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TRIVIALITY AND VACUUM STABILITY BOUNDSON THE HIGGS BOSON MASSBEYOND THE STANDARD MODEL�Bohdan GrzadkowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: bohdan.grzadkowski�fuw.edu.pland José WudkaDepartment of Physi
s, University of California-RiversideCalifornia 92521-0419, USAe-mail: jose.wudka�u
r.edu(Re
eived O
tober 11, 2001)The triviality and va
uum stability bounds on the Higgs-boson masswere revisited in presen
e of weakly-
oupled new intera
tions parameterizedin a model-independent way by e�e
tive operators of dimension 6. It wasshown that for the s
ale of new physi
s in the region � ' 0:5 � 50 TeVthe Standard Model triviality upper bound remains unmodi�ed whereas itis natural to expe
t that the lower bound derived from the requirement ofva
uum stability is in
reased by 40�60 GeV depending on the s
ale � andstrength of 
oe�
ients of e�e
tive operators. It turns out that if the Higgs-boson mass is 
lose to its lower LEP limit then the s
ale of new physi
sthat follows from the va
uum stability requirement would be de
reaseddramati
ally even for modest values of 
oe�
ients of e�e
tive operatorsimplying new physi
s already at the s
ale of a few TeV.PACS numbers: 14.80.Bn, 14.80.Cp1. Introdu
tionIn spite of a huge experimental e�ort, the Higgs parti
le, the last miss-ing ingredient of the Standard Model (SM) of ele
troweak intera
tions hasnot been dis
overed yet. For a Higgs-boson mass mh <� 115 GeV the mostpromising produ
tion 
hannel has been the radiation o� a Z-boson at LEP2:� Presented by B. Grzadkowski at the XXV International S
hool of Theoreti
al Physi
s�Parti
les and Astrophysi
s � Standard Models and Beyond�, Ustro«, Poland,September 10�16, 2001. (3769)
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tion the LEP data provided a limit [1℄ on theSM Higgs-boson mass: mh > 113:2 GeV. The Higgs parti
le also 
ontributesradiatively to several well measured quantities, this 
an be used to derive anupper bound [2℄ on mh: mh <� 212 GeV at 95 % C.L.. However, one shouldbe aware that both limits are highly model-dependent.There exist other theoreti
al restri
tions of mh based on the so-
alledtriviality and va
uum stability arguments. As it is well known [3℄ the renor-malized �4 theory 
annot 
ontain an intera
tion term (��4) for any non-zeros
alar mass: the theory must be trivial. Within a perturbative approa
h thestatement 
orresponds to the fa
t that for any non-zero s
alar mass (sin
ethe mass is / p� this 
ondition 
orresponds to a non-vanishing initial valuefor the Renormalization Group (RG) evolution of �) there exists a �niteenergy s
ale at whi
h � diverges (the Landau pole). Consequently, only forzero s
alar mass the theory 
an be 
onsistent for all energy s
ales. An anal-ogous e�e
t o

urs in the s
alar se
tor of the SM (modi�ed to some extendby the presen
e of gauge and Yukawa intera
tions). This, however, does notne
essarily implies zero Higgs-boson mass sin
e there is no reason to believethat the SM is valid at arbitrarily high energy s
ale. For example, it is oftenassumed that the SM represents the low energy limit of some underlyingmore fundamental theory whose heavy ex
itations de
ouple at low energy,but be
ome manifest at a s
ale �. Within that s
enario the SM is an e�e
-tive theory valid possibly only at the energy s
ale of the order of the Fermis
ale: G�1=2F ' 300 GeV.If the SM is to be a

urate for energies below � the Landau pole shouldo

ur at s
ale � or above, and this 
ondition gives an (�-dependent) upperbound on mh [4℄. On the other hand, for su�
iently small mh radiative
orre
tions 
an destabilize the ground state. This o

