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STANDARD COSMOLOGY IN THEDGP BRANE MODEL�Rainer Di
kDepartment of Physi
s and Engineering Physi
s, University of Saskat
hewan116 S
ien
e Pla
e, Saskatoon, SK S7N 5E2, Canada(Re
eived O
tober 22, 2001)Large extra dimensions provide interesting extensions of our parame-ter spa
e for gravitational theories. There exist now brane models whi
h
an perfe
tly reprodu
e standard four-dimensional Friedmann 
osmology.These models are not motivated by observations, but they 
an provide in-teresting new insights and approa
hes to the dimensionality problem instring theory. I des
ribe the embedding of standard Friedmann 
osmol-ogy in the DGP model, and in parti
ular the realization of our 
urrent(dust + �)-dominated Universe.PACS numbers: 04.50.+h, 98.80.Cq, 98.80.Hw1. Introdu
tionIn re
ent years large extra dimensions whi
h 
an only be probed bygravitons and eventually non-standard matter have attra
ted a lot of atten-tion. These models usually yield the 
orre
t Newtonian (1=r)-potential atlarge distan
es be
ause the gravitational �eld is quen
hed on submillimetertransverse s
ales. This quen
hing appears either due to �nite extension ofthe transverse dimensions [1℄ or due to submillimeter transverse 
urvatures
ales indu
ed by negative 
osmologi
al 
onstants1 [2�5℄. A 
ommon featureof both of these types of models and also of the old Kaluza�Klein type mod-els is the predi
tion of deviations from four-dimensional Einstein gravity atshort distan
es. If the transverse length s
ale is not too small this impliesthe possibility to generate bulk gravitons in a

elerators [8℄ or stars [9�13℄.In this regard the re
ent model of Dvali, Gabadadze and Porrati (DGP)[14,15℄ is very di�erent: It predi
ts that four-dimensional Einstein gravity is� Presented at the XXV International S
hool of Theoreti
al Physi
s �Parti
les andAstrophysi
s � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001.1 Please 
onsult e.g. [6, 7℄ for mu
h more extensive lists of referen
es.(3669)
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ka short-distan
e phenomenon with deviations showing up at large distan
es.The transition between four- and higher-dimensional gravitational potentialsin the DGP model arises as a 
onsequen
e of the presen
e of both brane andbulk Einstein terms in the a
tion.Furthermore, it was observed in [6℄ that the DGP model allows for anembedding of standard Friedmann 
osmology in the sense that the 
osmo-logi
al evolution of the ba
kground metri
 on the brane 
an entirely bedes
ribed by the standard Friedmann equation plus energy 
onservation onthe brane. This was later generalized to arbitrary number of transversedimensions in [19℄.In Se
. 3 I review the standard embedding of Friedmann 
osmology foundin [6℄, and des
ribe in parti
ular the realization of a (dust + �)-dominatedUniverse in this framework.2. The DGP modelThe a
tion of the DGP model readsS = m342 Z dtZ d3~xZ dx?p�gR+ Z dtZ d3~x �m232 p�gR(d�1) �m34p�g K + L�����x?=0; (1)where Gaussian normal 
oordinates are employed:ds2 = g��dx�dx� + (dx?)2: (2)The transverse 
oordinate jx?j is a distan
e along orthogonal geodesi
s tothe brane.The (3 + 1)-dimensional submanifold x? = 0 is usually denoted as a3-brane, and L 
ontains the matter degrees of freedom on this brane. Ex-trinsi
 
urvature e�e
ts have been taken into a

ount through a Gibbons�Hawking term [20�23℄ (whi
h requires averaging over the two sides of thebrane [6℄), and m4 and m3 are redu
ed Plan
k masses in �ve and four di-mensions, respe
tively.The a
tion (1) yields Einstein equationsm34�RMN � 12gMNR�+m23gM�gN� �R(d�1)�� � 12g��R(d�1)� Æ(x?)= gM�gN�T��Æ(x?); (3)
orresponding to mat
hing 
onditions



