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We study the implications of large neutrino mixings for grand unified
theories based on the seesaw mechanism. In SU(5) GUTs large mixings can
be accommodated by means of U(1)r flavour symmetries. In these models
the heavy Majorana neutrinos are essentially decoupled from low energy
neutrino physics. On the contrary in SO(10) GUTs large neutrino mixings
severely constrain the mass spectrum of the heavy Majorana neutrinos.
This leads to predictions for a variety of observables in neutrino physics as
well as for the baryon asymmetry.

PACS numbers: 98.80.Cq, 12.10.Dm, 11.30.Pb,13.35.Hb

1. Status of neutrino mixing

Recent results from the Sudbury Neutrino Observatory [1] and from the
SuperKamiokande experiment [2] provide further evidence for neutrino os-
cillations as the solution of the solar neutrino problem. Neutrino oscillations
can also account for the atmospheric neutrino anomaly [3,4]. It is remarkable
that a consistent picture can be obtained with just three neutrinos, v, v,
and v;, undergoing ‘nearest neighbour’ oscillations, v, <+ v, and v, < v;,.

For massive neutrinos a mixing matrix U appears in the leptonic charged

current,
g

Lo =
CC \/5

where e, and v; are mass eigenstates. In the case of three neutrinos, one for
each generation, U is a unitary matrix.

Zéa’)’u(l — VB)Ua,iVi WM_ + ..., (1)

a,l
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The experimental results on the v, deficit in the solar neutrino flux favour
the LMA or LOW solutions [5] of the MSW conversion with large mixing
angle. A large mixing also fits the atmospheric neutrino oscillations. As
a result, the leptonic mixing matrix U,; appears to be very different from
the familiar CKM quark mixing matrix V;. The emerging pattern is rather
simple [6],

x kO
U= x % % . (2)
x k%

Here the ‘*x’ denotes matrix elements whose value is consistent with the range
0.5...0.8, whereas for the matrix element ‘¢’ only an upper bound exits,
|Ues| < 0.16. The neutrino masses may be hierarchical or quasi-degenerate.
Note, however, that a possible hierarchy has to be much weaker than the
known mass hierarchy of quarks and charged leptons.

Several interesting phenomenological schemes have been suggested, such
as ‘bi-maximal’ or ‘democratic’ mixing, which describe the pattern (2) rather
well |7]. Is is unclear, however, how these schemes are related to a more fun-
damental theory. We shall therefore focus on the question how large neutrino
mixings can be obtained in a grand unified theory based on the gauge groups
SU(5) or SO(10). In both cases we shall rely on the seesaw mechanism which
naturally explains the smallness of light Majorana neutrino masses m, by
the largeness of right-handed neutrino masses M [§],

1

my &~ —mp Mmg, (3)
where mp is the Dirac neutrino mass matrix. In unified theories mp is
related to the quark and charged lepton mass matrices. Since they have a
large hierarchy, the almost non-hierarchical structure of the leptonic mixing
matrix is very surprising and requires some explanation. In the following we
shall discuss two qualitatively different examples based on the GUT groups
SU(5) and SO(10), respectively, which illustrate present attempts to solve
the puzzle of the large neutrino mixings.

2. Models with SU(5)

In the simplest GUT based on the gauge group SU(5) [9] quarks and
leptons are grouped into the multiplets 10 = (qr,, ur®, er®), 5* = (dr°, 1)
and 1 = vg. Hence, unlike the gauge fields, quarks and leptons are not
unified in a single irreducible representation. In particular, the right-handed
neutrinos are gauge singlets and can therefore have Majorana masses not
generated by spontaneous symmetry breaking. In addition one has three
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Yukawa interactions, which couple the fermions to the Higgs fields Hy(5)
and Hy(5%),

L= hm'jl()ileHl (5) +hdij5*1'10jH2(5*) +huij5*i1jH1 (5) +Mijlilj . (4)

The mass matrices of up-quarks, down-quarks, charged leptons and the Dirac
neutrino mass matrix are given by m, = hyv1, mg = hqve, me = my and
mp = h,vi, respectively, with vy = (H), and vy = (H),. The Majorana
masses M are independent of the Higgs mechanism and can therefore be
much larger than the electroweak scale v.

