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Disturbing of a spacetime geometry may result in the appearance of
an oscillating and damped radiation — the so-called quasinormal modes.
Their periods of oscillations and damping coefficients carry unique informa-
tion about the mass and the angular momentum, that would allow one to
identify the source of the gravitational field. In this talk we present recent
bounds on the diffused energy, applicable to the Schwarzschild spacetime,
that give also rough estimates of the energy of excited quasinormal modes.

PACS numbers: 04.20.—q, 04.70.—s, 95.30.5f, 98.62.Js

1. Introduction

Quasinormal modes are scattering-type solutions of the Schrédinger
equation which satisfy a quite peculiar boundary condition that at both
“ends” the waves are purely outgoing. They are being studied in the con-
text of general relativity (the Schrodinger equation emerges there through
the standard separation of the time dependence in a wave equation) in the
course of the last thirty years [1-3]. Much is known about their eigenval-
ues and their temporal evolution in the case of Schwarzschild black holes
and neutron stars. An exhaustive review on that topic is [2]; see also [3].
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An observer located at a fixed space position would find that quasinormal
modes oscillate in time and their amplitude exponentially decays. The pe-
riod of oscillations and damping coefficients carry unique information about
the mass and the angular momentum.

Perturbation of a spherically symmetric spacetime geometry can be de-
scribed — as far as the backreaction can be neglected — by a linear wave
equation [4,5]. The interesting fact is that a (compact support) perturba-
tion of a spacetime geometry may result in the appearance of an outgoing
radiation that coincides in a bounded region of spacetime with a linear com-
bination of quasinormal modes. At some intermediate time — later on the
so-called tail term dominates — the perturbation is dominated by the funda-
mental mode, since the latter is damped weaker than the other quasinormal
modes. The oscillation periods and damping coefficients do not depend on
perturbations; this feature can be used in order to identify the source of the
gravitational field [6].

It is of interest to know how much energy can be carried by quasinormal
modes. Their energy can be estimated by the so-called diffused energy —
the energy loss that is due to the backscattering. In this paper we present
recent results in this direction. The order of the rest of the paper is as
follows:

(i) Space-time curvature and two patterns of propagation of massless
fields;

(ii) Vibrations of a spacetime — an example;
(iii) Recent results on the energy diffusion in the Schwarzschild spacetime;
(iv) Dependence of backscatter on the frequency of waves;

(v) Discussion;

(vi) Lessons from numerics.

2. What is backscattering?

Let an outgoing null cone I, originate from (a,0). Assume that a flash
of radiation is initially purely outgoing [9] and that its support is contained
in an annular region (a,b), b < oco. Then, depending on whether or not the
spacetime is curved, the following can be observed.

(i) In the flat Minkowski spacetime a wave remains purely outgoing. No
radiation can be found in the interior of the cone (Fig. 1). In this case
no backscatter [7,8] occurs (in the Hadamard’s terminology: the type
B Huyghens principle holds true).

(ii) A wave backscatters in a curved, e.g. Schwarzschild, spacetime. Some
energy, denoted later as JF,, diffuses inward through I, and is lost
from the main stream (Fig. 2).
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Fig.1. Solid line represents an outgoing null cone. Arrows show the direction of
the radiation.

s

b R

Fig.2. Solid curve represents an outgoing null cone. Arrows show the direction of
the radiation — there appears an ingoing component.

One can shortly state that waves propagate in a curved spacetime like
electromagnetic waves in a medium with a varying refraction index. A frac-
tion of the radiation scatters off the curvature of the geometry and a part
of the initial energy never reaches infinity.

3. Damped oscillations

Figure 3' shows a picture that is typical in the case of perturbations
that have compact support. An initial perturbation is depicted in Fig. 3(a).
Some time after the initial pulse runs through the observer, he (or she)
can observe that an oscillatory (single frequency) radiation dominates. As
pointed out before, the period and damping coefficients are independent on
the perturbation.

! This figure is taken from [3], with the permission of Peter-Hans Nollert and the
Institute of Physics.
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There are two interconnected problems that can made difficult the iden-
tification of the dominant mode. First, in the asymptotic zone, t > 2m, the
tail terms dominate [2], since they decay as some power of 1/t. Second, the
amplitude of the oscillations quickly decreases, as exemplified by Fig. 3(b).
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Fig. 3. Time evolution of the Regge-Wheeler function for L = 2. The ‘observer’ is
located at r* = 800 * m

4. Quantitative estimates of the backscattered energy

We specialize, beginning from this section, to spherically symmetric
spacetimes. The backscattered (diffused) energy will be found from the
energy conservation and some potential estimates. Let us point out that our
intention is to derive a bound from above on the fraction of the backscattered
energy; this bound should be independent of the details of the initial pulse of
the outgoing radiation. The only information that is required, is the mass m
of the central object and the initial position « of the inner boundary of the
outgoing radiation. (In the case of nonspherical spacetimes one presumably
would need also the information about the total angular momentum.)
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The idea that it is possible to bound the backscattered energy entirely in
terms of initial energy and initial position was first put on trial in the exam-
ple of the massless scalar field ( [10,11]; a recent work is [12]). The Theorem
formulated below summarizes results that have been obtained while imple-
menting a program which was formulated in the case of electromagnetic
radiation in ( [13,14]) and then modified in [15] and [16]. While the analytic
part concerning the electromagnetic radiation is fairly satisfactory (any fur-
ther progress would most likely involve advanced numerical methods), the
work on the gravitational radiation is not finished. Preliminary results on
the polar modes are given in [15] while the investigation of axial modes is in
progress.

