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I review the main characteristics of structure formation in the quintes-
sential Universe. Assuming equation of state w = p/o =const. I provide
a brief description of the background cosmology and discuss the linear
growth of density perturbations, the strongly nonlinear evolution, the power
spectra and r.m.s. fluctuations as well as mass functions focusing on the
three values w = —1,—-2/3 and —1/3. Finally I describe the presently
available and future constraints on w.

PACS numbers: 95.35.+d, 98.62.—g, 98.62.Ai, 98.62.Ck

1. Introduction

Our knowledge of background cosmology has recently improved dramat-
ically due to new supernovae and cosmic microwave background data. Cur-
rent observations favor a flat Universe with matter density £y = 0.3 [1] and
the remaining contribution in the form of cosmological constant [2,3]| or
some other form of dark energy. The models with cosmological constant are
known, however, to suffer from two major problems. One is related to the ori-
gin of the constant — it cannot be explained in terms of the vacuum energy
since its energy is orders of magnitude smaller. The other is the lack of
explanation why the present densities in matter and cosmological constant
are comparable.

A new class of models that solve these problems and also satisfy present
observational constraints has been proposed a few years ago [4]. In these
models the cosmological constant is replaced with a new energy component,
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called quintessence, characterized by the equation of state p/o = w # —1.
The component can cluster on largest scales and, therefore, affect the mass
power spectrum [5] and microwave background anisotropies [6,7].

The investigations of the physical basis for the existence of such com-
ponent are now more than a decade old [8]. One of the promising models
is based on so-called “tracker fields” that display an attractor-like behavior
causing the energy density of quintessence to follow the radiation density in
the radiation dominated era but dominate over matter density after matter-
radiation equality [9,10]. It is still debated, however, how w should depend
on time, and whether its redshift dependence can be reliably determined
observationally [11-13].

A considerable effort has gone into attempts to put constraints on mod-
els with quintessence and presently the values of —1 < w < —0.6 seem most
feasible observationally [14,15]. Here I review the main characteristics of
structure formation in the quintessential Universe which may provide con-
straints on the equation of state. In the last section I discuss the current
status of observational limits on w and future perspectives.

2. Background cosmology

Quintessence obeys the following equation of state relating it’s density
0q and pressure pq

pq = wpq, Where —1<w<0. (1)

The case of w=—1 corresponds to the usually defined cosmological constant.
The evolution of the scale factor a = R/Ry = 1/(1 + z) (normalized to
unity at present, z is the redshift) in the quintessential Universe is governed
by the Friedmann equation
da HO

E:wa (2)

w(a) = [1 + 9 (2 - 1) + a0 (al% - 1)] o 3)

and Hj is the present value of the Hubble parameter. The quantities with
subscript 0 here and below denote the present values. The parameter 2 is
the standard measure of the amount of matter in units of critical density
and ¢ measures the density of quintessence in the same units

where

0Q
q=—. 4
Ocrit ( )
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Fig.1. Left panel: Time evolution of the scale factor in different models. Right
panel: The present age of Universe in units of Hy ! in flat models as a function of
(2o for different w.

The Einstein equation for acceleration d’a/dt? = —4nGa(p + 0/3) shows
that w < —1/3 is needed for the accelerated expansion to occur. The left
panel of figure 1 shows the evolution of scale factor in different models. The
right panel presents the dependence on w of the present age of Universe

1
to = Hio /u(a)da. (5)
0

Solving the equation for the conservation of energy d(oqa®)/da=—3pqa’
with condition (1) we get the evolution of the density of quintessence which
for w = const., the case considered in this paper, reduces to

0q = 0q,0 a2, (6)

The evolution of {2 and ¢ with scale factor is given by

UQ(Z U2a
) = L@ gy = D) )

a W)= " 1w

while the Hubble parameter itself evolves so that H(a) = Hy/[a u(a)].
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3. Linear growth of perturbations

The linear evolution of the matter density contrast § = dp/p is governed
by equation [16]