An attractive framework to explain the observed mass hierarchies of
quarks and charged leptons is the Froggatt—Nielsen mechanism [10] based
on a spontaneously broken U(1)r generation symmetry. The Yukawa cou-
plings are assumed to arise from non-renormalizable interactions after a
gauge singlet field @ acquires a vacuum expectation value,

(D) Qi+Q;
Here g;; are couplings O(1) and @; are the U(1) charges of the various
fermions, with Qg = —1. The interaction scale A is usually chosen to be

very large, A > AguT.

The symmetry group SU(5)xU(1)r has been considered by a number of
authors. Particularly interesting is the case with a ‘lopsided’ family struc-
ture where the chiral U(1)p charges are different for the 5*-plets and the
10-plets of the same family [11-13]. Note, that such lopsided charge as-
signments are not consistent with the embedding into a higher-dimensional
gauge group, like SO(10)xU(1)p or Eg x U(1)r. An example of phenomeno-
logically allowed lopsided charges @); is given in Table I.

TABLE 1
Lopsided U(1)r charges of SU(5) multiplets. From [14].

Y; | 10g 102 109 5% 5% 57 13 12 14
Q; 0 1 2 a a a+1 D c d

This charge assignment determines the structure of the Yukawa matrices,
e.g.,

he = h’d ~ 62 £ £ ) (6)
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where the parameter € = (@) /A controls the flavour mixing, and coefficients
O(1) are unknown. The corresponding mass hierarchies for up-quarks, down-
quarks and charged leptons are

My :me:my ~ 1:e2: e, (7)

mb:ms:md:mT:mu:mezl:e:eg. (8)

The differences between the observed down-quark mass hierarchy and the
charged lepton mass hierarchy can be accounted for by introducing addi-
tional Higgs fields [15]. From a fit to the running quark and lepton masses
at the GUT scale one obtains for the flavour mixing parameter £ ~ 0.06.
The light neutrino mass matrix is obtained from the seesaw formula,

2

1 e* e ¢
my, = —mDMmg ~ g2t e 1 1 1], (9)
e 1 1

Note, that the structure of this matrix is determined by the U(1)r charges of
the 5*-plets only. Tt is independent of the U(1)z charges of the right-handed
neutrinos.

Since all elements of the 2-3 submatrix of (9) are O(1), one naturally
obtains a large v,~v, mixing angle ©,3 [11,12]. At first sight one may
expect that ©19 = O(e), which would correspond to the SMA solution of
the MSW conversion. However, one can also have a large mixing angle @9
if the determinent of the 2-3 submatrix of m, is O(e) [16]. Choosing the
coefficients O(1) randomly, in the spirit of ‘lavour anarchy’ [17], the SMA
and the LMA solutions are about equally probable for ¢ ~ 0.1 [18]. The
corresponding neutrino masses are consistent with mg ~ 5 x 1072 eV and
m3 ~ 5x 1072 eV. We conclude that the neutrino mass matrix (9) naturally
yields a large angle O3, with @15 large or small. In order to have maximal
mixings the coefficients (1) have to obey special relations.

The model can also explain the cosmological baryon asymmetry via lep-
togenesis [19] for an appropriate choice of the parameters in table 1 [14].
The mass of the heaviest Majorana neutrino is

2
Ms ~ g2(a+b) 1_1
my

~ g2t 10" Gev | (10)

where m,, = /mams3 ~ 1072 eV. The choice a = b =0, ¢ = 1, d = 2 yields
the scenario of [20] where B—L is broken at the GUT scale.
For the CP asymmetry in the decays of the heavy neutrinos Ny,

I'(Ny = | Hy) — T'(Ny — I° HY)
I'(Ny — I Hy) + T'(Ny — [ HS)’

(11)

g1 =
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one has in the case My < Mo 3,

—itj\/jillm <hihyihfh;) ~ 3 ke (12)
167 (SR, )11 M 1 16w

£l =
Successful baryogenesis requires a + d = 2. With € ~ 0.1 the corresponding
CP asymmetry is e; ~ 107%. The baryogenesis temperature is then Tp ~
M, ~ e* My ~ 10'0 GeV. The effective neutrino mass which controls the out-
of-equilibrium condition of the decaying heavy Majorana neutrino is given
by my = (mLmD)H/Ml ~ 1072 V.
Thermal leptogenesis leads to the baryon asymmetry [21]
Yy =B "B _ e EL (13)
S G«
where np and s are baryon number and entropy densities, respectively;
g« ~ 100 is the number of degrees of freedom in the plasma of the early
universe and cg = O(1) is the conversion factor from lepton asymmetry to
baryon asymmetry due to sphaleron processes. Washout processes are ac-
counted for by x < 1, which can be computed by solving the full Boltzmann
equations [22,23|. The resulting baryon asymmetry then reads