Theorem

Assume a flash of dipole electromagnetic radiation (quadrupole gravita-
tional radiation — axial or polar) that is initially purely outgoing and that
has support in an annular region (a,b), b < co. Let the initial energy be
E,(0) and m = m/a.

Then the fraction of the diffused energy ‘sE(“) satisfies the inequality

Here

(i) (the case of electromagnetic radiation) for a >10%, 0.3=C(0) <C(m):

-1 (

10080((—1 + 27m)1mt)
+44m3 + 2352m° + 2016/m* In(1 — 27m)
4268875 In(1 — 27m) — 40327m° In(1 — 27h)
—360m° In(1 — 2/m) + 67 + 36m> In(1 — 27m)
—30/m2 + 31n(1 — 2m) — 18m In(1 — 2m)) ; (1)

C(m) = —27607m° + 828m*

(ii) (axial gravitational waves)? 1.05 = C(0) < C(m) =?;
<

(iii) (polar gravitational waves)? 22 = C(0)
C(0)<4).

2 The upper range of the validity of the formula is still uncertain. If a > 4m then we
expect to obtain a nontrivial estimate.
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Sketch of the proof

4.1. Preliminaries

A Schwarzschildean line element reads (we neglect the backreaction
effect):

2 1
ds? = — <1 - %) i’ + ———dR? + R2d0> . (2)
R

The radial terms of the multipole expansion satisfy the following (reduced)
wave equations [4,5,17],

(=05 + 07 )0 = V(R)%;. (3)
In the case of lowest multipoles we have:

(i) l=1and V(R) = (1 — %")% (dipole term, electromagnetism);

(i) 1 =2and V(R) = (1 — 2%)%(1 - %) (quadrupole term, axial gravi-

tational waves);
21 4m
(iii) | = 2 and V(R) = (1 - 22) %(1 -y %) (quadrupole
2R
term, polar gravitational waves).

In what follows we shall deal only with the electromagnetic case; the
other two cases can be treated similarly. Although the calculations become
more complex, basic scheme is the same.

The most general solution of the dipole electromagnetic radiation in the
Minkowski spacetime is given by

o0(f(B 1)~ g(r + 1)+ [EZDLIELD, (@)

where the f-related part describes the outgoing radiation while g is respon-
sible for the ingoing wave. For any initial data, one can uniquely determine
f and ¢ and in this way specify the outgoing and ingoing initial pulses.

We invoke to the above decomposition in order to specify what is meant
by in- or out- directed waves in the Schwarzschild spacetime. Define the
Regge-Wheeler variable r*(R) = R + 2m ln(% — 1). Then having ini-
tial data, one can construct functions f and g in a similar way as in the
Minkowski spacetime. If from the construction follows that g = 0, then we
will say that the radiation is purely outgoing. In such a case it is useful to

define Fo 1)
TR °

U(R,t) = =0 f(r* —t) +
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and to seek a solution of the dipole wave equation, ¥(r*,t), having the
following form

U=U+4. (6)

We would like to point out that at ¢ = 0 the function ¢ vanishes up to the
first time derivative [13], 6 = 0 and dyd = 0. One finds that the evolution
equation reads

2 6mf

Ry (12
(ao+ar*)a_<1 =

4.2. Main steps of the proof

The energy of the electromagnetic field that is contained in the annulus
(R(t), 00) reads

=2 d(% * (1 - 2—”‘) (0 + ﬁ) .

R(t) "

4.2.1. Bound on f in terms of the initial energy

Lemma 1. Define np =1 — 2?’”, m=""and y = % Let f(a) =0, and

a > me. Then

2
L0 < B0y, ®)

where

16m* 16m*

3(—y +2m)3  3(—1+2m)3
16m° 16m* 241>
Cyt2m)? T (C1t2m? T (Cy+2m)

24702 Y — 2m

L LI——— N .
Cixom "M o

F(m,y) = y—1+

This is essentially a Sobolev-type estimate. For the proof see [16].

