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SCALAR VACUUM STRUCTURE IN GENERALRELATIVITY AND ALTERNATIVE THEORIESCONFORMAL CONTINUATIONS�K.A. BronnikovCentre for Gravitation and Fundamental Metrology, VNIIMS3-1 M. Ulyanovoy St., Mosow 117313, Russiaand Institute of Gravitation and Cosmology, PFUR6 Miklukho-Maklaya St., Mosow 117198, Russiae-mail: kb�rgs.mme.ru(Reeived Otober 23, 2001)We disuss the global properties of stati, spherially symmetri on�g-urations of a self-gravitating real salar �eld ' in General Relativity (GR),salar-tensor and high-order (urvature-nonlinear) theories of gravity invarious dimensions. In GR, for salar �elds with an arbitrary potentialV ('), not neessarily positive-de�nite, it is shown that the list of all possi-ble types of spae-time ausal struture in the models under onsiderationis the same as the one for ' = onst. In partiular, there are no regularblak holes with any asymptotis. These features are extended to salar-tensor and urvature-nonlinear gravity, onneted with GR by onformalmappings, unless there is a onformal ontinuation, i.e., a ase when asingularity in a solution of GR maps to a regular surfae in an alternativetheory, and the solution is ontinued through suh a surfae. Suh an e�etis exempli�ed by exat solutions in GR with a massless onformal salar�eld, onsidered as a speial salar-tensor theory. Neessary onditionsare found for the existene of a onformal ontinuation; they only hold forspeial hoies of salar-tensor and high-order theories of gravity.PACS numbers: 04.20.Gz, 04.70.Bw, 04.50.+h, 04.40.Nr� Presented at the XXV International Shool of Theoretial Physis �Partiles andAstrophysis � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3571)



3572 K.A. Bronnikov1. IntrodutionThis paper desribes and ontinues the study of global properties ofsalar-vauum on�gurations in general relativity, desribed by the ationS = Z dDxpjgj [R+ (�')2 � 2V (')℄ (1)and similar systems in some alternative theories of gravity, begun inRefs. [1, 2℄. Here D is the number of spae-time dimensions, R is the salarurvature, g = det(g��), ' is a real salar �eld, (�')2 = g����'��', and thefuntion V (') is a potential. This ation in ase D = 4, with many partiu-lar forms of V ('), is onventionally used to desribe the vauum (sometimesinterpreted as a variable osmologial term) in in�ationary osmology, forthe desription of growing vauum bubbles, et., to say nothing of diverse�eld-theoretial studies of salar �elds with di�erent potentials. Where andwhen ' = onst, the potential V (') behaves as a osmologial onstant.In the latter ase, spherially symmetri solutions to the Einstein equa-tions (the Shwarzshild-(anti-)de Sitter metri and its multidimensionalextension) and their global properties in di�erent speial ases are well-known [3℄, see also Se. 2. They are stati due to the extended Birkho�theorem (see [4℄ and referenes therein), and all of them, exept the solu-tions with zero mass parameter m, ontain urvature singularities at theentre.A wider set of spae-times is onneted with the so-alled false vauum,i.e., the system with the ation (1). One might expet that the inlusion ofsalar �elds with various potentials should onsiderably inrease the hoieof possible qualitative behaviours of stati, spherially symmetri on�g-urations. There are, however, very strong general restritions that followdiretly from the �eld equations due to (1). Thus, if V � 0, the only asymp-totially �at BH solution in 4 dimensions is Shwarzshild, as follows fromthe well-known no-hair theorems (see Ref. [5℄ for a reent review). Anotherresult onerns solitoni (partile-like) on�gurations with a regular entreand a �at asymptoti: if V � 0, then suh a on�guration annot have apositive mass [6℄.It is of interest what an happen if the asymptoti �atness and/orV � 0 assumptions are abandoned. Both assumptions are frequently vi-olated in modern studies. Negative potential energy densities, in partiular,the osmologial onstant V = � < 0 giving rise to the Anti�de Sitter (AdS)solution or AdS asymptoti, do not lead to atastrophes (if restrited below),are often treated in various aspets and quite readily appear from quantume�ets like vauum polarization.Our previous papers [1,2℄ have provided some essential restritions on thepossible behaviour of solutions of the theory (1) with arbitrary V (') in D