Y~k 1078, (14)

With k£ ~ 0.1...0.01 this is indeed the correct order of magnitude in accord
with observation, Yz ~ (0.6 — 1) x 1010,

The magnitude for the generated baryon asymmetry depends crucially on
the parameters €1, m1 and M;. In the models with SU(5)xU(1)p symmetry
low energy neutrino physics is essentially decoupled from the heavy Majo-
rana neutrinos and does not constrain the value of M7. Hence, successful
baryogenesis is consistent with the SU(5)xU(1)p symmetry, but it cannot
be considered a generic prediction. This is different in unified theories with
larger gauge groups.

3. Models with SO(10)

The simplest grand unified theory which unifies one generation of quarks
and leptons including the right-handed neutrino in a single irreducible rep-
resentation is based on the gauge group SO(10) [24]. The quark and lep-
ton mass matrices are obtained from the couplings of the fermion multiplet
16 = (q1,, ur®, er® dr I, vr) to the Higgs multiplets H(10), H>(10) and
®(126),

L= huij16i16jH1(10) + hdij16i16jH2(10) + hNij16i16j¢(126) . (15)
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Here we have assumed that the two Higgs doublets of the standard model
are contained in the two! ten-plets H; and Hy, respectively. This yields the
quark mass matrices m,, = hyv1, mq = hqva, with v1 = (H), and vo = (H),,
and the lepton mass matrices

mp = My, Me = My - (16)

Contrary to SU(5) GUTSs, the Dirac neutrino and the up-quark mass matrices
are now related. Note, that all matrices are symmetric. The Majorana mass
matrix M = hy (®) is also generated by spontaneous symmetry breaking
and a priori independent of m, and my.

With mp = m,, the seesaw mass relation becomes

my, ~ —mu%mf. (17)
The large neutrino mixings now appear very puzzling, since the quark mass
matrices are hierarchical and the quark mixings are small. It turns out,
however, that because of the known properties of the up-quark mass matrix
this puzzle can be resolved provided the heavy neutrino masses also obey a
specific hierarchy. This then leads to predictions for a number of observables
in neutrino physics including the cosmological baryon asymmetry. In the
following we shall describe these implications of large neutrino mixings in
SO(10) GUTs following Ref. [27]. The role of the heavy neutrino mass
hierarchy for the light neutrino mixings has previously been discussed in
different contexts [25].
From the phenomenology of weak decays we know that the quark matri-
ces have approximately the form [28,29],

0 g3 0
Mmugox | e3¢ pe? n§2 . (18)
0 ne? e

Here € < 1 is the parameter which determines the flavour mixing, and

p=lple’, n=]|nle”, (19)

are complex parameters O(1). We have chosen a ‘hierarchical’ basis, where
off-diagonal matrix elements are small compared to the product of the cor-
responding eigenvalues, |m;;|?> < O(|m;m;|). In contrast to the usual as-
sumption of Hermitian mass matrices [28,29], SO(10) invariance dictates
the matrices to be symmetric. All parameters may take different values for

! Note, that this is unavoidable in models with SO(10) breaking by orbifold compact-
ification [26].
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up- and down-quarks. Typical choices for ¢ are ¢, = 0.07, ¢4 = 0.21 [29].
The agreement with data can be improved by adding in the 1-3 element
a term O(e*) [30, 31] which, however, is not important for the following
analysis. Data also imply one product of phases to be ‘maximal’, i.e.,
A=y —ay — g+ ag~m/2

We do not know the structure of the Majorana mass matrix M = hy ().
However, in models with family symmetries it should be similar to the quark
mass matrices, i.e., the structure should be independent of the Higgs field.
In this case, one expects

0 Mo 0
M= Mo My Mo , (20)
0 M3 M3

with Mo < Moy ~ Moy < Mss. M is diagonalized by a unitary matrix,
UM MUWN* = diag(M,, My, M3). Using the seesaw formula one can now
evaluate the light neutrino mass matrix. Since the choice of the Majorana
matrix my fixes a basis for the right-handed neutrinos the allowed phase
redefinitions of the Dirac mass matrix mp are restricted. In Eq. (18) the
phases of all matrix elements have therefore been kept.