S+%§—4ﬂ@5:0, (8)

where dots represent derivatives with respect to time. For flat models and
arbitrary w an analytical expression for D(a), the growing mode of the
time-dependent part of 4, was found [17]. With our notation and the nor-
malization of D(a) = a for 2 =1 and ¢ = 0 it becomes

1 w—1 5 (_3w) 1-— QO

D(a)=aoF |[——, ——,1— —, —a

9
3w’ 2w 6w’ 2 ' 9)

where 9F} is a hypergeometric function. The solutions (9) for different w
and cosmological parameters 2y = 0.3 and gg = 0.7 are plotted in figure 2.
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Fig.2. The linear growth rate of density fluctuations for 29 = 0.3, ¢op = 0.7 in
three cases of w = —1,—2/3 and —1/3.

The peculiar velocity field in linear perturbation theory is obtained
from [16]

2f
- 1
where g = —V¢/a is the peculiar gravitational acceleration and f is the
dimensionless velocity factor
aD
f==% (11)

T aD’
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Fig.3. Left panel: The velocity factor f at present as a function of (2 for flat
models with different w. Right panel: The redshift dependence of f for 29 = 0.3,
qo = 0.7 and different w.

For flat models this formula can be evaluated analytically using Eq. (9).
The dependence of f on (2 at present (z = 0) for flat models with different
w is shown in the left panel of figure 3. We see immediately that the depen-
dence on w is very weak. However, as shown in the right panel of figure 3,
when going to higher redshifts we find that the velocity factor is much more
sensitive to w which gives some hope for applying it to determine w from
local peculiar velocity field.

4. Strongly nonlinear evolution

The simplest model of formation of bound objects (called the spherical or
top hat model) [18-21] describes the nonlinear evolution of spherical density
perturbation of initial proper radius r; and mass M

47
M = M(Ti) = ?Pb,i 7’13(1 + Ai) ) (12)
where A; is the initial cumulative overdensity and py,; is the background
density of matter at time ¢;. Evolution of this perturbation is governed by
the energy equation

1 > GM  H?qr?
<d7’) G g (13)

2\dt) 2

If A; is larger than certain critical value [20,21], the overdense region will
eventually turn-around and collapse.
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Conservation of energy leads to the following condition for the maximum
expansion (turn-around) radius 7, (Or Sgq = 742 /7i)
bisia + basta + b3 =0, (14)
where b; = cqi, by = 1—2(14+A;) —q;, b3 = 2(14+4;) and ¢ = (ai/aa)> )

where ay, is the scale factor at turn-around.
There are two real and positive solutions to equation (14)

b\ 12 _or
@) ) e

(@) ()

(17)

and

where
x
¢ = arccos W
and z = —Qbi/gbg, y = [3(—4b3 — 27b1b3)]"/2. For go = 0 we simply get
Sta = —bsg/ba. The go = 0 case is reproduced in the limit of small gy only
by solution (15). However, although for w = —1 only (15) works, for higher
values of w which solution is applicable depends on (2.

Particularly useful quantities which can be derived from the model are
the characteristic densities of the evolution usually denoted by §. and A.
dc is the density contrast at the moment of collapse (with scale factor acon)
as predicted by linear theory

de = h [0, qo, Ai(acon), z]D(acon) , (18)

where

3 1—90—(]0 QO[1+A1(1+Zi)]+QO—1
h(‘QanOaAiaZi) = g 'QO + 00(1 + Ai)2/3 : (19)

The values of 0. as a function of £2 for flat models with different w are shown
in the left panel of figure 4. They will be used in Section 6 to construct the
mass functions of bound objects.

