obviously valid in M in 
asesI and II. In 
ase III or IV, the whole spa
e-time M or its part is put into
orresponden
e to only a part M 1 of M , and, generally speaking, anything,
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luding additional horizons, 
an appear in the remaining part M 2 = M nM 1of the Jordan-frame spa
e-time. The existen
e of su
h a region M 2 will berefered to as a 
onformal 
ontinuation of M in M .Theorem 1 
annot be dire
tly transferred to M in any 
ase ex
ept thetrivial one, F = 
onst. It is only possible to assert, without spe
ifyingF ('), that wormholes as global entities are impossible in M in 
ases I andII if the 
onformal fa
tor F is �nite in the whole range of �, in
luding theboundary values. Indeed, if we suppose that there is su
h a wormhole, it willimmediately follow that there are two large r asymptoti
s and a minimumof r(�) between them even in M , in 
ontrast to Theorem 1 whi
h is validthere.Theorem 2 also evidently holds in M in 
ases I and II if the 
onformalfa
tor F is regular in the whole range of �, in
luding the boundary values.Another 
lass of theories 
onformally equivalent to (1) is the so-
alledHigher-Order Gravity (HOG) with the va
uum a
tionSHOG = Z dDxpjgj f(R) ; (34)where f is a fun
tion of the s
alar 
urvature R 
al
ulated for the metri
 g��of a spa
e-time M . In a

ord with the weak �eld limit f � R ar small R,let us assume f(R) > 0 and fR def= df=dR > 0, at least in a 
ertain range ofR in
luding R = 0. The 
onformal mapping M [g℄ 7! M [g℄ withg�� = F (')g�� ; F = f�2=(D�2)R ; (35)transforms the �Jordan-frame� a
tion (34) into the Einstein-frame a
tion (1)where ' = rD � 1D � 2 log fR ; (36)2V (') = f�D=(D�2)R (RfR � f) : (37)The �eld equations due to (34) after this substitution turn into the �eldequations due to (1).All the above observations on the validity of Theorems 1�3 in STTequally apply to higher-order gravity.In what follows, we will �rst 
onsider an exa
tly soluble example witha 
onformally 
oupled s
alar �eld in GR, when the mapping follows variantIII, and the 
onformal 
ontinuation 
reates a horizon or a wormhole throatoutside M1. Then we will obtain ne
essary 
onditions for the o

uren
e of
onformal 
ontinuations in 4-dimensional STT (28) and HOG (34), showingthat this phenomenon is only possible under spe
ial requirements to theparti
ular 
hoi
e of these theories.
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ontinuations6.1. Conformal s
alar �eld in GR: bla
k holes and wormholesConformal s
alar �eld in GR 
an be viewed as a spe
ial 
ase of STT,su
h that, in Eq. (28), D = 4 andf(�) = 1� �26 ; h(�) = 1 ; U(�) = 0 : (38)After the 
onformal mappingg�� = F (')g�� ; F (') = 
osh2� 'p6� ; (39)� = p6 tanh� 'p6� ; (40)we obtain the a
tion (1) with D = 4 and V � 0. The latter des
ribes aminimally 
oupled massless s
alar �eld in GR, and the 
orresponding stati
,spheri
ally symmetri
 solution is well-known: it is the Fisher solution [26℄.It is 
onvenient to write it using the harmoni
 radial 
oordinate u spe
i�edby the 
ondition [8℄ jguuj = gttg2�� (u behaves as 1=r at large r):ds2E = e�2mudt2 � k2e2musinh2(ku)� k2du2sinh2(ku) + d
2� ;' = p6C(u+ u0) ; (41)where the subs
ript �E� stands for the Einstein frame, m (the mass), C (thes
alar 
harge), k > 0 and u0 are integration 
onstants, and k is expressed interms of m and C: k2 = m2 + 3C2: (42)The previously used 
oordinate �, 
orresponding to the metri
 (6), D = 4,is � = 2k=(1 � e�2ku), and the metri
 in terms of � has the formds2E = �1� 2k� �m=kdt2 ��1� 2k� ��m=k �d�2 + �2�1� 2k� � d
2� : (43)This solution is asymptoti
ally �at at u ! 0 (� ! 1), has no horizonwhen C 6= 0 (as should be the 
ase a