Salar Vauum Struture in General Relativity : : : 3573dimensions. It has been shown that, whatever is the potential, the variablesalar �eld adds nothing to the list of ausal strutures known for ' = onst.The possibility of regular on�gurations without a entre (wormholes andhorns) was also ruled out. Extensions of these results to some more general�eld models were indiated. Considered were (i) generalized salar �eldLagrangians in GR, with an arbitrary dependene on the ' �eld and itsgradient squared; (ii) multisalar theories of sigma-model type; (iii) Salar-Tensor Theories (STT) of gravity; (iv) urvature-nonlinear (High-Order)Gravity (HOG) with the Lagrangian of the form f(R) where f is an arbitraryfuntion. In items (iii) and (iv), onformal mappings are used to redue theoriginal �eld equations to those following from (1).This paper pays speial attention to the nature of these onformal map-pings. The point is that, when a manifold M [g�� ℄ is onformally mapped toanother manifold M [g�� ℄ (so that g�� = F (x)g��), the global properties ofboth manifolds are the same as long as the onformal fator F is everywheresmooth and �nite. It an happen, however, that a singular surfae in Mmaps to a regular surfae in M due to a singularity in the onformal fatorF . Then M an be ontinued in a regular manner through this surfae, andthe global properties if M an be onsiderably riher than those of M : inthe new region, one an possibly �nd, e.g., new horizons or another spatialin�nity. A known example of this phenomenon, to be alled onformal on-tinuation, is provided by the properties of the stati, spherially symmetrisolution for a onformally oupled salar �eld in GR [7,8℄ as ompared withthe orresponding solution for a minimally oupled salar �eld � see Se. 6.It will be further shown that the mappings that onnet STT and HOG(the so-alled Jordan onformal frame) with GR with a minimally oupledsalar �eld desribed by the ation (1) (the Einstein frame), provide onfor-mal ontinuations only under ertain speial requirements upon the originaltheory. Under very general onditions, onformal ontinuations are absent,and the global struture restritions obtained in GR are diretly extendedto STT and HOG.I will not disuss the question of whih onformal frame (Jordan, Einsteinor some other) in the alternative theories should be regarded as a physialone, refering to our paper [9℄ and referenes therein.The paper is organized as follows. Se. 2 gives the �eld equations. Se. 3ontains a brief desription of purely vauum strutures in D dimensionswith a osmologial onstant. Se. 4 represents the results of Refs. [1, 2℄ onsalar vauum in GR. Some no-go theorems are mentioned without proofs,but the main theorem on the possible horizons dispositions is given a newproof. Two examples of on�gurations admitted by the no-go theorems,are mentioned: a blak hole with a nontrivial salar �eld and a partilelikesolution, both with non-positive-de�nite potentials. In Se. 5, the familiar



3574 K.A. BronnikovSTT 7! GR and HOG 7! GR mappings are realled and disussed, while inSe. 6 possible onformal ontinuations are studied.To onlude, with all theorems and examples at hand, we now have, evenwithout solving the �eld equations, rather a lear piture of what an andwhat annot be expeted from stati, spherially symmetri salar-vauumon�gurations in various theories of gravity with various salar �eld poten-tials.Throughout the paper all statements apply to stati, spherially symmet-ri on�gurations, and all relevant funtions are assumed to be su�ientlysmooth, unless otherwise indiated.2. Field equationsThe �eld equations due to (1) arer�r�'+ V' = 0; (2)R�� � 12Æ��R+ T �� = 0; (3)where V' � dV=d', R�� is the Rii tensor and T �� is the energy-momentumtensor of the ' �eld:T �� = ';�';� � 12Æ��(�')2 + Æ��V ('): (4)Consider a stati, spherially symmetri on�guration, with the spae-time struture M d+2 = Rt � R� � Sd; (5)where Rt is the time axis, R� � R is the range of the radial oordinate �and Sd (d = D� 2) is a d-dimensional sphere. The metri an be written inthe form ds2 = A(�)dt2 � d�2A(�) � r2(�)d
d2; (6)where d
d2 is the linear element on Sd of unit radius, and ' = '(�). (With-out loss of generality, we suppose that large � orresponds to large r.) A-ordingly, Eq. (2) and ertain ombinations of Eqs. (3) lead to�Ard'0�0 = rdV' ; (7)�A0rd�0 = ��4d� rdV ; (8)d r00r = �'02 ; (9)A(r2)00 � r2A00 + (d� 2)r0(2Ar0 �A0r) = 2(d � 1) ; (10)d(d� 1)(1 �Ar02)� dA0rr0 = �Ar2'02 + 2r2V ; (11)



Salar Vauum Struture in General Relativity : : : 3575where the prime denotes d=d�. Only three of these �ve equations are inde-pendent: the salar equation (7) follows from the Einstein equations, whileEq. (11) is a �rst integral of the others. Given a potential V ('), this is adetermined set of equations for the unknowns: r; A; '.The hoie of the radial oordinate � suh that gttg�� = �1 is onvenientfor a number of reasons. First, we are going to deal with horizons, whihorrespond to zeros of the funtion A(�). One an notie that suh zeros areregular points of Eqs. (7)�(11), therefore, one an jointly onsider regionsat both sides of a horizon. Seond, in a lose neighbourhood of a hori-zon � varies (up to a positive onstant fator) like manifestly well-behavedKruskal-like oordinates used for an analyti ontinuation of the metri [10℄.Third, with the same oordinate, horizons also orrespond to regular pointsin geodesi equations [10℄. Last but not least, this hoie well simpli�es theequations, in partiular, (10) an be integrated, giving, for d � 2,B0 � �Ar2�0 = �2(d� 1)rd+2 Z rd�2d� : (12)Our interest will be in the generi global behaviour of the solutions andthe existene of BHs and globally regular on�gurations.In these issues, a ruial role belongs to Killing horizons, regular surfaeswhere the Killing vetor �t is null. For the metri (6), a horizon � = h isa sphere of nonzero radius r = rh where A = 0. The spae-time regularityimplies the �niteness of T �� , so that V and A'02 are �nite at � = h. TheC2-smoothness requirement for r(�) at � = h means that r00 is �nite, and(9) leads to j'0j <1.The horizon is simple or multiple (or higher-order) aording to whetherthe zero of the funtion A(�) is simple or multiple. Thus, the Shwarzshildhorizon is simple while the extreme Reissner�Nordström one is double.As usual, we shall all the spae-time regions where A > 0 and A < 0stati (R) and nonstati (T) regions, respetively. The T regions representhomogeneous osmologial models of Kantowski�Sahs type. A simple orodd-order horizon separates a stati region from a nonstati one, whereasan even-order horizon separates two regions of the same nature. On theonstrution of Carter�Penrose diagrams, haraterizing the ausal strutureof arbitrary stati 2-dimensional spae-times [suh as the (t; �) setion of (6)℄see Refs. [11, 12℄ and more reent and more omprehensive papers [13, 14℄.