Standard Cosmology in the DGP Brane Model 3671lim"!+0 [K�� ℄x?="x?=�" = 1m34 �T�� � 1d� 1g��g��T�������x?=0� m23m34 �R(d�1)�� � 12(d � 1)g��g��R(d�1)�� �����x?=0 (4)for the extrinsi
 
urvature of the brane.The use of Gaussian normal 
oordinates (2) implies that we 
an imposea harmoni
 gauge 
ondition only on the longitudinal 
oordinates x�:��h�� + �?h?� = 12�� (h�� + h??) ; (5)but this is su�
ient to get a de
oupled equation for the gravitational poten-tial of a stati
 mass distribution:The transverse equations in the gauge (5)R?? �R�� = 12���� �h�� � h??�+ �?��h�? = 0;R?� = 12 �����h�? � �K�Kh?��+ 14���? (h?? � h��) = 0
an be solved by h?� = 0, h?? = h��, and the remaining equations takethe form m34(���� + �2?)h�� +m23Æ(x?) (����h�� � ����h��)= �2Æ(x?)�T�� � 1d� 1������T��� :This yields the equation for the gravitational potential of a mass density%(~r) = MÆ(~r) onM3;1:m34(� + �2?)U(~r; x?) +m23Æ(x?)�U(~r; x?) = 23MÆ(~r)Æ(x?) : (6)The resulting potential on the brane is [6, 14℄U(~r) = � M6�m23r �
os�2m34m23 r�� 2� 
os�2m34m23 r�Si�2m34m23 r�+2� sin�2m34m23 r� 
i�2m34m23 r�� ; (7)with the sine and 
osine integralsSi(x) = xZ0 d� sin �� ;
i(x) = � 1Zx d� 
os �� :
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kThe DGP model thus predi
ts a transition s
ale`DGP = m232m34 (8)between four-dimensional behavior and �ve-dimensional behavior of thegravitational potential:r � `DGP : U(~r) = � M6�m23r �1 +�
 � 2�� r`DGP+ r`DGP ln� r`DGP�+ O� r2`2DGP�� ;r � `DGP : U(~r) = � M6�2m34r2 �1� 2`2DGPr2 +O�`4DGPr4 �� :
 ' 0:577 is Euler's 
onstant.If we would use the usual value of the redu
ed Plan
k mass for m3, thenthe small r potential would be stronger than the genuine four-dimensionalpotential by a fa
tor 43 be
ause the 
oupling of the masses on the brane tothe four-dimensional Ri

i tensor is in
reased by this fa
tor. This fa
tor43 is in agreement with the tensorial stru
ture of the graviton propagatorreported in [14℄. Therefore the four-dimensional redu
ed Plan
k mass isslightly larger in the DGP model than in ordinary Einstein gravity:m3 = (6�GN;3)�1=2 ' 2:8� 1018GeV: (9)The potential is displayed in Fig. 1.The 
urrent limit on deviations from Einstein gravity at large distan
esis still set by [16℄, see also [17, 18℄.The limit `DGP > 1014m would translate with (8),(9) into a bulk Plan
kmass m4 < 200GeV. This may seem surprisingly low, but re
all from (7)that the relevant graviton 
oupling s
ale at distan
es well below `DGP isthe large Plan
k mass m3 on the brane, and lower m4 means larger `DGP,making it even harder to dete
t any deviations from Einstein gravity.It is 
ertainly easy to 
onstrain `DGP to supergala
ti
 s
ales, be
ausethe DGP model predi
ts a weakening of gravity at large distan
es, thuspotentially in
reasing the need for dark matter.However, interest in this model does not arise from the hope that onemight dete
t any 
orresponding e�e
ts at gala
ti
 or not too large super-gala
ti
 s
ales: The interest in the model results from the observation thatit provides a simple, yet surprising me
hanism to a

ommodate four-dimen-sional gravity in a model with in�nitely large extra dimensions.
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Fig. 1. The dotted line is the gravitational potential in the DGP model as a fun
tionof x = r=`DGP. The horizontal axis 
overs the region 0 � x � 4. The verti
alunits 
orrespond to M=(12m34). The dashed line is the ordinary three-dimensionalNewton potential in these units, and the solid line is the 
orresponding potentialin four spatial dimensions.3. Standard 
osmology in the DGP modelFrom the fa
t that the DGP model predi
ts deviations only at large dis-tan
es one might hope that it 
ould be ruled out from 
osmologi
al observa-tions, but we will see that it 
an a

