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STANDARD COSMOLOGY IN THEDGP BRANE MODEL�Rainer DikDepartment of Physis and Engineering Physis, University of Saskathewan116 Siene Plae, Saskatoon, SK S7N 5E2, Canada(Reeived Otober 22, 2001)Large extra dimensions provide interesting extensions of our parame-ter spae for gravitational theories. There exist now brane models whihan perfetly reprodue standard four-dimensional Friedmann osmology.These models are not motivated by observations, but they an provide in-teresting new insights and approahes to the dimensionality problem instring theory. I desribe the embedding of standard Friedmann osmol-ogy in the DGP model, and in partiular the realization of our urrent(dust + �)-dominated Universe.PACS numbers: 04.50.+h, 98.80.Cq, 98.80.Hw1. IntrodutionIn reent years large extra dimensions whih an only be probed bygravitons and eventually non-standard matter have attrated a lot of atten-tion. These models usually yield the orret Newtonian (1=r)-potential atlarge distanes beause the gravitational �eld is quenhed on submillimetertransverse sales. This quenhing appears either due to �nite extension ofthe transverse dimensions [1℄ or due to submillimeter transverse urvaturesales indued by negative osmologial onstants1 [2�5℄. A ommon featureof both of these types of models and also of the old Kaluza�Klein type mod-els is the predition of deviations from four-dimensional Einstein gravity atshort distanes. If the transverse length sale is not too small this impliesthe possibility to generate bulk gravitons in aelerators [8℄ or stars [9�13℄.In this regard the reent model of Dvali, Gabadadze and Porrati (DGP)[14,15℄ is very di�erent: It predits that four-dimensional Einstein gravity is� Presented at the XXV International Shool of Theoretial Physis �Partiles andAstrophysis � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001.1 Please onsult e.g. [6, 7℄ for muh more extensive lists of referenes.(3669)



3670 R. Dika short-distane phenomenon with deviations showing up at large distanes.The transition between four- and higher-dimensional gravitational potentialsin the DGP model arises as a onsequene of the presene of both brane andbulk Einstein terms in the ation.Furthermore, it was observed in [6℄ that the DGP model allows for anembedding of standard Friedmann osmology in the sense that the osmo-logial evolution of the bakground metri on the brane an entirely bedesribed by the standard Friedmann equation plus energy onservation onthe brane. This was later generalized to arbitrary number of transversedimensions in [19℄.In Se. 3 I review the standard embedding of Friedmann osmology foundin [6℄, and desribe in partiular the realization of a (dust + �)-dominatedUniverse in this framework.2. The DGP modelThe ation of the DGP model readsS = m342 Z dtZ d3~xZ dx?p�gR+ Z dtZ d3~x �m232 p�gR(d�1) �m34p�g K + L�����x?=0; (1)where Gaussian normal oordinates are employed:ds2 = g��dx�dx� + (dx?)2: (2)The transverse oordinate jx?j is a distane along orthogonal geodesis tothe brane.The (3 + 1)-dimensional submanifold x? = 0 is usually denoted as a3-brane, and L ontains the matter degrees of freedom on this brane. Ex-trinsi urvature e�ets have been taken into aount through a Gibbons�Hawking term [20�23℄ (whih requires averaging over the two sides of thebrane [6℄), and m4 and m3 are redued Plank masses in �ve and four di-mensions, respetively.The ation (1) yields Einstein equationsm34�RMN � 12gMNR�+m23gM�gN� �R(d�1)�� � 12g��R(d�1)� Æ(x?)= gM�gN�T��Æ(x?); (3)orresponding to mathing onditions



