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SCHWARZSCHILD BLACK HOLESAND PROPAGATION OF ELECTROMAGNETICAND GRAVITATIONAL WAVES�Janusz Karkowski, Edward MaleInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Zdobysªaw �wierzy«skiInstitute of Physis, Pedagogial UniversityPodhor¡»yh 1, 30-084 Kraków, Poland(Reeived Otober 17, 2001)Disturbing of a spaetime geometry may result in the appearane ofan osillating and damped radiation � the so-alled quasinormal modes.Their periods of osillations and damping oe�ients arry unique informa-tion about the mass and the angular momentum, that would allow one toidentify the soure of the gravitational �eld. In this talk we present reentbounds on the di�used energy, appliable to the Shwarzshild spaetime,that give also rough estimates of the energy of exited quasinormal modes.PACS numbers: 04.20.�q, 04.70.�s, 95.30.Sf, 98.62.Js1. IntrodutionQuasinormal modes are sattering-type solutions of the Shrödingerequation whih satisfy a quite peuliar boundary ondition that at both�ends� the waves are purely outgoing. They are being studied in the on-text of general relativity (the Shrödinger equation emerges there throughthe standard separation of the time dependene in a wave equation) in theourse of the last thirty years [1�3℄. Muh is known about their eigenval-ues and their temporal evolution in the ase of Shwarzshild blak holesand neutron stars. An exhaustive review on that topi is [2℄; see also [3℄.� Presented by E. Male at the XXV International Shool of Theoretial Physis�Partiles and Astrophysis � Standard Models and Beyond�, Ustro«, Poland,September 10�16, 2001. (3593)



3594 J. Karkowski, E. Male, Z. �wierzy«skiAn observer loated at a �xed spae position would �nd that quasinormalmodes osillate in time and their amplitude exponentially deays. The pe-riod of osillations and damping oe�ients arry unique information aboutthe mass and the angular momentum.Perturbation of a spherially symmetri spaetime geometry an be de-sribed � as far as the bakreation an be negleted � by a linear waveequation [4, 5℄. The interesting fat is that a (ompat support) perturba-tion of a spaetime geometry may result in the appearane of an outgoingradiation that oinides in a bounded region of spaetime with a linear om-bination of quasinormal modes. At some intermediate time � later on theso-alled tail term dominates � the perturbation is dominated by the funda-mental mode, sine the latter is damped weaker than the other quasinormalmodes. The osillation periods and damping oe�ients do not depend onperturbations; this feature an be used in order to identify the soure of thegravitational �eld [6℄.It is of interest to know how muh energy an be arried by quasinormalmodes. Their energy an be estimated by the so-alled di�used energy �the energy loss that is due to the baksattering. In this paper we presentreent results in this diretion. The order of the rest of the paper is asfollows:(i) Spae-time urvature and two patterns of propagation of massless�elds;(ii) Vibrations of a spaetime � an example;(iii) Reent results on the energy di�usion in the Shwarzshild spaetime;(iv) Dependene of baksatter on the frequeny of waves;(v) Disussion;(vi) Lessons from numeris.2. What is baksattering?Let an outgoing null one ~�a originate from (a; 0). Assume that a �ashof radiation is initially purely outgoing [9℄ and that its support is ontainedin an annular region (a; b), b � 1. Then, depending on whether or not thespaetime is urved, the following an be observed.(i) In the �at Minkowski spaetime a wave remains purely outgoing. Noradiation an be found in the interior of the one (Fig. 1). In this aseno baksatter [7,8℄ ours (in the Hadamard's terminology: the typeB Huyghens priniple holds true).(ii) A wave baksatters in a urved, e.g. Shwarzshild, spaetime. Someenergy, denoted later as ÆEa, di�uses inward through ~�a and is lostfrom the main stream (Fig. 2).
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RFig. 1. Solid line represents an outgoing null one. Arrows show the diretion ofthe radiation. r2 printed on Otober 11, 2001 1
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RFig. 2. Solid urve represents an outgoing null one. Arrows show the diretion ofthe radiation � there appears an ingoing omponent.One an shortly state that waves propagate in a urved spaetime likeeletromagneti waves in a medium with a varying refration index. A fra-tion of the radiation satters o� the urvature of the geometry and a partof the initial energy never reahes in�nity.3. Damped osillationsFigure 31 shows a piture that is typial in the ase of perturbationsthat have ompat support. An initial perturbation is depited in Fig. 3(a).Some time after the initial pulse runs through the observer, he (or she)an observe that an osillatory (single frequeny) radiation dominates. Aspointed out before, the period and damping oe�ients are independent onthe perturbation.1 This �gure is taken from [3℄, with the permission of Peter-Hans Nollert and theInstitute of Physis.