ount for standard Friedmann 
osmologyat any distan
e s
ale on the brane:Brane 
osmology usually starts from the line element (with xi � xi,r2 � xixi)ds2 = �n2(x?; t)dt2+a2(x?; t)�Æij + k xixj1� kr2� dxidxj + b2(x?; t)dx?2 : (10)This ansatz implies a brane 
osmologi
al prin
iple in that it assumes thatevery hypersurfa
e x? = 
onst. is a Robertson�Walker spa
etime with 
os-mologi
al time T jx? = R jn(x?; t)jdt.
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kBuilding on the results of [25,26℄, the 
osmologi
al evolution equations ofa 3-brane in a �ve-dimensional bulk following from (3) and (4) were presentedin [27, 28℄.Here I will follow [6℄ and give the results for a brane of dimension � +1.The Einstein tensors for the metri
 (10) in Gaussian normal 
oordinates(b2 = 1) and in d = � + 1 spatial dimensions areon the hypersurfa
es x? = 
onst.:G(�)00 = 12�(� � 1)n2� _a2n2a2 + ka2� (11)G(�)ij = (��1)� _n _an3a� �an2a� gij� 12(��1)(��2)� _a2n2a2+ ka2� gij ; (12)and in the bulk:G00 = 12�(� � 1)n2 _a2n2a2 � a02a2 + ka2!� �n2a00a ; (13)Gij = 12(� � 1)(� � 2) a02a2 � _a2n2a2 � ka2! gij+(� � 1)�a00a + n0a0na � �an2a + _n _an3a� gij + n00n gij ; (14)G0? = ��n0n _aa � _a0a � ; (15)G?? = 12�(� � 1) a02a2 � _a2n2a2 � ka2!+ ��n0a0na + _n _an3a � �an2a� : (16)The mat
hing 
onditions (4) for an ideal �uid on the braneT00 = %n2 ; Tij = pgijreadlim"!+0 [�?n℄x?="x?=�" = n�m��+1 �(� � 1)%+ �p� ����x?=0+m��1�m��+1 (��1)n� �an2a� _a22n2a2� _n _an3a� k2a2� ����x?=0;(17)lim"!+0 [�?a℄x?="x?=�" = m��1�2m��+1 (� � 1)� _a2n2a + ka�����x?=0 � %a�m��+1 ����x?=0 :(18)
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orresponds to e�e
tive gravitational 
ontributions to the pressure andenergy density on the brane:%G = �12�(� � 1)m��1� � _a2n2a2 + ka2� ;pG = (� � 1)m��1� � �an2a � _n _an3a�+ 12(� � 1)(� � 2)m��1� � _a2n2a2 + ka2� :Energy 
onservation on the brane follows from the absen
e of transversemomentum, T0? = 0. With (15) this impliesn0n = _a0_a (19)and in parti
ular lim"!+0�n0n �x?="x?=�" = lim"!+0 � _a0_a �x?="x?=�" :Insertion of (17),(18) into this equation yields the sought for 
onservationequation _%a���x?=0 = ��(%+ p) _a���x?=0 : (20)Insertion of (19) into (13) and (16) for x? 6= 0 yields a �-dimensionalversion of the integral of Binétruy et al. [26℄:2�n2a0a�G00 = ��x?� _a2n2a��1 � a02a��1 + ka��1� = 0 ;2� _aa�G?? = � ��t� _a2n2a��1 � a02a��1 + ka��1� = 0 ;i.e. I+ = � _a2n2 � a02 + k� a��1����x?>0 (21)and I� = � _a2n2 � a02 + k� a��1����x?<0 (22)are two 
onstants, with I+ = I� iflim"!+0a0���x?=" = � lim"!+0 a0���x?=�" :
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kWe have not yet taken into a

ount Gij = 0 in the bulk. However,Eq. (19) implies �?(n= _a) = 0, and thereforen00n = _a00_a :This, the bulk equations G00 = G?? = 0, and the 
onstan
y of I� implythat the bulk equation Gij = 0 is already satis�ed and does not provide anynew information.We 
an now simplify the previous equations by further restri
ting ourGaussian normal 
oordinates through the gaugen(0; t) = 1 (23)by simply performing the transformationt ) tFRW = tZ dt0 n(0; t0)of the time 
oordinate. This gauge is 
onvenient be
ause it gives the usual
osmologi
al time on the brane. Hen
eforth, this gauge will be adopted, butthe index FRW will be omitted.Eqs. (19),(23) imply that our basi
 dynami
al variable is a(x?; t), withn(x?; t) given by n(x?; t) = _a(x?; t)_a(0; t) :The basi
 set of 
osmologi
al equations in the present setting (without a 
os-mologi
al 
onstant in the bulk) are thus Eqs. (18),(20)�(22), whi
h have tobe amended with dispersion relations (or 
orresponding evolution equations)for the ideal �uid 
omponents on the brane:lim"!+0 [�?a℄x?="x?=�" (t) = m��1�2m��+1 (� � 1) _a2(0; t) + ka(0; t) � %(t)a(0; t)�m��+1 ;I+ = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t)���x?>0 ;I� = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t)���x?<0 ;_%(t)a(0; t) = ��(%(t) + p(t)) _a(0; t);p(t) = p(%(t)) ;n(x?; t) = _a(x?; t)_a(0; t) :