3576 K.A. Bronnikov3. GR: vauum with a osmologial onstantIn ase ' = onst; V = onst = �, one an without loss of generalitytake r = �, then Eq. (11) beomes a linear �rst-order equation with respetto A(r) whose integration givesA(r) = 1� 2mrd�1 � 2�r2d(d+ 1) : (13)The metri has the formds2 = A(r)dt2 � dr2A(r) � r2 d
d2 : (14)This is the multidimensional Shwarzshild�de Sitter solution. Its speialases orrespond to the Shwarzshild (d = 2, � = 0) and Tangherlini(d arbitrary, � = 0) solutions and the de Sitter solution in arbitrary di-mension (m = 0). The latter is often alled anti-de Sitter in ase � < 0.The di�erent qualitative behaviours of A(r) for di�erent values of � andm orrespond to the following strutures:1. � = 0; m � 0: urves 1a and 1b in Fig. 1, diagram 1 in Fig. 2(Minkowski and m < 0 Shwarzshild, respetively).2. � < 0; m � 0: urves 2a and 2b in Fig. 1, diagram 2 in Fig. 2 (AdSand m < 0 Shwarzshild-AdS).3. � < 0; m > 0: urve 3 in Fig. 1, diagram 3 in Fig. 2 (Shwarzshild-AdS).4. � = 0; m > 0: urve 4 in Fig. 1, diagram 4 in Fig. 2 (Shwarzshild).5. � > 0; m � 0: urves 5a and 5b in Fig. 1, diagram 5 in Fig. 2 (m < 0Shwarzshild�de Sitter).6. � > 0; m > 0: urves 6a, 6b and 6 in Fig. 1, and the orrespondingdiagrams in Fig. 2 (Shwarzshild�de Sitter in ase 6a and Kantowski�Sahs osmologies in ases 6b and 6).The entre r = 0 is regular for m = 0 and singular for m 6= 0.In ase 6, given a partiular value of � > 0, the solution behaviourdepends on the mass parameter m. When m is smaller than the ritialvalue mr = 1d+ 1�d(d� 1)2� �(d�1)=2; (15)there are two horizons, the smaller one being interpreted as a blak holehorizon and the greater one as a osmologial horizon. If m = mr, thesetwo horizons merge, and one has two homogeneous T regions separated bya double horizon. Lastly, the solution with m > mr is purely osmologial,having no Killing horizons.
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Fig. 1. The behaviour of A(r), Eq. (13), for di�erent values of m and �.�������������� ������������
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3578 K.A. Bronnikov4. Salar vauum in GR. No-go theorems and global strutures4.1. Regular models without a entre?The �rst important restrition for the system (1) in the general ase isthat suh on�gurations as wormholes, horns or �ux tubes do not exist underour assumptions.For the metri (6), a (traversable, Lorentzian) wormhole is, by de�nition,a on�guration with two asymptotis at whih r ! 1, hene with r(�)having at least one regular minimum. A horn is a region where, as � tendsto some value ��, r(�) 6= onst and gtt = A have �nite limits while the lengthintegral l = R d�=A diverges. In other words, a horn is an in�nitely long(d + 1)-dimensional �tube� of �nite radius, with the lok rate remaining�nite everywhere. Suh �horned partiles� were, in partiular, disussed aspossible remnants of blak hole evaporation [15℄. Lastly, a �ux tube is aon�guration with r = onst.Theorem 1 The �eld equations due to (1) do not admit (i) solutions wherethe funtion r(�) has a regular minimum, (ii) solutions desribing a horn,and (iii) �ux-tube solutions with ' 6= onst.The formulation of the theorem and its proof [1,2℄ do not refer to any kindof asymptoti, therefore wormhole throats or horns are absent in solutionshaving any large r behaviour � �at, de Sitter or any other, or having nolarge r asymptoti at all.It also follows that the full range of the � oordinate overs all valuesof r, from the entre (� = �, r(�) = 0), regular or singular, to in�nity,unless (whih is not exluded) there is a singularity at �nite r due to a�pathologial� hoie of the potential.The latter opportunity deserves attention sine, being singular at zeroor �nite r, the spae-time may in priniple be still geodesially omplete. Inother words, any geodesi an only reah the singularity at an in�nite valueof its anonial parameter. No freely moving partile an then attain suh asingularity (to be alled a remote singularity in �nite proper time. Examplesof remote singularities are known in solutions of 2-dimensional gravity [16℄).We an, however, state the following [2℄:Theorem 2 If a solution to Eqs. (7)�(11) has a spatial asymptoti (r !1),it annot ontain a remote singularity at r <1.Thus remote singularities an only exist in on�gurations like losed os-mologial models, unable to desribe isolated bodies observable from outside.