3596 J. Karkowski, E. Male, Z. �wierzy«skiThere are two interonneted problems that an made di�ult the iden-ti�ation of the dominant mode. First, in the asymptoti zone, t� 2m, thetail terms dominate [2℄, sine they deay as some power of 1=t. Seond, theamplitude of the osillations quikly dereases, as exempli�ed by Fig. 3(b).

Fig. 3. Time evolution of the Regge�Wheeler funtion for L = 2. The `observer' isloated at r� = 800 �m4. Quantitative estimates of the baksattered energyWe speialize, beginning from this setion, to spherially symmetrispaetimes. The baksattered (di�used) energy will be found from theenergy onservation and some potential estimates. Let us point out that ourintention is to derive a bound from above on the fration of the baksatteredenergy; this bound should be independent of the details of the initial pulse ofthe outgoing radiation. The only information that is required, is the mass mof the entral objet and the initial position a of the inner boundary of theoutgoing radiation. (In the ase of nonspherial spaetimes one presumablywould need also the information about the total angular momentum.)



Shwarzshild Blak Holes and Propagation of Eletromagneti . . . 3597The idea that it is possible to bound the baksattered energy entirely interms of initial energy and initial position was �rst put on trial in the exam-ple of the massless salar �eld ( [10,11℄; a reent work is [12℄). The Theoremformulated below summarizes results that have been obtained while imple-menting a program whih was formulated in the ase of eletromagnetiradiation in ( [13,14℄) and then modi�ed in [15℄ and [16℄. While the analytipart onerning the eletromagneti radiation is fairly satisfatory (any fur-ther progress would most likely involve advaned numerial methods), thework on the gravitational radiation is not �nished. Preliminary results onthe polar modes are given in [15℄ while the investigation of axial modes is inprogress.TheoremAssume a �ash of dipole eletromagneti radiation (quadrupole gravita-tional radiation � axial or polar) that is initially purely outgoing and thathas support in an annular region (a; b), b � 1. Let the initial energy beEa(0) and ~m = m=a.Then the fration of the di�used energy ÆEaEa(0) satis�es the inequalityÆEaEa(0) � C( ~m)�2ma �2 :Here(i) (the ase of eletromagneti radiation) for a�10m3 ; 0:3=C(0)�C( ~m) :C( ~m) = �110080((�1 + 2 ~m)4 ~m4)��2760 ~m5 + 828 ~m4+44 ~m3 + 2352 ~m6 + 2016 ~m4 ln(1� 2 ~m)+2688 ~m6 ln(1� 2 ~m)� 4032 ~m5 ln(1� 2 ~m)�360 ~m3 ln(1� 2 ~m) + 6 ~m+ 36 ~m2 ln(1� 2 ~m)�30 ~m2 + 3 ln(1� 2 ~m)� 18 ~m ln(1� 2 ~m)� ; (1)(ii) (axial gravitational waves)2 1:05 = C(0) � C( ~m) =? ;(iii) (polar gravitational waves)2 552 = C(0) � C( ~m) =? (onjeture:C(0)<4).2 The upper range of the validity of the formula is still unertain. If a > 4m then weexpet to obtain a nontrivial estimate.