ording to the no-hair theorem) andis singular at the 
entre (u ! 1, � ! 2k, ' ! 1). It turns into theS
hwarzs
hild solution when C = 0.The �Jordan-frame� solution is des
ribed by the metri
 ds2 = F (')ds2Eand the � �eld a

ording to (40). It is the 
onformal s
alar �eld solution
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an be presented as follows(putting, for de�niteness, m > 0 and C > 0):1. C < m. The metri
 behaves qualitatively as in the Fisher solution: it is�at at u ! 0, and both gtt and r2 = jg��j vanish at u ! 1 � a singularattra
ting 
entre. A di�eren
e is that here the s
alar �eld is �nite: �!p6.2. C > m. Instead of a singular 
entre, at u ! 1 one has a repulsivesingularity of in�nite radius: gtt ! 1 and r2 ! 1. Again � ! p6 asu!1.3. C = m. In this 
ase the metri
 and � are regular at u =1; a 
ontinuationa
ross this regular sphere may be a
hieved using a new 
oordinate, e.g.,y = tanh(mu): (44)The solution a
quires the formds2 = (1 + yy0)2� dt2(1 + y)2 � m2(1 + y)2y4(1� y0)2 (dy2 + y2d
2)�;� = p6 y + y01 + yy0 ; (45)where y0 = tanh(mu0). The range u 2 R+ , des
ribing the whole manifoldM in the Fisher solution, 
orresponds to the range 0 < y < 1, des
ribingonly a region M 1 of the manifold M of the solution (45). The properties ofthe latter depend on the sign of y0 [8℄. In all 
ases, y = 0 
orresponds to a�at asymptoti
, where �!p6y0, jy0j < 1.3a: y0 < 0. The solution is de�ned in the range 0 < y < 1=jy0j. Aty = 1=jy0j, there is a naked attra
ting 
entral singularity: gtt ! 0, r2 ! 0,�!1.3b: y0 > 0. The solution is de�ned in the range y 2 R+ . At y !1, we �ndanother �at spatial in�nity, where � ! p6=y0, r2 ! 1 and gtt tends to a�nite limit. This is a wormhole solution, found for the �rst time in Ref. [8℄and re
ently dis
ussed by Bar
elo and Visser [28℄.3
: y0 = 0, � = p6y, y 2 R+ . In this 
ase it is helpful to pass to the
onventional 
oordinate r, substituting y = m=(r �m). The solutionds2 = �1� mr �2 dt2 � dr2�1� mr �2 � r2d
2;� = p6 m(r �m) (46)
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onformal s
alar �eld [7, 27℄, whi
h seems toviolate the no-hair theorem. The in�nite value of � at the horizon r = mdoes not make the metri
 singular sin
e, as is easily veri�ed, the energy-momentum tensor remains �nite there.The whole 
ase 3 belongs to variant III in the 
lassi�
ation of Se
. 5, andthe horizon in 
ase 3
 is situated in the region M 2 = M n M 1 , where thea
tion of the no-hair theorem 
annot be extended.In 
ase 3b, the se
ond spatial in�nity and even the wormhole throat(y = 1=py0) are situated in M 2 , illustrating the inferen
es of Se
. 5.An important lesson follows, however, from 
ase 2, where the mapping istype I by the same 
lassi�
ation (M  ! M ): there appears a minimum ofr(u) in the metri
 g�� (39), and r even blows up at large u. This is 
onne
tedwith blowing up of the 
onformal fa
tor F . Re
all that, as mentioned inSe
. 5, the absen
e of another spatial in�nity is only guaranteed under the�niteness 
ondition for the 
onformal fa
tor in the whole range of the radial
oordinate, in
luding its boundary values: we see that this 
ondition isindeed essential.The simple example of the 
onformal �eld thus illustrates the possiblenontrivial 
onsequen
es of 
onformal 
ontinuations. We shall see, however,that for most 
hoi
es of STT and HOG one is guaranteed against su
h
ontinuations.6.2. Conformal 
ontinuation 
onditions in s
alar-tensorand high-order gravityLet us put for simpli
ity D = 4 and 
onsider possible 
onformal 
ontin-uations of Einstein-frame solutions of STT and HOG due to transition tothe Jordan frame.In STT (28), su
h a 
ontinuation may o