Salar Vauum Struture in General Relativity : : : 35794.2. Global struturesNow, taking into aount Theorem 1, the global spae-time strutureorresponding to any partiular solution is unambiguously determined (upto identi�ation of isometri surfaes, if any) by the disposition of stati(A > 0) and nonstati (A < 0) regions. The following theorem severelyrestrits the hoie of horizon dispositions in the theory under study.Theorem 3 Consider solutions of the theory (1), D � 4, with the metri(6) and ' = '(�). Let there be a stati region a < � < b � 1. Then:(i) all horizons are simple;(ii) no horizons exist at � < a and at � > b.Proof Eq. (10) may be rewritten as follows:r4B00 + �d+ 2� r3r0B0 = �2 �d� 1� ; (16)where B(�) = A=r2. Evidently, zeros of A(�) suh that r 6= 0 are zeros ofthe same order of the funtion B(�). By (16), B(�) annot have a regularminimum sine B0 = 0 implies B00(h) = �2(d� 1)=r4 < 0.Therefore, if � = h is a horizon of at least order, B(h) = B0(h) = 0, it isa maximum of B(�), hene a double horizon separating two T regions. Theabsene of regular minima of B then means that B < 0 for all � 6= h, i.e.,there is no stati region � item (i) is proved.Consider now the boundary � = a of the stati region. If r(a) = 0, it isthe entre; be it regular or singular, it is then the left boundary of the rangeof �. If r(a) 6= 0, then it is a simple horizon: B(a) = 0, B0(a) > 0. SineB has no minima, it is negative and non-dereasing for all � < a, i.e., thereis no horizon. In a similar way one obtains that horizons are absent to theright of b, thus ompleting the proof.This theorem shows that the possible disposition of zeros of the fun-tion A(�) (or B(�)) is the same as in the vauum ase desribed in Se. 3.Therefore the list of possible global strutures is also the same.Theorem 3 shows, in partiular, that the attrative idea of replaingthe blak hole singularity by a nonsingular vauum ore [16�20℄ annot berealized in the theory (1). Indeed, suh a BH, with any large r behavior,must have stati regions at small and large r, separated by at least twosimple or one double horizon, i.e., the funtion B(�) must have at least oneregular minimum. This is impossible due to Eq. (16).More generally, one an onlude that if spatial in�nity is stati, thereis at most one simple horizon; the same is true if the entre is in a statiregion.



3580 K.A. BronnikovSpeial ase: (2+1)-dimensional gravityIn 3 dimensions we have d = 1, and integration of (10) leads to anexpression simpler than (12):B0 � �Ar2�0 = Cr3 ; C = onst: (17)In Theorem 1, items (i) and (iii) hold due to Eq. (9), as before. Still,the proof of item (ii) does not work: a horn is possible if, in (17), C = 0.Though, due to r00 < 0, the horn radius r� is the maximum of r(�), so thata horned on�guration has no large r asymptoti.By virtue of (17), B0 has a onstant sign oiniding with signC, and,instead of Theorem 3, we have a still more severe restrition:Theorem 3a A stati, irularly symmetri on�guration in the theory (1),D = 3, has either no horizon or one simple horizon.Aordingly, the list of possible global strutures is even shorter thanthe previous one: the strutures orresponding to the urves 6a and 6b areabsent. 4.3. 4-dimensional GR: restritions and examplesThe above theorems did not use any assumptions on the asymptotibehaviour of the solutions or the shape and even sign of the potential. Let usnow mention some more spei� but also very signi�ant results for positive-semide�nite potentials.Consider, for simpliity, D = 4. The �eld funtions at a regular entreand at a �at asymptoti (if they exist) behave as follows.A regular entre, where r = 0, implies a �nite time rate and loalspatial �atness. This means that at some �nite � = �Ar02 ! 1 ; A = A +O �r2� ; (18)where A = A(�) and r0(�) are �nite and positive. Moreover, the values ofV , ' and '0 should be �nite there. Then from (9) and (12) one obtains:r00(�) = 0 ; �0 = � : (19)At a �at asymptoti, the metri should behave as the Shwarzshildone with a ertain mass M , while ' should tend to a �nite value. Thus wehave �!1 ; r0 ! 1 ; A(�) = 1� 2M� +O ���2� ;'0 = o���3=2� ; V = o ���3� : (20)



Salar Vauum Struture in General Relativity : : : 3581One of the known restritions is the no-hair theorem:Theorem 4 (no-hair) Suppose V � 0. Then the only asymptotially �atBH solution to Eqs. (7)�(11) in the range (h;1) (where � = h is the eventhorizon) omprises the Shwarzshild metri, ' = onst and V � 0.This theorem was �rst proved by Bekenstein [22℄ for the ase of V (')without loal maxima and was later re�ned for any V � 0 and for ertainmore general Lagrangians � see e.g. Ref. [5℄ for proofs and referenes.Another restrition an be alled the generalized Rosen theorem (Rosen[23℄ studied similar restritions for �at-spae nonlinear �eld on�gurations):Theorem 5 [6℄ An asymptotially �at solution with positive mass M and aregular entre is impossible if V (') � 0.The above theorems leave some opportunities of interest, in partiular:1. BHs with ' 6= onst, potentials V (') � 0 but non-�at large r asymp-totis;2. asymptotially �at BHs with ' 6= onst but at least partly negativepotentials V (');3. asymptotially �at partilelike solutions (solitons) with positive massbut at least partly negative potentials V (').That suh solutions do exist, one an prove by presenting proper exam-ples. For item 1, suh examples have been given in Ref. [24℄, where, amongother results, BHs with non-�at asymptotis were found for the Liouville(V = 2�e2b') and double Liouville (V = 2�1e2b1' + 2�2e2b2') potentials,where the �'s and b's are positive onstants.Speial analytial solutions to Eqs. (7)�(11) for d = 2, exemplifying items2 and 3 (Appendix B), were given in Ref. [2℄. Unlike Ref. [24℄, where speialsolutions were sought for by making the ansatz r(�) / �N , N = onst (in ournotation), we have used in Ref. [2℄ the following approah. Suppose V (') isone of the unknowns. Then our set of equations is underdeterminate, andwe an hoose one of the unknowns arbitrarily trying to provide the properbehaviour of the solution. Thus, one an hoose a partiular funtion r(�):assigning it arbitrarily and substituting into (12), by single integration weobtain A(�), after whih '(�) and V (�) are determined from (9) and (8),respetively. Thus V (') is obtained in a parametri form; it an be madeexpliit if '(�) resolves with respet to �.A blak hole solution was obtained [2℄ by hoosingr(�) =p�2 � a2 ; a = onst > 0 ; (21)