Another useful quantity is the ratio of the density of the object to the
critical density at virialization

A, = Pvir

2(acon) [ acon
(0/(:011) = (3CO ) < =
Pcrit Scoll aj

)3 [1 + Ai(acoll)} ; (20)
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Fig.4. Dependence of d. (left panel) and A. (right panel) on 2y and w for flat
models and collapse time z.q; = 0.

where scon = Teon/ri and reon is the effective final radius of the collapsed
object. We assume that the object virializes at t¢q, the time corresponding
to r — 0. The final radius s needed in Eq. (20) is obtained by application
of the virial theorem which leads to the following equation for the collapse
factor F' = reon/Tta

3(14w)
2MF3 — 2+n<ac°“> F+1=0, (21)
Gty
where
y = 2qis, < ai )3(1+w) _ (22)
25(1 + 4) \acon

Numerical values of A, for the presently collapsing perturbations in different
models are shown in the right panel of figure 4.

Using spherical model we can also estimate the redshift of a particu-
lar stage of evolution of the perturbation given its present overdensity as
predicted by linear theory, §y. For the redshift of collapse we have

D(a=1)
D(acoll) .

With the previously obtained results for d. and the formula for the linear
growth of fluctuations (9), we can calculate the present linear density con-
trast of fluctuation that collapsed at zo. This relation can only be inverted
analytically in the case of 2y = 1, go = 0 when we get zeon = do/d. — 1. For
other cases the calculations have to be done numerically. Using equation

dp = 5(:(@0011) (23)



3650 E.L. Lokas

10— 10 T T
8r E 8r E
= 6 E 6r E
4 8
N 4 [\
4r E 4r E
Qo=0.3, qo=0.7 Qo=0.3, q0=0.7
it Y Wb |
2t T we-1/3 2t Il w=-1/3 1
' D=1, qo= ' Qo=1, qo=
0 Iy P U TR 0 H N P T T S |
0 5 10 15 20 0 2 4 6 8 10 12
6o o

Fig.5. Redshift of collapse (left panel) and turn-around (right panel) of density
fluctuation with present linear density contrast dy for flat models with different w.

analogous to (23) we can also calculate the redshift of turn-around, z,. Pa-
rameter dc(acon) has then to be replaced by the corresponding turn-around
value Oia(ata). Both redshifts are shown in figure 5 as functions of §y for
different models.

5. Power spectrum of density fluctuations

Power spectrum P(k,a) is defined as the Fourier transform of the corre-
lation function of density fluctuations

P(k,a) = /5(7’, a) e kT By, (24)

The spectra for Universe dominated by Cold Dark Matter (CDM) have been
widely discussed in the literature, e.g. [22]. For the present time (a = 1) the
power spectrum is usually written in the form

P(k) = AK"T*(k), (25)

where n measures the slope of the primordial power spectrum (we will as-
sume n = 1), T is the transfer function and A is a normalization constant.
In the presence of cosmological constant (ACDM) the transfer function T4
can be approximated by [22]

T2 = {1 + {clk + (e2k)?? + (03k)2} }72/1/, (26)

with v = 1.13, ¢1 = 6.4/I", co = 3.0/I", ¢ = 1.7/T" (¢1,c¢2,c3 in units of
h~'Mpc), I' = 2oh and h = Hy/100 [km/(s Mpc)] = 0.7.
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For flat models with quintessence the modification of the transfer func-
tion has been proposed by Ma et al. [5]. The transfer function in equa-
tion (25) is then Tq = TqaTx, where Tqa = Tq/Tx is approximated by
fits given in [5]. Adopting COBE normalizations of the spectra we obtain
the following constants for the three cases with w = —1,-2/3 and —1/3,
respectively: A = 3.74 x 105,2.62 x 10 and 8.53 x 10° (h~'Mpc)*. The
present linear power spectra for these three cases are shown in the left panel
of figure 6.