Standard Cosmology in the DGP Brane Model 3671lim"!+0 [K�� ℄x?="x?=�" = 1m34 �T�� � 1d� 1g��g��T�������x?=0� m23m34 �R(d�1)�� � 12(d � 1)g��g��R(d�1)�� �����x?=0 (4)for the extrinsi urvature of the brane.The use of Gaussian normal oordinates (2) implies that we an imposea harmoni gauge ondition only on the longitudinal oordinates x�:��h�� + �?h?� = 12�� (h�� + h??) ; (5)but this is su�ient to get a deoupled equation for the gravitational poten-tial of a stati mass distribution:The transverse equations in the gauge (5)R?? �R�� = 12���� �h�� � h??�+ �?��h�? = 0;R?� = 12 �����h�? � �K�Kh?��+ 14���? (h?? � h��) = 0an be solved by h?� = 0, h?? = h��, and the remaining equations takethe form m34(���� + �2?)h�� +m23Æ(x?) (����h�� � ����h��)= �2Æ(x?)�T�� � 1d� 1������T��� :This yields the equation for the gravitational potential of a mass density%(~r) = MÆ(~r) onM3;1:m34(� + �2?)U(~r; x?) +m23Æ(x?)�U(~r; x?) = 23MÆ(~r)Æ(x?) : (6)The resulting potential on the brane is [6, 14℄U(~r) = � M6�m23r �os�2m34m23 r�� 2� os�2m34m23 r�Si�2m34m23 r�+2� sin�2m34m23 r� i�2m34m23 r�� ; (7)with the sine and osine integralsSi(x) = xZ0 d� sin �� ;i(x) = � 1Zx d� os �� :



3672 R. DikThe DGP model thus predits a transition sale`DGP = m232m34 (8)between four-dimensional behavior and �ve-dimensional behavior of thegravitational potential:r � `DGP : U(~r) = � M6�m23r �1 +� � 2�� r`DGP+ r`DGP ln� r`DGP�+ O� r2`2DGP�� ;r � `DGP : U(~r) = � M6�2m34r2 �1� 2`2DGPr2 +O�`4DGPr4 �� : ' 0:577 is Euler's onstant.If we would use the usual value of the redued Plank mass for m3, thenthe small r potential would be stronger than the genuine four-dimensionalpotential by a fator 43 beause the oupling of the masses on the brane tothe four-dimensional Rii tensor is inreased by this fator. This fator43 is in agreement with the tensorial struture of the graviton propagatorreported in [14℄. Therefore the four-dimensional redued Plank mass isslightly larger in the DGP model than in ordinary Einstein gravity:m3 = (6�GN;3)�1=2 ' 2:8� 1018GeV: (9)The potential is displayed in Fig. 1.The urrent limit on deviations from Einstein gravity at large distanesis still set by [16℄, see also [17, 18℄.The limit `DGP > 1014m would translate with (8),(9) into a bulk Plankmass m4 < 200GeV. This may seem surprisingly low, but reall from (7)that the relevant graviton oupling sale at distanes well below `DGP isthe large Plank mass m3 on the brane, and lower m4 means larger `DGP,making it even harder to detet any deviations from Einstein gravity.It is ertainly easy to onstrain `DGP to supergalati sales, beausethe DGP model predits a weakening of gravity at large distanes, thuspotentially inreasing the need for dark matter.However, interest in this model does not arise from the hope that onemight detet any orresponding e�ets at galati or not too large super-galati sales: The interest in the model results from the observation thatit provides a simple, yet surprising mehanism to aommodate four-dimen-sional gravity in a model with in�nitely large extra dimensions.
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Fig. 1. The dotted line is the gravitational potential in the DGP model as a funtionof x = r=`DGP. The horizontal axis overs the region 0 � x � 4. The vertialunits orrespond to M=(12m34). The dashed line is the ordinary three-dimensionalNewton potential in these units, and the solid line is the orresponding potentialin four spatial dimensions.3. Standard osmology in the DGP modelFrom the fat that the DGP model predits deviations only at large dis-tanes one might hope that it ould be ruled out from osmologial observa-tions, but we will see that it an aount for standard Friedmann osmologyat any distane sale on the brane:Brane osmology usually starts from the line element (with xi � xi,r2 � xixi)ds2 = �n2(x?; t)dt2+a2(x?; t)�Æij + k xixj1� kr2� dxidxj + b2(x?; t)dx?2 : (10)This ansatz implies a brane osmologial priniple in that it assumes thatevery hypersurfae x? = onst. is a Robertson�Walker spaetime with os-mologial time T jx? = R jn(x?; t)jdt.