3598 J. Karkowski, E. Male, Z. �wierzy«skiSketh of the proof 4.1. PreliminariesA Shwarzshildean line element reads (we neglet the bakreatione�et): ds2 = ��1� 2mR � dt2 + 11� 2mR dR2 +R2d
2 : (2)The radial terms of the multipole expansion satisfy the following (redued)wave equations [4, 5, 17℄, (��20 + �2r�)	l = V (R)	l : (3)In the ase of lowest multipoles we have:(i) l = 1 and V (R) = (1� 2mR ) 2R2 (dipole term, eletromagnetism);(ii) l = 2 and V (R) = (1� 2mR ) 6R2�1� mR� (quadrupole term, axial gravi-tational waves);(iii) l = 2 and V (R) = �1� 2mR � 6R2�1 � 2mR + 21m2(1+mR )4R2( 1+3m2R )2� (quadrupoleterm, polar gravitational waves).In what follows we shall deal only with the eletromagneti ase; theother two ases an be treated similarly. Although the alulations beomemore omplex, basi sheme is the same.The most general solution of the dipole eletromagneti radiation in theMinkowski spaetime is given by�0�f(R� t)� g(R+ t)�+ f(R� t) + g(R + t)R ; (4)where the f -related part desribes the outgoing radiation while g is respon-sible for the ingoing wave. For any initial data, one an uniquely determinef and g and in this way speify the outgoing and ingoing initial pulses.We invoke to the above deomposition in order to speify what is meantby in- or out- direted waves in the Shwarzshild spaetime. De�ne theRegge�Wheeler variable r�(R) � R + 2m ln( R2m � 1). Then having ini-tial data, one an onstrut funtions f and g in a similar way as in theMinkowski spaetime. If from the onstrution follows that g = 0, then wewill say that the radiation is purely outgoing. In suh a ase it is useful tode�ne ~	(R; t) � ��r�f(r� � t) + f(r� � t)R(r�) ; (5)



Shwarzshild Blak Holes and Propagation of Eletromagneti . . . 3599and to seek a solution of the dipole wave equation, 	(r�; t), having thefollowing form 	 = ~	 + Æ : (6)We would like to point out that at t = 0 the funtion Æ vanishes up to the�rst time derivative [13℄, Æ = 0 and �0Æ = 0. One �nds that the evolutionequation reads (��20 + �2r�)Æ = �1� 2mR �" 2R2 Æ + 6mfR4 # : (7)4.2. Main steps of the proofThe energy of the eletromagneti �eld that is ontained in the annulus(R(t);1) readsER(t) = 2� 1ZR(t) dr (�0	)21� 2mr +�1� 2mr � (�r	)2 + 2(	)2r2 ! :4.2.1. Bound on f in terms of the initial energyLemma 1. De�ne �R � 1� 2mR , ~m � ma and y � Ra . Let f(a) = 0, anda � 10m3 . Then ����f2(R; 0)R2 ���� � Ea(0)8� a�2(R)F ( ~m; y) ; (8)where F ( ~m; y) � y � 1 + 16 ~m43(�y + 2 ~m)3 � 16 ~m43(�1 + 2 ~m)3� 16 ~m3(�y + 2 ~m)2 + 16 ~m4(�1 + 2 ~m)2 + 24 ~m2(�y + 2 ~m)� 24 ~m2(�1 + 2 ~m) + 8 ~m ln y � 2 ~m1� 2 ~m : (9)This is essentially a Sobolev-type estimate. For the proof see [16℄.4.2.2. Estimate of an �energy� of ÆThis �energy� denoted as H is not onserved � there is a volume-dependent term in the integral form of this �energy� evolution law. It appears



3600 J. Karkowski, E. Male, Z. �wierzy«skito be, however, a useful quantity. H is de�ned byH(R; t) � 1ZR dr�(�0Æ)2�r + �r(�rÆ)2 + 2Æ2r2 � ; (10)this integral is done on a �xed Cauhy hypersurfae t = onst: One anproveLemma 2. Let the support of initial data be (a; b), a � 10m3 , b � 1.Then H(at; t) � 36m2 264 tZ0 ds0� 1Zas drf2�rr8 1A1=23752 ; (11)where the t-integration follows along ~�a;(at;t) (see the de�nition in Se. 4.2.3)while the r-integration is done on a �xed Cauhy slie.The ruial point in the proof of Lemma 2 is thatH(at; t) = �ÆEa(t)2� � 12 tZ0 ds 1Zas dr�0Æ fr4 ; (12)dropping out the nonpositive ÆEa terms and using the Shwarz inequalityyields the lemma [16℄.4.2.3. The energy onservation and bounding of the di�used energy (the en-ergy �loss�)De�ne ~�R0;(R;t) � a segment of an outgoing null geodesi that onnets(R0; t = 0) with (R; t). Further, let us introdueh�(R; t) = 11� 2mR (�0 + �r�)Æ ; (13)this orresponds to this omponent of the �redued� strength �eld tensorthat is direted inward.The rate of the energy hange along ~�a is given by(�0 + �r�)Ea= �2�(1� 2mR )24�1� 2mR � �0	1� 2mR + �R	!2 + 2R2	235= �2��1� 2mR �"(1� 2mR )�h� � fR2�2 + 2R2 � ~	 + Æ�2# ; (14)