Standard Cosmology in the DGP Brane Model 3677Our primary 
on
ern with regard to observational 
onsequen
es is theevolution of the s
ale fa
tor a(0; t) on the brane, and we 
an use the inte-grals I� to eliminate the normal derivatives a0(x? ! �0; t) from the braneanalogue of the Friedmann equation:�p _a2(0; t) + k � I+a1��(0; t)�p _a2(0; t) + k � I�a1��(0; t)= m��1�2m��+1 (� � 1) _a2(0; t) + ka(0; t) � %(t)a(0; t)�m��+1 : (24)If this equation is solved for a(0; t) by using the dispersion relation andenergy 
onservation on the brane, then a(x?; t) 
an be determined in thebulk from the 
onstan
y of I�.There must be at least one minus sign on the left hand side of (24) ifthe right hand side is negative, but the dynami
s of the problem does notrequire symmetry a
ross the brane. The 
onstants I� must be 
onsidered asinitial 
onditions, and if e.g. I+ 6= I�, then there 
annot be any symmetrya
ross the brane.If m� 6= 0 and the normal derivatives on the brane have the same sign:m�a0(x? ! +0; t)a0(x? ! �0; t) > 0 ; (25)then the 
osmology of our brane approximates ordinary Friedmann�Robertson�Walker 
osmology during those epo
hs whenI� � � _a2(0; t) + k� a��1(0; t) :In parti
ular, this applies to late epo
hs in expanding open or �at branes(k 6= 1). 3.1. The embedding of standard Friedmann 
osmologyStandard 
osmology may be realized in the DGP model in an even moredire
t way:If (25) holds and I+ = I�, then (24) redu
es entirely to the ordinaryFriedmann equation for a (� + 1)-dimensional spa
etime [6℄. This embed-ding of standard Friedmann 
osmology is then given by the following set of
osmologi
al evolution equations:
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k_a2(0; t) + ka2(0; t) = 2%(t)�(� � 1)m��1� ;I = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t) ;_%(t)a(0; t) = ��(%(t) + p(t)) _a(0; t) ;p(t) = p(%(t));n(x?; t) = _a(x?; t)_a(0; t) :The evolution of the ba
kground geometry of the observable Universea

ording to the Friedmann equation 
an thus be embedded in the DGPmodel, with the behavior of a(x?; t) o� the brane determined solely by theintegral I and the boundary 
ondition a(0; t) from the Friedmann equation.This embedding will be asymmetri
 in all realisti
 
ases, be
ause therequirement that the Friedmann equation holds on the brane is equivalentto the smoothness 
onditionlim"!+0 �?a("; t) = lim"!+0 �?a(�"; t) :This 
ould yield a symmetri
 embedding only for a0(0; t) = 0, but this isin
ompatible with the time-independen
e of the integral I (apart from theexoti
 
ase k = �1, _a2 = 1). And vi
e versa: The previously often employedassumption that embeddings would have to be symmetri
 implied a 
uspat the brane and a 
orresponding violation of the Friedmann equation onthe brane. Observation of the Hubble �ow thus might have had observable
onsequen
es on brane 
osmology, see [29, 30℄ for a dis
ussion of this, butin the present embedding s
enarios the Hubble �ow 
annot rule out branes
enarios.In the sequel we will 
hoose the sign of x? in the dire
tion of in
reasings
ale fa
tor: a0(0; t) > 0: (26)The possibility of a dire
t embedding of Friedmann 
osmology is a 
on-sequen
e of the fa
t that the evolution of the ba
kground geometry (10)and the sour
e terms %, p are supposed to depend only on t and x?. Thisimplies the possibility to de
ouple the brane and the bulk 
ontributions inthe Einstein equation for the ba
kground metri
, and in this 
ase deviationsfrom Friedmann�Robertson�Walker 
osmology would only show up in spe-
i�
 ~x-dependent e�e
ts like the evolution of 
osmologi
al perturbations andstru
ture formation.
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ase � = 3 we �nd from the se
ond equationI = � _a2(0; t) � a02(x?; t) + k� a2(x?; t);and from the equation for n(x?; t), the solutions for the metri
 