3674 R. DikBuilding on the results of [25,26℄, the osmologial evolution equations ofa 3-brane in a �ve-dimensional bulk following from (3) and (4) were presentedin [27, 28℄.Here I will follow [6℄ and give the results for a brane of dimension � +1.The Einstein tensors for the metri (10) in Gaussian normal oordinates(b2 = 1) and in d = � + 1 spatial dimensions areon the hypersurfaes x? = onst.:G(�)00 = 12�(� � 1)n2� _a2n2a2 + ka2� (11)G(�)ij = (��1)� _n _an3a� �an2a� gij� 12(��1)(��2)� _a2n2a2+ ka2� gij ; (12)and in the bulk:G00 = 12�(� � 1)n2 _a2n2a2 � a02a2 + ka2!� �n2a00a ; (13)Gij = 12(� � 1)(� � 2) a02a2 � _a2n2a2 � ka2! gij+(� � 1)�a00a + n0a0na � �an2a + _n _an3a� gij + n00n gij ; (14)G0? = ��n0n _aa � _a0a � ; (15)G?? = 12�(� � 1) a02a2 � _a2n2a2 � ka2!+ ��n0a0na + _n _an3a � �an2a� : (16)The mathing onditions (4) for an ideal �uid on the braneT00 = %n2 ; Tij = pgijreadlim"!+0 [�?n℄x?="x?=�" = n�m��+1 �(� � 1)%+ �p� ����x?=0+m��1�m��+1 (��1)n� �an2a� _a22n2a2� _n _an3a� k2a2� ����x?=0;(17)lim"!+0 [�?a℄x?="x?=�" = m��1�2m��+1 (� � 1)� _a2n2a + ka�����x?=0 � %a�m��+1 ����x?=0 :(18)



Standard Cosmology in the DGP Brane Model 3675This orresponds to e�etive gravitational ontributions to the pressure andenergy density on the brane:%G = �12�(� � 1)m��1� � _a2n2a2 + ka2� ;pG = (� � 1)m��1� � �an2a � _n _an3a�+ 12(� � 1)(� � 2)m��1� � _a2n2a2 + ka2� :Energy onservation on the brane follows from the absene of transversemomentum, T0? = 0. With (15) this impliesn0n = _a0_a (19)and in partiular lim"!+0�n0n �x?="x?=�" = lim"!+0 � _a0_a �x?="x?=�" :Insertion of (17),(18) into this equation yields the sought for onservationequation _%a���x?=0 = ��(%+ p) _a���x?=0 : (20)Insertion of (19) into (13) and (16) for x? 6= 0 yields a �-dimensionalversion of the integral of Binétruy et al. [26℄:2�n2a0a�G00 = ��x?� _a2n2a��1 � a02a��1 + ka��1� = 0 ;2� _aa�G?? = � ��t� _a2n2a��1 � a02a��1 + ka��1� = 0 ;i.e. I+ = � _a2n2 � a02 + k� a��1����x?>0 (21)and I� = � _a2n2 � a02 + k� a��1����x?<0 (22)are two onstants, with I+ = I� iflim"!+0a0���x?=" = � lim"!+0 a0���x?=�" :



3676 R. DikWe have not yet taken into aount Gij = 0 in the bulk. However,Eq. (19) implies �?(n= _a) = 0, and thereforen00n = _a00_a :This, the bulk equations G00 = G?? = 0, and the onstany of I� implythat the bulk equation Gij = 0 is already satis�ed and does not provide anynew information.We an now simplify the previous equations by further restriting ourGaussian normal oordinates through the gaugen(0; t) = 1 (23)by simply performing the transformationt ) tFRW = tZ dt0 n(0; t0)of the time oordinate. This gauge is onvenient beause it gives the usualosmologial time on the brane. Heneforth, this gauge will be adopted, butthe index FRW will be omitted.Eqs. (19),(23) imply that our basi dynamial variable is a(x?; t), withn(x?; t) given by n(x?; t) = _a(x?; t)_a(0; t) :The basi set of osmologial equations in the present setting (without a os-mologial onstant in the bulk) are thus Eqs. (18),(20)�(22), whih have tobe amended with dispersion relations (or orresponding evolution equations)for the ideal �uid omponents on the brane:lim"!+0 [�?a℄x?="x?=�" (t) = m��1�2m��+1 (� � 1) _a2(0; t) + ka(0; t) � %(t)a(0; t)�m��+1 ;I+ = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t)���x?>0 ;I� = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t)���x?<0 ;_%(t)a(0; t) = ��(%(t) + p(t)) _a(0; t);p(t) = p(%(t)) ;n(x?; t) = _a(x?; t)_a(0; t) :