3582 K.A. Bronnikovwhereas a solitoni solution with positive mass was found under the assump-tion r2(�) = a2�2 tanh�a� + �tanh  ; (22)with some positive onstants a and . These assumptions lead to potentialsV (') < 0 whih do not seem quite realisti. However, the purpose of givingthese examples was to merely demonstrate the existene of suh kinds ofsolutions. After this demonstration, it makes sense to seek similar solutionsfor more plausible potentials using numerial methods.4.4. More general Lagrangians in GR. Sigma modelsOne an notie that Theorems 1�3 atually rest on two Einstein equa-tions, (9) or (10), whih in turn follow from the properties of the energy-momentum tensor. Namely, the property T tt �T �� � 0 expresses the validityof the null energy ondition for systems with the metri (6). The orre-sponding Einstein equation then implies r00 � 0. Eq. (10), whih leads toTheorem 3, follows from the propertyT tt = T �� ; (23)where � is any of the oordinate angles that parametrize the sphere Sd.Therefore these three theorems hold for all kinds of matter whose energy-momentum tensors satisfy these two onditions.Consider, for instane, the following ation, more general than (1):S = Z dDxp�g [R+ F (I; ')℄ ; (24)where I = (�')2 and F (I; ') is an arbitrary funtion. The salar �eldenergy-momentum tensor isT �� = �F�I ';�';� + 12Æ��F ('): (25)In the stati, spherially symmetri ase, Eq. (23) holds automatially dueto ' = '(�), while the null energy ondition holds as long as �F=�I � 0,whih atually means that the kineti energy is nonnegative. Under this on-dition, all Theorems 1�3 are valid for the theory (24). Otherwise Theorem3 alone holds; it orretly desribes the � dependene of A and onsequentlythe possible horizons disposition, but the situation is more omplex due topossible non-monotoniity of r(�).Another important and frequently disussed lass of theories are theso-alled sigma models, where a set of N salar �elds ' = f'ag, a = 1; N



Salar Vauum Struture in General Relativity : : : 3583are onsidered as oordinates of a target spae with a ertain metriGab = Gab('). The salar vauum ation is then written in the formS� = Z dDxpjgj [R+Gabg����'a��'b � 2V (')℄ ; (26)where, in general, Gab and V are arbitrary funtions of N variables, butin pratie they possess symmetries that follow from the nature of spei�systems.It is easily seen that, provided the metri Gab(') is positive-de�nite,Theorems 1�3 for stati, spherially symmetri on�gurations are valid asbefore.IfGab is not positive-de�nite, or if some of 'a are allowed to be imaginary,only Theorem 3 holds.5. Salar-tensor and higher-order gravityOther extensions of the above results onern theories onneted with (1)and (24) via '-dependent onformal transformations, suh as Salar-TensorTheories (STT) and the so-alled High-Order Gravity (HOG) (e.g., with theLagrangian funtion f(R)).Above all, it should be noted that if a spae-time M [g℄ with the metri(6) is onformally mapped into another spae-time M [g℄, equipped with thesame oordinates, aording to the lawg�� = F (�)g�� ; (27)then it is easily veri�ed that a horizon � = h in M passes into a horizon of thesame order in M , (ii) a entre (r = 0), an asymptoti (r!1) and a remotesingularity in M passes into a enter, an asymptoti and a remote singularity,respetively, in M if the onformal fator F (�) is regular (i.e., �nite, at leastC2-smooth and positive) at the orresponding values of �. A regular entrepasses to a regular entre and a �at asymptoti to a �at asymptoti underevident additional requirements, but we will not onentrate on them here.The general (Bergmann�Wagoner�Nordtvedt) STT ation in D dimen-sions an be written as follows:SSTT = Z dDxpjgj [f(�)R + h(�)(��)2 � 2U(�) + Lm℄ ; (28)where f , h and U are funtions of the salar �eld � and Lm is the mat-ter Lagrangian. The metri g�� here orresponds to the so-alled Jordanonformal frame. The standard transition to the Einstein frame [25℄,g�� = F (')g�� ; F = jf j�2=(D�2) ; (29)