ur at a zero of the fun
tionf(�) in Eq. (28). If, at � = �0, the fun
tion f(�) has a simple zero,f(�) = (� � �0) � O(1), then, in the transformation (29), (30) for D = 4we have, without loss of generality,j�� �0j = e�p2=3' � O(1) ; (47)F (') = ep2=3' � O(1) (48)as �! �0, so that '!1.In HOG (34) a 
ontinuation is possible if fR ! 0 at some R. Then in thetransformation (35), (36) we obtain for D = 4, without loss of generality,jfRj � e�p2=3' (49)
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onformal fa
tor has the same leadingorder behaviour in both theories.A 
onformal 
ontinuation of the metri
 (6) 
an obviously o

ur with thefa
tor F at some � = �0 under the 
ondition that the fun
tionsF (')A(�) ; F (') r2(�)have �nite values at � = �0. This means that � = �0 is a generi
 regularsphere in the Jordan frame. Sin
e this is a 
entre (r ! 0) in the Einsteinframe, �0 is �nite, and we 
an put �0 = 0 by a proper 
hoi
e of the originof �. Then Eqs. (9) and (10) show that, in the leading order of magnitude,r2(�) � A(�) � p� � e�p2=3' : (50)Hen
e near � = 0 the fun
tions r(�) and A�) may be represented by theexpansions r = �1=4(r0 + r1�+ : : :) ;A = �1=2(A0 +A1�+ : : :) ; (51)where r0; r1; : : : ; A0; A1; : : : are 
onstants. Substituting (51) into the �eldequations, in parti
ular, (8), we �nd that generi
ally the potential V (')behaves as 1=p�, but it may happen that the leading order (or orders)vanish due to spe
ial relations between the expansion 
onstants in (51).One 
on
ludes, in general, thatV (') � ��1=2+n ; n = 0; 1; 2; : : : : (52)Returning to Eqs. (47) and (48) and re
alling that the potential fun
tionU(�) in the STT (28) is expressed in terms of V as U = V=F 2 [see Eq. (32)℄,we 
on
lude that near �0F (') � j�� �0j�1 � 1=p� ;U(�) � j�� �0j1+2n ; (53)where n 
omes from (52). We 
on
lude that su
h a 
ontinuation is onlypossible when U(�) has an odd-order zero at � = �0.For HOG we have the expression (37) for the potential V , whi
h, forD = 4, is rewritten as 2V (') = (RfR � f)f2R : (54)In the 
ase of interest, fR = 1=F (') � p�, whereas V (') either vanishes at� = 0 or, at most, blows up as 1=p�. This is only possible if f(�0) = 0. Thus
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essary 
ondition for a 
ontinuation is that f = fR = 0 simultaneouslyat some value of R. Moreover, the requirement that f(R) should be smoothat R = R0 leaves the only opportunity V � 1=p� � 1=fR; Eq. (54) thenshows that R0 6= 0.Besides a generi
 sphere, a 
ontinuation may pro
eed through a horizonin the Jordan frame. In other words, in the metri
ds2J = F (')�A(�)dt2 � d�2A(�) � r2d
2� ; (55)a 
ertain value of � (without loss of generality, � = 0) may 
orrespond to ahorizon of order k � 1. This means that � = 0 is a zero of order k of thefun
tion A(q) = AF , where q(�) is a new 
oordinate satisfying the 
onditiongttgqq = �1 in (55) (see the 
omment on the 
hoi
e of the � 
oordinate inSe
. 2). As a result, we must have�dq(�) = F (')d� ;A(q) = AF � (q � q0)k ; F r2 = O(1) ; (56)where q0 is the value of q 
orresponding to � = 0. As before, let us supposethat F (') � ep2=3' and '!1 as �! 0.A substitution to Eq. (9) leads, as before, to r2 � 1=F � p�. A fur-ther substitution to (10) then leaves two opportunities: (i) A(�) � p� and(ii) A(�) � �3=2.In the �rst 
ase AF tends to a �nite limit, 
ontrary to what was assumed(we simply return to the 
ase of a generi
 regular sphere).In the se
ond 
ase, there 
an be a se
ond-order horizon (AF � � �(q� q0)2). One 
an, however, show that, a