Standard Cosmology in the DGP Brane Model 3677Our primary onern with regard to observational onsequenes is theevolution of the sale fator a(0; t) on the brane, and we an use the inte-grals I� to eliminate the normal derivatives a0(x? ! �0; t) from the braneanalogue of the Friedmann equation:�p _a2(0; t) + k � I+a1��(0; t)�p _a2(0; t) + k � I�a1��(0; t)= m��1�2m��+1 (� � 1) _a2(0; t) + ka(0; t) � %(t)a(0; t)�m��+1 : (24)If this equation is solved for a(0; t) by using the dispersion relation andenergy onservation on the brane, then a(x?; t) an be determined in thebulk from the onstany of I�.There must be at least one minus sign on the left hand side of (24) ifthe right hand side is negative, but the dynamis of the problem does notrequire symmetry aross the brane. The onstants I� must be onsidered asinitial onditions, and if e.g. I+ 6= I�, then there annot be any symmetryaross the brane.If m� 6= 0 and the normal derivatives on the brane have the same sign:m�a0(x? ! +0; t)a0(x? ! �0; t) > 0 ; (25)then the osmology of our brane approximates ordinary Friedmann�Robertson�Walker osmology during those epohs whenI� � � _a2(0; t) + k� a��1(0; t) :In partiular, this applies to late epohs in expanding open or �at branes(k 6= 1). 3.1. The embedding of standard Friedmann osmologyStandard osmology may be realized in the DGP model in an even morediret way:If (25) holds and I+ = I�, then (24) redues entirely to the ordinaryFriedmann equation for a (� + 1)-dimensional spaetime [6℄. This embed-ding of standard Friedmann osmology is then given by the following set ofosmologial evolution equations:



3678 R. Dik_a2(0; t) + ka2(0; t) = 2%(t)�(� � 1)m��1� ;I = � _a2(0; t)� a02(x?; t) + k� a��1(x?; t) ;_%(t)a(0; t) = ��(%(t) + p(t)) _a(0; t) ;p(t) = p(%(t));n(x?; t) = _a(x?; t)_a(0; t) :The evolution of the bakground geometry of the observable Universeaording to the Friedmann equation an thus be embedded in the DGPmodel, with the behavior of a(x?; t) o� the brane determined solely by theintegral I and the boundary ondition a(0; t) from the Friedmann equation.This embedding will be asymmetri in all realisti ases, beause therequirement that the Friedmann equation holds on the brane is equivalentto the smoothness onditionlim"!+0 �?a("; t) = lim"!+0 �?a(�"; t) :This ould yield a symmetri embedding only for a0(0; t) = 0, but this isinompatible with the time-independene of the integral I (apart from theexoti ase k = �1, _a2 = 1). And vie versa: The previously often employedassumption that embeddings would have to be symmetri implied a uspat the brane and a orresponding violation of the Friedmann equation onthe brane. Observation of the Hubble �ow thus might have had observableonsequenes on brane osmology, see [29, 30℄ for a disussion of this, butin the present embedding senarios the Hubble �ow annot rule out branesenarios.In the sequel we will hoose the sign of x? in the diretion of inreasingsale fator: a0(0; t) > 0: (26)The possibility of a diret embedding of Friedmann osmology is a on-sequene of the fat that the evolution of the bakground geometry (10)and the soure terms %, p are supposed to depend only on t and x?. Thisimplies the possibility to deouple the brane and the bulk ontributions inthe Einstein equation for the bakground metri, and in this ase deviationsfrom Friedmann�Robertson�Walker osmology would only show up in spe-i� ~x-dependent e�ets like the evolution of osmologial perturbations andstruture formation.



Standard Cosmology in the DGP Brane Model 3679In the relevant ase � = 3 we �nd from the seond equationI = � _a2(0; t) � a02(x?; t) + k� a2(x?; t);and from the equation for n(x?; t), the solutions for the metri omponentso� the brane in terms of the metri on the brane (with the sign onventionfrom (26)):a2(x?; t) = a2(0; t) + � _a2(0; t) + k�x?2 + 2p( _a2(0; t) + k) a2(0; t) � Ix?;(27)n(x?; t) = "a(0; t) + �a(0; t)x?2 + a(0; t)x? a(0; t)�a(0; t) + _a2(0; t) + kp( _a2(0; t) + k) a2(0; t) � I #� ha2(0; t) + � _a2(0; t) + k�x?2 + 2p( _a2(0; t) + k) a2(0; t) � Ix?i�1=2 :(28)This embedding of Friedmann osmology on the brane beomes parti-ularly simple for I = 0:a(x?; t) = a(0; t) +p _a2(0; t) + kx?; (29)n(x?; t) = 1 + �a(0; t)p _a2(0; t) + kx? : (30)3.2. Radiation dominated spatially �at Universe in the DGP modelFor early Universe osmology spatial urvature and the osmologial on-stant are negligible ompared to the radiation dominated matter density.The energy density and sale fator on the brane evolve in the standardway %(t) = 3m234t2 ;a(0; t) = Cpt; (31)and the metri o� the brane is given by [6℄a2(x?; t) = C24t x?2 +pC4 � 4Ix? + C2tand n2(x?; t) = C24t2 �4t2 � x?2�2C2x?2 + 4pC4 � 4Ix?t+ 4C2t2 :