The r.m.s. density fluctuation, o, at comoving smoothing scale R is
given by

9 1

"= G / 3k P(k) W25 (kR), (27)

where the smoothing is performed with the top hat filter

3 sinkR
Wig(kR) = [ <W

— cos kR) . (28)
The dependence of ¢ on smoothing scale for flat models with different w
is shown in the right panel of figure 6. A particularly useful quantity, con-
strained by cluster abundance is the r.m.s. fluctuation at the scale of 8h~!
Mpec. Its values turn out to depend strongly on w and we get og = 1.12,0.935
and 0.534 for w = —1,—2/3 and —1/3, respectively.
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Fig. 6. The linear power spectra (left panel) and r.m.s. fluctuation as a function of
smoothing scale (right panel) for flat models with different w.
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6. Mass functions

One of the most important measures of structure formation is provided
by the mass function of bound objects. Using the analytical prescription
of Press and Schechter [23], we can estimate the cumulative mass function
(the comoving number density of objects of mass grater than M)

o0

N(> M) = / n(M)dM , (29)

M
where n(M) is the number density of objects with mass between M and

M+ dM 1/2

2 Ob 50 do (52
In the expression above, gy, is the background density, d. is the characteristic
density discussed in Section 4 and given by equation (18), o is the r.m.s.
density fluctuation at comoving smoothing scale R described in Section 5.
The mass is related to the smoothing scale by M = 4w, R?/3.

Figure 7 shows the cumulative mass functions calculated from equation
(30) with 20 = 0.3 and ¢o = 0.7 for three models with w = —1,—-2/3 and
—1/3. Comparison of the theoretical curves in figure 7 with data for rich
clusters of galaxies [21] shows that for our choice of cosmological parameters
the values of w &~ —2/3 are preferred. The Press—Schechter formulae are,
however, known to underestimate the mass functions on the scale of clus-
ters of galaxies when compared to N-body simulations so when more exact

2=0.3, qo=0.7
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Fig.7. The Press—Schechter cumulative mass functions for different w assuming
20 = 0.3 and ¢o = 0.7.
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predictions are available this result is likely to become w > —2/3. The con-
straint on w from mass functions is potentially important since most other
tests yield upper limits of w.

7. Constraints on w

The primary constraint on the value of w comes from the observa-
tions of accelerating expansion, which can only be obtained in models with
w < —1/3. Age of Universe is quite sensitive to w and increases for lower w,
however, the accuracy of our knowledge of both Hy and ¢y is not good
enough to put strong constraints on w. Current estimates are consistent
with w < —0.5.

One of the strongest arguments for the existence of dark energy comes
from the studies of Cosmic Microwave Background (CMB). Although its
power spectrum is weakly sensitive to w (e.g. the height of the first acous-
tic peak is somewhat increased and its position is shifted to higher multi-
poles for lower w), it has already provided some limits. Combining the data
from COBE and recent balloon experiments Balbi et al. [6] find
—1 < w < —0.6 while Baccigalupi et al. [7]| estimate the best-fitting value
of w to be w = —0.8. The ongoing and future satellite experiments are
expected to put even stronger limits on w.

Among the promising probes of dark energy are also supernovae Ia. The
comoving distance they serve to measure is sensitive only to the interesting
cosmological parameters and the errors related to supernova evolution or
extinction are estimated to be small. The existing data restrict w only
weakly [24], but future experiments like The Supernova Acceleration Probe
are expected to measure the value of w with a few percent accuracy [25].

Structure formation also offers methods to constrain the cosmic equation
of state. The suppression of linear growth of density fluctuations for higher w
alone shows that only for w < —1/2 the structure observed today could have
evolved from small initial perturbations deduced from CMB observations.
The same range of acceptable w values follows from the behaviour of og
which is a strongly decreasing function of w.

The most promising tests are based on the number counts of galaxy
clusters. It turns out [26] that the slope of comoving abundance as a function
of redshift depends sensitively on w and, therefore, can be used to break
degeneracies between w and other cosmological parameters that appear e.g.
in the analysis of CMB. Such measurements are expected to be performed
using the proposed new X-ray and Sunyaev—Zeldovich effect surveys [27] and
the ongoing DEEP Redshift Survey [28]. The constraints from structure
formation appear to be complementary to those from supernovae and CMB
measurements.
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