omponentso� the brane in terms of the metri
 on the brane (with the sign 
onventionfrom (26)):a2(x?; t) = a2(0; t) + � _a2(0; t) + k�x?2 + 2p( _a2(0; t) + k) a2(0; t) � Ix?;(27)n(x?; t) = "a(0; t) + �a(0; t)x?2 + a(0; t)x? a(0; t)�a(0; t) + _a2(0; t) + kp( _a2(0; t) + k) a2(0; t) � I #� ha2(0; t) + � _a2(0; t) + k�x?2 + 2p( _a2(0; t) + k) a2(0; t) � Ix?i�1=2 :(28)This embedding of Friedmann 
osmology on the brane be
omes parti
-ularly simple for I = 0:a(x?; t) = a(0; t) +p _a2(0; t) + kx?; (29)n(x?; t) = 1 + �a(0; t)p _a2(0; t) + kx? : (30)3.2. Radiation dominated spatially �at Universe in the DGP modelFor early Universe 
osmology spatial 
urvature and the 
osmologi
al 
on-stant are negligible 
ompared to the radiation dominated matter density.The energy density and s
ale fa
tor on the brane evolve in the standardway %(t) = 3m234t2 ;a(0; t) = Cpt; (31)and the metri
 o� the brane is given by [6℄a2(x?; t) = C24t x?2 +pC4 � 4Ix? + C2tand n2(x?; t) = C24t2 �4t2 � x?2�2C2x?2 + 4pC4 � 4Ix?t+ 4C2t2 :
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kThis yields in parti
ular for I = 0:a(x?; t) = C�pt+ x?2pt� ;n(x?; t) = 1� x?2t :There appear 
oordinate singularities on the spa
elike hyper
one x? =�2t. This is presumably a 
onsequen
e of the fa
t that the orthogonalgeodesi
s emerging from the brane (whi
h we used to set up our Gaussiannormal system) do not 
over the full �ve-dimensional spa
etime.3.3. (Dust + �)-dominated Universe in the DGP modelThe evolution of the ba
kground metri
 in a (dust + �)-dominated Uni-verse is readily inferred from energy 
onservation and the Friedmann equa-tion. The energy density in the dust evolves a

ording to%dust = �sinh2�p3�2m3 t� ; (32)and the s
ale fa
tor on the brane isa(0; t) =  sinh(p3�t=2m3)sinh(p3�t0=2m3)! 23 : (33)From subse
tion 3.1 it is 
lear that minimal embeddings 
orrespond toI = 0, and Eqs. (29),(30) yielda(x?; t) =  sinh(p3�t=2m3)sinh(p3�t0=2m3)! 23 "1 +r�3 
oth p3�2m3 t! x?m3# ; (34)n(x?; t) = 1 + �a(0; t)_a(0; t)x?= 1 + p3�2m3 "tanh p3�2m3 t!� 23 
oth p3�2m3 t!#x? : (35)
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lusionsBrane models provide a somewhat exoti
, yet interesting extension of ourparameter spa
e for gravitational theories. We have seen that even standardFriedmann 
osmology on the brane 
an be a

ommodated by brane modelswith Einstein terms both on the brane and in the bulk, thus implying that
osmologi
al tests of these models should 
ome from stru
ture formation,where the DGP model should have problems due to the weakening of gravityat large distan
es.Another matter of 
on
ern for brane models in general are gauge �elds.While it may be mathemati
ally possible to restri
t non-gravitational termsin the a
tion a priori to brane 
ontributions, logi
ally this may not seementirely satisfa
tory. It is relatively easy to limit the penetration depth fors
alars and fermions, but I am not aware of any satisfa
tory me
hanismto 
onstrain the penetration depth of time-dependent gauge �elds (stati
sour
es are no problem, see [31℄).Still, it is of interest to study the properties of these models: Branemodels like the DGP model provide a framework for extensions of the branemodels of string theory to in�nitely large transverse dimensions, thus po-tentially shedding new light on the dimensionality problem in string theory.I would like to thank Marek Biesiada and the organizers of the XXVInternational S
hool of Theoreti
al Physi
s for dis
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