3680 R. DikThis yields in partiular for I = 0:a(x?; t) = C�pt+ x?2pt� ;n(x?; t) = 1� x?2t :There appear oordinate singularities on the spaelike hyperone x? =�2t. This is presumably a onsequene of the fat that the orthogonalgeodesis emerging from the brane (whih we used to set up our Gaussiannormal system) do not over the full �ve-dimensional spaetime.3.3. (Dust + �)-dominated Universe in the DGP modelThe evolution of the bakground metri in a (dust + �)-dominated Uni-verse is readily inferred from energy onservation and the Friedmann equa-tion. The energy density in the dust evolves aording to%dust = �sinh2�p3�2m3 t� ; (32)and the sale fator on the brane isa(0; t) =  sinh(p3�t=2m3)sinh(p3�t0=2m3)! 23 : (33)From subsetion 3.1 it is lear that minimal embeddings orrespond toI = 0, and Eqs. (29),(30) yielda(x?; t) =  sinh(p3�t=2m3)sinh(p3�t0=2m3)! 23 "1 +r�3 oth p3�2m3 t! x?m3# ; (34)n(x?; t) = 1 + �a(0; t)_a(0; t)x?= 1 + p3�2m3 "tanh p3�2m3 t!� 23 oth p3�2m3 t!#x? : (35)



Standard Cosmology in the DGP Brane Model 36814. ConlusionsBrane models provide a somewhat exoti, yet interesting extension of ourparameter spae for gravitational theories. We have seen that even standardFriedmann osmology on the brane an be aommodated by brane modelswith Einstein terms both on the brane and in the bulk, thus implying thatosmologial tests of these models should ome from struture formation,where the DGP model should have problems due to the weakening of gravityat large distanes.Another matter of onern for brane models in general are gauge �elds.While it may be mathematially possible to restrit non-gravitational termsin the ation a priori to brane ontributions, logially this may not seementirely satisfatory. It is relatively easy to limit the penetration depth forsalars and fermions, but I am not aware of any satisfatory mehanismto onstrain the penetration depth of time-dependent gauge �elds (statisoures are no problem, see [31℄).Still, it is of interest to study the properties of these models: Branemodels like the DGP model provide a framework for extensions of the branemodels of string theory to in�nitely large transverse dimensions, thus po-tentially shedding new light on the dimensionality problem in string theory.I would like to thank Marek Biesiada and the organizers of the XXVInternational Shool of Theoretial Physis for disussions and their verykind hospitality. This work was supported in part by NSERC Canada.REFERENCES[1℄ N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B429, 263 (1998);Phys. Rev. D59, 086004 (1999).[2℄ L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).[3℄ W. Mük, K. S. Viswanathan, I. V. Volovih, Phys. Rev. D62, 105019 (2000).[4℄ R. Gregory, V. A. Rubakov, S. M. Sibiryakov, Class. Quantum Grav. 17, 4437(2000).[5℄ I. Ya. Aref'eva, M. G. Ivanov, W. Mük, K. S. Viswanathan, I. V. Volovih,Nul. Phys. B590, 273 (2000).[6℄ R. Dik, Class. Quantum Grav. 18, R1 (2001).[7℄ S. Förste, hep-th/0110055.[8℄ E. A. Mirabelli, M. Perelstein, M. E. Peskin, Phys. Rev. Lett. 82, 2236 (1999).[9℄ S. Cullen, M. Perelstein, Phys. Rev. Lett. 83, 268 (1999).[10℄ V. Barger, T. Han, C. Kao, R. J. Zhang, Phys. Lett. B461, 34 (1999).
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