ording to Eq. (10), A(�) < 0 as� ! 0, so this horizon is approa
hed from a T region as � ! +0. If thereis a stati
 region at 
ertain � > 0, this means that, as � de
reases, A(�)
hanges its sign at some other horizon, say, � = h > 0. Re
alling the proofof Theorem 3, one 
an assert that B(�) = A=r2 is a nonde
reasing fun
tionat � < h. On the other hand, in the 
ase under 
onsideration one hasB � �r4 � �� near � = 0, i.e., a de
reasing fun
tion. This 
ontradi
tionshows that a 
ontinuation through a horizon in the Jordan frame is onlypossible when the whole region � > 0 (the whole spa
e in the Einstein frame)is a T region.In this 
ase, as �! 0, V (') � 1=p�. In STT this leads to U(�) � ���0.For HOG this is just the variant of V admitted by (54), and the requirementto F (R) is the same as before: at R = R0 6= 0, f(R) should have at least ase
ond-order zero.
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uum Stru
ture in General Relativity : : : 3591Summing up, we have the following two theorems and 
omment:Theorem 6 Consider stati
, spheri
ally symmetri
 solutions in STT (28),D = 4. Suppose that (a) f(�) > 0 at ' < '0; (b) f('0) = 0 but df=d�(�0) 6=0. Then the solution 
an be 
ontinued through the sphere where � = �0 onlyif U(�) has an odd-order zero at � = �0.Theorem 7 Consider stati
, spheri
ally symmetri
 solutions in HOG (34).Suppose that the fun
tion fR > 0 at R < R0 and fR(R0) = 0. Then thesolution 
an be 
ontinued through the sphere where R = R0 only if R0 6= 0and f(R) has an at least se
ond order zero at R = R0.Comment The sphere � = �0 or R = R0, admitting a 
ontinuation, 
anbe (but not ne
essarily is) a horizon, and it is then double, only if the wholeEinstein-frame solution represents a T region. In STT, under the 
onditionsof Theorem 6, this 
an only happen if U(�) has a simple zero at � = �0.One should stress that the 
onditions enumerated in Theorems 6 and7 are only ne
essary for a possible 
ontinuation. It would be quite in
or-re
t to think that any given solution to a theory satisfying these 
onditionsmay be 
ontinued in this way. This is perfe
tly well seen in the example ofSe
. 6.1: the potential U(�) is zero identi
ally, so the restri
tion of Theorem6 is avoided, but a 
ontinuation a
tually takes pla
e only for a spe
ial sub-family of the solutions, sele
ted by a 
ertain relation between the integration
onstants.On the other hand, Theorems 6 and 7 single out very narrow 
lasses oftheories among all STT and HOG. For all others, the Jordan-frame solutionsobtained by 
onformal mappings from the Einstein frame are 
omplete, and,in parti
ular, Theorem 3 that determines the possible 
hoi
e of global 
ausalstru
tures, is appli
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