3584 K.A. Bronnikovd'd� = pjl(�jf(�) ; l(�) def= fh+ D � 1D � 2� dfd��2; (30)removes the nonminimal salar-tensor oupling expressed in a �-dependentoe�ient before R. Putting Lm = 0 (vauum), one an write the ation(28) in terms of the new metri g�� and the new salar �eld ' as follows (upto a boundary term):SE = Z dDxpjgj [RE + �l(�')2 � 2V (')℄ ; (31)where RE and (�')2 are alulated using g�� ,V (') = �fF 2(')U(�) ; (32)and �l;f are sign fators:�l = sign l(�) ; �f = sign f(�) : (33)Note that �l = �1 orresponds to the so-alled anomalous STT, witha wrong sign of salar �eld kineti energy, while �f = �1 means that thee�etive gravitational onstant in the Jordan frame is negative. So thenormal hoie of signs is �l;f = 1.The ation (31) obviously oinides with (1) up to the fator �l. ThusEq. (23) holds, and we an assert that, for stati, spherially symmetrion�gurations, Theorem 3 is valid for the Einstein-frame metri g�� .Theorems 1 and 2 hold for g�� only in the �normal� ase �l = 1; let usadopt this restrition.The validity of the theorems for the Jordan-frame metri g�� dependson the nature of the onformal mapping (29) between the spae-times M [g℄(Jordan) and M [g℄ (Einstein). There are four variants:I. M  ! M ,II. M  ! (M 1 � M ) ,III. (M 1 � M )  ! M ,IV. (M 1 � M )  ! (M 1 � M ) ,where  ! denotes a di�eomorphism preserving the metri signature. Thelast three variants are possible if the onformal fator F vanishes or blowsup at some values of �, whih then mark the boundary of M 1 or M 1.Theorem 3 on horizon dispositions is obviously valid in M in asesI and II. In ase III or IV, the whole spae-time M or its part is put intoorrespondene to only a part M 1 of M , and, generally speaking, anything,



Salar Vauum Struture in General Relativity : : : 3585inluding additional horizons, an appear in the remaining part M 2 = M nM 1of the Jordan-frame spae-time. The existene of suh a region M 2 will berefered to as a onformal ontinuation of M in M .Theorem 1 annot be diretly transferred to M in any ase exept thetrivial one, F = onst. It is only possible to assert, without speifyingF ('), that wormholes as global entities are impossible in M in ases I andII if the onformal fator F is �nite in the whole range of �, inluding theboundary values. Indeed, if we suppose that there is suh a wormhole, it willimmediately follow that there are two large r asymptotis and a minimumof r(�) between them even in M , in ontrast to Theorem 1 whih is validthere.Theorem 2 also evidently holds in M in ases I and II if the onformalfator F is regular in the whole range of �, inluding the boundary values.Another lass of theories onformally equivalent to (1) is the so-alledHigher-Order Gravity (HOG) with the vauum ationSHOG = Z dDxpjgj f(R) ; (34)where f is a funtion of the salar urvature R alulated for the metri g��of a spae-time M . In aord with the weak �eld limit f � R ar small R,let us assume f(R) > 0 and fR def= df=dR > 0, at least in a ertain range ofR inluding R = 0. The onformal mapping M [g℄ 7! M [g℄ withg�� = F (')g�� ; F = f�2=(D�2)R ; (35)transforms the �Jordan-frame� ation (34) into the Einstein-frame ation (1)where ' = rD � 1D � 2 log fR ; (36)2V (') = f�D=(D�2)R (RfR � f) : (37)The �eld equations due to (34) after this substitution turn into the �eldequations due to (1).All the above observations on the validity of Theorems 1�3 in STTequally apply to higher-order gravity.In what follows, we will �rst onsider an exatly soluble example witha onformally oupled salar �eld in GR, when the mapping follows variantIII, and the onformal ontinuation reates a horizon or a wormhole throatoutside M1. Then we will obtain neessary onditions for the ourene ofonformal ontinuations in 4-dimensional STT (28) and HOG (34), showingthat this phenomenon is only possible under speial requirements to thepartiular hoie of these theories.



3586 K.A. Bronnikov6. Conformal ontinuations6.1. Conformal salar �eld in GR: blak holes and wormholesConformal salar �eld in GR an be viewed as a speial ase of STT,suh that, in Eq. (28), D = 4 andf(�) = 1� �26 ; h(�) = 1 ; U(�) = 0 : (38)After the onformal mappingg�� = F (')g�� ; F (') = osh2� 'p6� ; (39)� = p6 tanh� 'p6� ; (40)we obtain the ation (1) with D = 4 and V � 0. The latter desribes aminimally oupled massless salar �eld in GR, and the orresponding stati,spherially symmetri solution is well-known: it is the Fisher solution [26℄.It is onvenient to write it using the harmoni radial oordinate u spei�edby the ondition [8℄ jguuj = gttg2�� (u behaves as 1=r at large r):ds2E = e�2mudt2 � k2e2musinh2(ku)� k2du2sinh2(ku) + d
2� ;' = p6C(u+ u0) ; (41)where the subsript �E� stands for the Einstein frame, m (the mass), C (thesalar harge), k > 0 and u0 are integration onstants, and k is expressed interms of m and C: k2 = m2 + 3C2: (42)The previously used oordinate �, orresponding to the metri (6), D = 4,is � = 2k=(1 � e�2ku), and the metri in terms of � has the formds2E = �1� 2k� �m=kdt2 ��1� 2k� ��m=k �d�2 + �2�1� 2k� � d
2� : (43)This solution is asymptotially �at at u ! 0 (� ! 1), has no horizonwhen C 6= 0 (as should be the ase aording to the no-hair theorem) andis singular at the entre (u ! 1, � ! 2k, ' ! 1). It turns into theShwarzshild solution when C = 0.The �Jordan-frame� solution is desribed by the metri ds2 = F (')ds2Eand the � �eld aording to (40). It is the onformal salar �eld solution