Shwarzshild Blak Holes and Propagation of Eletromagneti . . . 3601but f = ~	 = 0 while their �rst derivatives vanish on ~�a. The integration of(14) along ~�a gives the energy that di�used through the segment ~�a;a(t),ÆEa(t) � Ea(0) �Ea(t)= 2� a(t)Za dr ��1� 2mr � h2� + 2Æ2r2 � : (15)From the H-onservation law and Lemma 2 one getsÆEa2� � 36m2 264 tZ0 ds0� 1Zas drf2�rr8 1A1=23752 ; (16)here ÆEa � limt!1 ÆEa(t).The �eletromagneti� part of the main Theorem follows from the pre-eding bounds.5. Dependene of the baksatter on the frequeny of wavesThe baksattering depends on the relative width of support. This iswell known from the numerial analysis of Vishveshwara [18℄, but the �rst� up to our knowledge � proof appeared in [14℄. Below we sketh themain results. When support of the initial radiation is very narrow, � =(b� a)=a� 1, then ÆEaEa(0) � C�2ma �2� :In the limit � ! 0 follows ÆEaEa(0) ! 0; the bakreation is negligible. Wewould like to point that this argument works for all a > 2m, in ontrast tothe main Theorem.The question arises: how do we interpret this? The similarity theo-rem [19℄ of Fourier transform theory states that ompression of support ofa funtion orresponds to expansion of the frequeny sale. It means thatlim�!0 E(! � 
)Ea(0) ! 0 ; (17)above E(! � 
) is the eletromagneti energy of modes with frequeniessmaller than a �xed frequeny, ! � 
. Thus we an onlude that the highfrequeny radiation is essentially unhindered by the baksattering whilelong waves an be baksattered.



3602 J. Karkowski, E. Male, Z. �wierzy«ski6. DisussionThe di�used energy ÆEa bounds from above the sum ÆEqmt+ ÆEf whereÆEqmt is the energy arried by the quasinormal modes and the tail, and ÆEfis the energy of the radiation that falls to a blak hole or hits the surfae ofa star. Below we present several data whih estimate from above the totalfration of the baksattered energy. A more detailed alulation wouldshow that the last ontribution, ÆEf , dominates, so that we expet thatÆEqmt=Ea(0) an be a small fration of the number given in forthomingexamples.In the �rst group of examples we onsider the ase, when the initial pulseis lose to the Shwarzshild radius R = 2m:(i) a = 10m3 (e.g., a surfae of a superompat neutron star): ÆEaEa(0) < 0:5 ;(ii) a = 4m (e.g., a superompat neutron star ): ÆEaEa(0) < 0:3 ;(iii) a = 5m (a standard neutron star): ÆEaEa(0) < 0:13 .It is instrutive to notie that this e�et is very weak in the ase ofother astronomial objets. For the Sun for instane : ÆEaEa(0) � 10�13, whilefor white dwarves: ÆEaEa(0) < 10�7. Our estimates allow one also to answerthe question that was raised in the literature (see, e.g., [20℄), how stronglygravitational �eld of a galati interior an damp the outgoing radiation?One an infer from the preeding examples that the e�et may matter onlyif there is a blak hole in the interior of a galaxy.7. What an be learned from numeris?We summarize shortly the main onlusions whih an be obtainedthrough a numerial analysis.(i) If a radiating soure is lose to a horizon, then the damping an bequite strong. We found, in aordane with expetations, that thebaksatter is strong deep inside the photon sphere. There are knownexamples in whih from 20 perent (eletromagnetism) to 49 perent(gravitational polar modes) of the initial energy gets di�used [16℄; thatshould go to 100 % if a very ompat soure is in�nitely lose to theevent horizon.(ii) The e�et depends on the width of a �renormalized� ((b� a)=�a) sup-port of initial energy. The baksatter is strongest, when the width isof the order of a � omparable to the areal distane from the enter.(iii) The present analyti estimates are not exat. They are expeted toyield, in ombination with appropriate numerial methods, more sat-isfatory results.
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