4.2.2. Estimate of an “energy” of §

This “energy” denoted as H is not conserved — there is a volume-
dependent term in the integral form of this “energy” evolution law. It appears
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to be, however, a useful quantity. H is defined by

H(R,1) = / dr <(a;f)2 + 0 (0,6)2 + 2%2) : (10)

this integral is done on a fixed Cauchy hypersurface ¢ = const. One can
prove

Lemma 2. Let the support of initial data be (a,b), a > me, b < oo.
Then

t 00 1/2 2
2
H(ay,t) < 36m” /ds /drfrgr ; (11)
0 Qs

where the ¢-integration follows along ﬁa,(at,t) (see the definition in Sec. 4.2.3)
while the r-integration is done on a fixed Cauchy slice.
The crucial point in the proof of Lemma 2 is that

t 00
E,
H(at,t) = —6 26;-(15) — 12/d8/d7‘80(5[j—4; (12)
0

g

dropping out the nonpositive §F, terms and using the Schwarz inequality
yields the lemma [16].

4.2.3. The energy conservation and bounding of the diffused energy (the en-
ergy “loss”)

Define fRO,( R,) — a segment of an outgoing null geodesic that connects
(Ro,t = 0) with (R,t). Further, let us introduce

1
h-(B,t) = 5 (% + 0r-)9; (13)

R

this corresponds to this component of the “reduced” strength field tensor
that is directed inward. ~
The rate of the energy change along I, is given by

(0o + O+ ) E,

R R —m R
om om 292 .
- —27T<1—§> (1—§)<h_—%) +ﬁ<w+5) . (14)
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but f = ¥ = 0 while their first derivatives vanish on I',. The integration of
(14) along I, gives the energy that diffused through the segment I7, o),

5Ea (t) = Ea (0) - Ea (t)
a(t)

zzﬂ/dr [(1—7) h% + 2;522] . (15)

a

From the H-conservation law and Lemma 2 one gets

t o] 1/2 2
§E, 21y
RS 2 /ds /drfrg ; (16)
0 Qs

here 0E, = limy_,o, 6 E,(1).
The “electromagnetic” part of the main Theorem follows from the pre-
ceding bounds.

5. Dependence of the backscatter on the frequency of waves

The backscattering depends on the relative width of support. This is
well known from the numerical analysis of Vishveshwara [18], but the first
— up to our knowledge — proof appeared in [14]. Below we sketch the
main results. When support of the initial radiation is very narrow, k =

(b—a)/a < 1, then
0E, 2m 2
<C(=) k.
E,(0) —C( a ) "

In the limit x — 0 follows E‘EGL(“O)

would like to point that this argument works for all a > 2m, in contrast to
the main Theorem.

The question arises: how do we interpret this? The similarity theo-
rem [19] of Fourier transform theory states that compression of support of
a function corresponds to expansion of the frequency scale. It means that

— 0; the backreaction is negligible. We

. Ew<2) ‘
AI_IQ)T(O) — 0, (17)

above F(w < (2.) is the electromagnetic energy of modes with frequencies
smaller than a fixed frequency, w < £2.. Thus we can conclude that the high
frequency radiation is essentially unhindered by the backscattering while
long waves can be backscattered.



3602 J. KARKOWSKI, E. MALEC, Z. SWIERCZYNSKI

6. Discussion

The diffused energy dF, bounds from above the sum 6 Eqm¢ + 0 Ef where
0 Eqmt is the energy carried by the quasinormal modes and the tail, and JE¢
is the energy of the radiation that falls to a black hole or hits the surface of
a star. Below we present several data which estimate from above the total
fraction of the backscattered energy. A more detailed calculation would
show that the last contribution, dF¢, dominates, so that we expect that
0Eqmt/Eq(0) can be a small fraction of the number given in forthcoming
examples.

In the first group of examples we consider the case, when the initial pulse
is close to the Schwarzschild radius R = 2m:

(i) a = lon (e.g., a surface of a supercompact neutron star): 5]%1) <0.5;

(ii) a = 4m (e.g., a supercompact neutron star ): ‘””E“) <0.3;

111) a = dm (a standard neutron star): ‘SE“ <0.13.
(i) 7 (0

It is instructive to notice that this effect is very weak in the case of

other astronomical objects. For the Sun for instance : E‘sza) ~ 10713, while

for white dwarves: ‘””E“) < 1077, Our estimates allow one also to answer

the question that was raised in the literature (see, e.g., [20]), how strongly
gravitational field of a galactic interior can damp the outgoing radiation?
One can infer from the preceding examples that the effect may matter only
if there is a black hole in the interior of a galaxy.

7. What can be learned from numerics?

We summarize shortly the main conclusions which can be obtained
through a numerical analysis.

(i) If a radiating source is close to a horizon, then the damping can be
quite strong. We found, in accordance with expectations, that the
backscatter is strong deep inside the photon sphere. There are known
examples in which from 20 percent (electromagnetism) to 49 percent
(gravitational polar modes) of the initial energy gets diffused [16]; that
should go to 100 % if a very compact source is infinitely close to the
event horizon.

1 e effect depends on the wi of a “renormalize —a)/ng) sup-
i) The effect d d the width of a “ lized” ((b
port of initial energy. The backscatter is strongest, when the width is
of the order of @ — comparable to the areal distance from the center.

(74i) The present analytic estimates are not exact. They are expected to
yield, in combination with appropriate numerical methods, more sat-
isfactory results.
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