Salar Vauum Struture in General Relativity : : : 3587[7, 27℄, its properties are more diverse and an be presented as follows(putting, for de�niteness, m > 0 and C > 0):1. C < m. The metri behaves qualitatively as in the Fisher solution: it is�at at u ! 0, and both gtt and r2 = jg��j vanish at u ! 1 � a singularattrating entre. A di�erene is that here the salar �eld is �nite: �!p6.2. C > m. Instead of a singular entre, at u ! 1 one has a repulsivesingularity of in�nite radius: gtt ! 1 and r2 ! 1. Again � ! p6 asu!1.3. C = m. In this ase the metri and � are regular at u =1; a ontinuationaross this regular sphere may be ahieved using a new oordinate, e.g.,y = tanh(mu): (44)The solution aquires the formds2 = (1 + yy0)2� dt2(1 + y)2 � m2(1 + y)2y4(1� y0)2 (dy2 + y2d
2)�;� = p6 y + y01 + yy0 ; (45)where y0 = tanh(mu0). The range u 2 R+ , desribing the whole manifoldM in the Fisher solution, orresponds to the range 0 < y < 1, desribingonly a region M 1 of the manifold M of the solution (45). The properties ofthe latter depend on the sign of y0 [8℄. In all ases, y = 0 orresponds to a�at asymptoti, where �!p6y0, jy0j < 1.3a: y0 < 0. The solution is de�ned in the range 0 < y < 1=jy0j. Aty = 1=jy0j, there is a naked attrating entral singularity: gtt ! 0, r2 ! 0,�!1.3b: y0 > 0. The solution is de�ned in the range y 2 R+ . At y !1, we �ndanother �at spatial in�nity, where � ! p6=y0, r2 ! 1 and gtt tends to a�nite limit. This is a wormhole solution, found for the �rst time in Ref. [8℄and reently disussed by Barelo and Visser [28℄.3: y0 = 0, � = p6y, y 2 R+ . In this ase it is helpful to pass to theonventional oordinate r, substituting y = m=(r �m). The solutionds2 = �1� mr �2 dt2 � dr2�1� mr �2 � r2d
2;� = p6 m(r �m) (46)



3588 K.A. Bronnikovis the well-known BH with a onformal salar �eld [7, 27℄, whih seems toviolate the no-hair theorem. The in�nite value of � at the horizon r = mdoes not make the metri singular sine, as is easily veri�ed, the energy-momentum tensor remains �nite there.The whole ase 3 belongs to variant III in the lassi�ation of Se. 5, andthe horizon in ase 3 is situated in the region M 2 = M n M 1 , where theation of the no-hair theorem annot be extended.In ase 3b, the seond spatial in�nity and even the wormhole throat(y = 1=py0) are situated in M 2 , illustrating the inferenes of Se. 5.An important lesson follows, however, from ase 2, where the mapping istype I by the same lassi�ation (M  ! M ): there appears a minimum ofr(u) in the metri g�� (39), and r even blows up at large u. This is onnetedwith blowing up of the onformal fator F . Reall that, as mentioned inSe. 5, the absene of another spatial in�nity is only guaranteed under the�niteness ondition for the onformal fator in the whole range of the radialoordinate, inluding its boundary values: we see that this ondition isindeed essential.The simple example of the onformal �eld thus illustrates the possiblenontrivial onsequenes of onformal ontinuations. We shall see, however,that for most hoies of STT and HOG one is guaranteed against suhontinuations.6.2. Conformal ontinuation onditions in salar-tensorand high-order gravityLet us put for simpliity D = 4 and onsider possible onformal ontin-uations of Einstein-frame solutions of STT and HOG due to transition tothe Jordan frame.In STT (28), suh a ontinuation may our at a zero of the funtionf(�) in Eq. (28). If, at � = �0, the funtion f(�) has a simple zero,f(�) = (� � �0) � O(1), then, in the transformation (29), (30) for D = 4we have, without loss of generality,j�� �0j = e�p2=3' � O(1) ; (47)F (') = ep2=3' � O(1) (48)as �! �0, so that '!1.In HOG (34) a ontinuation is possible if fR ! 0 at some R. Then in thetransformation (35), (36) we obtain for D = 4, without loss of generality,jfRj � e�p2=3' (49)



Salar Vauum Struture in General Relativity : : : 3589and again the relation (48). Thus the onformal fator has the same leadingorder behaviour in both theories.A onformal ontinuation of the metri (6) an obviously our with thefator F at some � = �0 under the ondition that the funtionsF (')A(�) ; F (') r2(�)have �nite values at � = �0. This means that � = �0 is a generi regularsphere in the Jordan frame. Sine this is a entre (r ! 0) in the Einsteinframe, �0 is �nite, and we an put �0 = 0 by a proper hoie of the originof �. Then Eqs. (9) and (10) show that, in the leading order of magnitude,r2(�) � A(�) � p� � e�p2=3' : (50)Hene near � = 0 the funtions r(�) and A�) may be represented by theexpansions r = �1=4(r0 + r1�+ : : :) ;A = �1=2(A0 +A1�+ : : :) ; (51)where r0; r1; : : : ; A0; A1; : : : are onstants. Substituting (51) into the �eldequations, in partiular, (8), we �nd that generially the potential V (')behaves as 1=p�, but it may happen that the leading order (or orders)vanish due to speial relations between the expansion onstants in (51).One onludes, in general, thatV (') � ��1=2+n ; n = 0; 1; 2; : : : : (52)Returning to Eqs. (47) and (48) and realling that the potential funtionU(�) in the STT (28) is expressed in terms of V as U = V=F 2 [see Eq. (32)℄,we onlude that near �0F (') � j�� �0j�1 � 1=p� ;U(�) � j�� �0j1+2n ; (53)where n omes from (52). We onlude that suh a ontinuation is onlypossible when U(�) has an odd-order zero at � = �0.For HOG we have the expression (37) for the potential V , whih, forD = 4, is rewritten as 2V (') = (RfR � f)f2R : (54)In the ase of interest, fR = 1=F (') � p�, whereas V (') either vanishes at� = 0 or, at most, blows up as 1=p�. This is only possible if f(�0) = 0. Thus