The v,~v, mixing angle is known to be large. This leads us to require
my,; = O(1) for i,j = 2,3. It is remarkable that this determines the

hierarchy of the heavy Majorana mass matrix to be?
M12!M22:M33:65284!1. (21)

With M33 ~ M3, M22 = O'64M3, M23 = 664M3 ~ M22 and M12 = €5M3,
one obtains for masses and mixings to order O(e*)

6

My~ -SMy, M~oe'M;), (22)
g
£
U =-Un’ ==, Uy =0E", Uy =o. (23)

Note, that o can always be chosen real whereas ( is in general complex. This
yields for the light neutrino mass matrix

0 ce%i® 0 2
my=— | ee?® —ge?? +2pe!® neid e (24)
0 neid o2it) M;

2 We also note that this result is independent of the zeroes in the mass matrix (18) if
its 1-3 element is smaller than £3, as required by data.
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The complex parameter ¢ does not enter because of the hierarchy. The ma-
trix (24) has the same structure as the mass matrix (9) in the SU(5)xU(1)p
model, except for additional texture zeroes. Since, as required, all elements
of the 2-3 submatrix are O(1), the mixing angle @3 is naturally large. A
large mixing angle @15 can again occur in case of a small determinant of the
2-3 submatrix,

(—o +2pe )V — 2 = 527 = O(e). (25)

Such a condition can be fulfilled without fine tuning if o,p,n = O(1). It
implies relations between the moduli as well as the phases of p and 7. In
the special case of a somewhat smaller mass of the second heavy neutrino,
i.e., |o| < |pl|, the condition (25) becomes

Ql} - /8 = %(QS - Ot), |"7|2 = 2|:0|a (26)

The mass matrix m, can again be diagonalized by a unitary matrix,
UMty UW)* = diag(mi,me,m3). A straightforward calculation yields
(sij = sinOjj, cij = cos O3, & = /(1 + |n|?)),

cl2ei(¢7ﬁ+w77) Suei@)*ﬁﬂ/}*’ﬁ 53236i(¢*ﬁ+1@
U(V) — _023312€Z(¢+/3—1/1+’Y) 023012ez(¢+ﬂ_¢+7) 523el(¢+/3—7/1)
593512€"(7FY) —s93¢12€!(VHY) coze™?
(27)
with the mixing angles,
2| o iTTEE
tan2@23 ~1 | |2 s tan 2@12 ~ 21+ |’f]| S . (28)
—n

Note, that the 1-3 element of the mixing matrix is small, Ul(g) = O(e). The
masses of the light neutrinos are
my ~ —tan® Oy moy ,

~ € e
~ (1—{—|n|2)3/2 cot 12 ™3,

2
v
ma = (1+?) - (29)

This corresponds to the weak hierarchy,

my:mo:mg=c:e:1l, (30)

with m3 ~ m? ~ Am3, = m2 — m? ~ £2. Since € ~ 0.1, this pattern is

consistent with the LMA solution of the solar neutrino problem, but not
with the LOW solution.
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The large v,—v; mixing has been obtained as consequence of the required
very large mass hierarchy (22) of the heavy Majorana neutrinos. The large
Ve, mixing follows from the particular values of parameters O(1). Hence,
one expects two large mixing angles, but single maximal or bi-maximal mix-
ing would require fine tuning. On the other hand, one definite prediction is

the occurrence of exactly one small matrix element, Ul(g) = O(e). Note, that
the obtained pattern of neutrino mixings is independent of the off-diagonal
elements of the mass matrix M. For instance, replacing the texture (20)
by a diagonal matrix, M = diag(M;, M, M3), leads to the same pattern of
neutrino mixings.

In order to calculate various observables in neutrino physics we need the
leptonic mixing matrix

U=uty® (31)

where U(®) is the charged lepton mixing matrix. In our framework we expect
U ~ V@ and also V = VWY@ ~ v for the CKM matrix since
gy < €4- This yields for the leptonic mixing matrix

U~viv®W. (32)
To leading order in the Cabibbo angle A ~ 0.2 we only need the off-diagonal
elements Vl(Qd ) =X = —V2(1d )* Since the matrix myq is complex, the Cabibbo

angle is modified by phases, A = Aexp {i(¢q — aq)}. The resulting leptonic
mixing matrix is indeed of the wanted form (2) with all matrix elements
O(1), except Uss,

Upg = 936" @ PHY) _ Ng03ei(0HF=Y) — O(X,€) ~ 0.1, (33)

which is close to the experimental limit.
Let us now consider the CP violation in neutrino oscillations. Observable
effects are controlled by the Jarlskog parameter J; [32] (€;; = Zi:l €ijk)

Im{UaiUﬁjU;jUEi} = gaﬁgijjl s (34)
for which one finds
Ji = As19¢19¢23553 sin (2(8 — 9 +7) + g — @a) - (35)

In the case of a small mass difference Am?, the CP asymmetry P(v,—v.)
—P(7,, — U.) is proportional to 6 (cf. (25)). Hence, the dependence of J;
on the angle 7y is not surprising.

For large mixing, ¢;; ~ s;; ~ 1/v/2, and in the special case (26) one
obtains from the SO(10) phase relation ¢ —a = ¢, — ay, and ¢, — @y — g +
ag=A~1/2

A T
Ji o5 sin (—5 + 27) . (36)



3716 W. BUCHMULLER

For small 7y this corresponds to maximal CP violation, but without a deeper
understanding of the fermion mass matrices this case is not singled out.
Due to the large neutrino mixing angles, J; is much bigger than the Jarlskog
parameter in the quark sector, J, = O(A®) ~ 1075, which may lead to
observable effects at future neutrino factories [33].

According to the seesaw mechanism neutrinos are Majorana fermions.
This can be directly tested in neutrinoless double -decay. The decay am-
plitude is proportional to the complex mass

(m) = Z —(UU U UT), = —(V Dy, (D)

1 : :
- _ (A2|n|2e2z(¢d*ad+5+¢*w) - 2Aeez(¢d*“d”¢)) m3 . (37)

L+ [nf?

With m3 ~ \/Am2,, ~ 5 x 1072 eV this yields (m) ~ 1072 eV, more than
two orders of magnitude below the present experimental upper bound [34].

Finally, consider again the baryon asymmetry which should eventually
be related to the CP violation in neutrino oscillations and quark mixing.
This possibility has recently been discussed also in other contexts [35, 36].
In the special case® (26) one obtains for the CP asymmetry,

6> (1+ pl)”

1671_6 EEwpE in(¢p, — ay) . (38)

As expected €1 depends only on phases of the up-quark matrix and not on
the combination of up- and down-quark phases A which appears in the CKM
matrix. In addition, the parameter o enters. Hence, the baryon asymmetry
is not completely determined by properties of the quark matrices and the
CP violation in the neutrino sector.

Numerically, with ¢ ~ 0.1 one has e; ~ 1077 | |M;| ~ (¢5/]0|)(1 +
[n[2)0? /g ~ 10° GeV and iy ~ (Inf? + |pl2) /(o1 + [1]?))mg ~ 10~ &V.
The baryon asymmetry is then given by

Yp ~ —k sign(o) sin (¢, — ay) x 1077, (39)

The parameters €1, My and m; are rather similar to those considered in
the previous section. Hence, a solution of the Boltzmann equations can be
expected to yield again a baryon asymmetry in accord with the observation.

% For the discussion of the general case, see Ref. [27].
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4. Conclusions

Large neutrino mixings, together with the known small quark mixings,
have important implications for the structure of GUTs. In SU(5) models this
difference between the lepton and quark sectors can be explained by lopsided
U(1)p family symmetries. In these models the heavy Majorana neutrino
masses are not constrained by low energy physics, i.e., light neutrino masses
and mixings. Successful leptogenesis then depends on the choice of the heavy
neutrino masses and is not a generic prediction of the theory.

In SO(10) models the implications of large neutrino mixings are much
more stringent because of the connection between Dirac neutrino and up-
quark mass matrices. It is remarkable that the requirement of large neutrino
mixings determines the relative magnitude of the heavy Majorana neutrino
masses in terms of the known quark mass hierarchy. This leads to predic-
tions for neutrino mixings and masses, CP violation in neutrino oscillations
and neutrinoless double -decay. The predicted order of magnitude for the
baryon asymmetry is in accord with observation. It would be very interest-
ing to relate directly the CP violation in the quark sector and in neutrino
oscillations to the baryon asymmetry. This, however, will require a deeper
understanding of the quark and lepton mass matrices.

I would like to thank Michael Pliimacher, Daniel Wyler and Tsutomu
Yanagida for an enjoyable collaboration on the topic of this lecture, and I
am grateful to the organisers for the kind hospitality in Ustron.
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