3590 K.A. Bronnikova neessary ondition for a ontinuation is that f = fR = 0 simultaneouslyat some value of R. Moreover, the requirement that f(R) should be smoothat R = R0 leaves the only opportunity V � 1=p� � 1=fR; Eq. (54) thenshows that R0 6= 0.Besides a generi sphere, a ontinuation may proeed through a horizonin the Jordan frame. In other words, in the metrids2J = F (')�A(�)dt2 � d�2A(�) � r2d
2� ; (55)a ertain value of � (without loss of generality, � = 0) may orrespond to ahorizon of order k � 1. This means that � = 0 is a zero of order k of thefuntion A(q) = AF , where q(�) is a new oordinate satisfying the onditiongttgqq = �1 in (55) (see the omment on the hoie of the � oordinate inSe. 2). As a result, we must have�dq(�) = F (')d� ;A(q) = AF � (q � q0)k ; F r2 = O(1) ; (56)where q0 is the value of q orresponding to � = 0. As before, let us supposethat F (') � ep2=3' and '!1 as �! 0.A substitution to Eq. (9) leads, as before, to r2 � 1=F � p�. A fur-ther substitution to (10) then leaves two opportunities: (i) A(�) � p� and(ii) A(�) � �3=2.In the �rst ase AF tends to a �nite limit, ontrary to what was assumed(we simply return to the ase of a generi regular sphere).In the seond ase, there an be a seond-order horizon (AF � � �(q� q0)2). One an, however, show that, aording to Eq. (10), A(�) < 0 as� ! 0, so this horizon is approahed from a T region as � ! +0. If thereis a stati region at ertain � > 0, this means that, as � dereases, A(�)hanges its sign at some other horizon, say, � = h > 0. Realling the proofof Theorem 3, one an assert that B(�) = A=r2 is a nondereasing funtionat � < h. On the other hand, in the ase under onsideration one hasB � �r4 � �� near � = 0, i.e., a dereasing funtion. This ontraditionshows that a ontinuation through a horizon in the Jordan frame is onlypossible when the whole region � > 0 (the whole spae in the Einstein frame)is a T region.In this ase, as �! 0, V (') � 1=p�. In STT this leads to U(�) � ���0.For HOG this is just the variant of V admitted by (54), and the requirementto F (R) is the same as before: at R = R0 6= 0, f(R) should have at least aseond-order zero.



Salar Vauum Struture in General Relativity : : : 3591Summing up, we have the following two theorems and omment:Theorem 6 Consider stati, spherially symmetri solutions in STT (28),D = 4. Suppose that (a) f(�) > 0 at ' < '0; (b) f('0) = 0 but df=d�(�0) 6=0. Then the solution an be ontinued through the sphere where � = �0 onlyif U(�) has an odd-order zero at � = �0.Theorem 7 Consider stati, spherially symmetri solutions in HOG (34).Suppose that the funtion fR > 0 at R < R0 and fR(R0) = 0. Then thesolution an be ontinued through the sphere where R = R0 only if R0 6= 0and f(R) has an at least seond order zero at R = R0.Comment The sphere � = �0 or R = R0, admitting a ontinuation, anbe (but not neessarily is) a horizon, and it is then double, only if the wholeEinstein-frame solution represents a T region. In STT, under the onditionsof Theorem 6, this an only happen if U(�) has a simple zero at � = �0.One should stress that the onditions enumerated in Theorems 6 and7 are only neessary for a possible ontinuation. It would be quite inor-ret to think that any given solution to a theory satisfying these onditionsmay be ontinued in this way. This is perfetly well seen in the example ofSe. 6.1: the potential U(�) is zero identially, so the restrition of Theorem6 is avoided, but a ontinuation atually takes plae only for a speial sub-family of the solutions, seleted by a ertain relation between the integrationonstants.On the other hand, Theorems 6 and 7 single out very narrow lasses oftheories among all STT and HOG. For all others, the Jordan-frame solutionsobtained by onformal mappings from the Einstein frame are omplete, and,in partiular, Theorem 3 that determines the possible hoie of global ausalstrutures, is appliable.This work was supported in part by the Russian Foundation for BasiResearh. I am grateful to Oleg Zaslavskii, Mikhail Katanaev, Georgy Shikinand Marek Biesiada for helpful disussions, and to the Organizing Commit-tee of the 25th Shool of Theoretial Physis at Ustro« for kind hospitalityand perfet arrangement of the Shool.REFERENCES[1℄ K.A. Bronnikov, Phys. Rev. D64, 064013 (2001).[2℄ K.A. Bronnikov, G.N. Shikin, gr-q/0104092; to appear in Grav. & Cosmol .[3℄ K. Lake and R. Roeder, Phys. Rev.D15, 3513 (1977); M. Katanaev, T. Klosh,W. Kummer. Ann. Phys. (USA) 276, 191 (1999).
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