urs if the s
alar self
oupling 
onstant � be
omes negative at some s
ale that 
an be identi�edwith the s
ale of new physi
s �. Alternatively requiring the SM va
uum tobe stable for s
ales below � implies a lower bound on mh [5℄.The 
onsequen
es of the above arguments (triviality and va
uum stabil-ity) are usually dis
ussed assuming SM intera
tions. However, if the s
ale ofnew physi
s is su�
iently low (of the order of a few TeV) one 
ould expe
tthat the non-standard intera
tions would modify the ele
troweak theory atthe lower s
ale and in�uen
e the s
alar potential in su
h a way that theabove bounds on the Higgs-boson mass are 
hanged. The problem deservesa spe
ial attention in the 
ontext of possible Higgs-boson dis
overy [6℄ atLEP2 at the mass mh ' 115 GeV sin
e in this 
ase the SM 
onstraint fromva
uum stability requires � <�O(100) TeV [7℄ (the pre
ise number dependson the top quark mass) with the attra
tive possibility that � is a
tuallymu
h lower.
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omes interesting to determine the manner in whi
h heavyphysi
s with s
ales in the 10 TeV region modify the stability and trivialitybounds on the Higgs-boson mass. In this le
ture we address this question ina model-independent way. We parameterize the heavy physi
s e�e
ts usingan e�e
tive Lagrangian satisfying the SM gauge symmetries. Sin
e LHC,the future proton�proton 
ollider, is expe
ted to be sensitive to s
ales �of the order of a few TeV, the results will be presented for s
ales between0:5 and 50 TeV.The paper is organized as follows. In Se
tion 2, we de�ne the Lagrangianrelevant for our dis
ussion. Se
tion 3 is devoted to the derivation of thetriviality bound in
luding e�e
ts of non-standard intera
tions. In Se
tion 4,we 
al
ulate the e�e
tive potential with one insertion of an e�e
tive operatorand dis
uss its 
onsequen
es for the va
uum stability bounds. Con
ludingremarks are given in Se
tion 5.2. Non-standard intera
tionsOur study of the stability and triviality 
onstraints on the Higgs-bosonmass will be based on the SM Lagrangian modi�ed by the addition of a seriesof e�e
tive operators whose 
oe�
ients parameterize the low-energy e�e
tsof the heavy physi
s [8℄. Assuming that these non-standard e�e
ts de
ou-ple implies [9℄ that the operators appear multiplied by appropriate inversepowers of �. The leading e�e
ts are then generated by operators of mass-dimension 6 (dimension 5 operators ne
essarily violate lepton number [10℄and are asso
iated with new physi
s at very large s
ales; so we 
an safelyignore their e�e
ts). Given our emphasis on Higgs-boson physi
s the e�e
tsof all fermions ex
epting the top-quark 
an be ignored 1. We then haveLtree = �14F i��F i�� � 14B��B�� + jD�j2 � � ��12v2 + j�j2�2+i�q 6Dq + i�t 6Dt+ f ��q ~�t+ h.
.�+Xi �i�2Oi ; (2.1)where � (~� = �i�2��), q and t are the s
alar doublet, third generation left-handed quark doublet and the right-handed top singlet, respe
tively. D, F i��and B�� denote a 
ovariant derivative and SU(2), U(1) �eld strength whose
ouplings we denote by g and g0.The fa
tors �i are unknown 
oe�
ients that parameterize the low-energye�e
ts of the non-standard intera
tions and we have negle
ted 
ontributions/ 1=�4. In addition, for weakly 
oupled theories, the �i, that 
an be gener-ated only through loop e�e
ts, are sub-dominant as they are suppressed by1 We assume that the masses are natural in the te
hni
al sense [11℄ so that e�e
tive
ouplings 
ontaining the Higgs boson and the light fermions are suppressed by powersof the 
orresponding Yukawa 
ouplings.
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al fa
tors � 1=(4�)2 [12℄; hen
e we will 
onsider only those operatorswhi
h 
an be generated at tree-level by the heavy physi
s. Even with all theabove restri
tions there remain 16 operators whi
h involve ex
lusively the�elds in (2.1). Of these only 5 
ontribute dire
tly to the e�e
tive potential,the remaining 11 a�e
t the results only through their RG mixing whi
h,being suppressed by a fa
tor � (v=�)2 are expe
ted to play a sub-dominantrole. In the 
al
ulations below we will in
lude only one of these operators;our results do justify the 
laim that the 
orresponding e�e
ts are small.The following set of operators will be 
onsidered:O� = 13 j�j6 ; O�� = 12 ��j�j2�2 ; O(1)� = j�j2 jD�j2 ;O(3)� = ����yD����2 ; Ot� = j�j2 ��q ~�t+ h.
.� ; O(1)qt = 12 j�qtj2 ; (2.2)where O�, O��, O(1)� , O(3)� , Ot� are the 5 operators 
ontributing to the e�e
-tive potential, while O(1)qt is in
luded to estimate the e�e
ts of RG mixing.Of the �rst �ve operators only O� = 13 j�j6 
ontributes at the tree levelto the s
alar potential:V (tree) = ���2j�j2 + �j�j4 � ��3�2 j�j6 ; (2.3)where we have used the notation: � � �v2=�2.3. Triviality boundIn order to test the high energy behavior of the s
alar potential onehas to derive the RG running equations for �, � and ��. The � fun
tionsfor these parameters are in�uen
ed by all the operators in (2.2) and bythe gauge and Yukawa intera
tions, so the full RG evolution also requiresthe � fun
tion for the 
orresponding 
ouplings. Both for the � fun
tionsand then for the e�e
tive potential we will adopt dimensional regularizationand MS renormalization s
heme. We will restri
t ourselves to the one-loopapproximation keeping SM 
ontributions and terms linear in the e�e
tiveoperators, de�ned by Eq. (2.2). The evolution equations for the running
oupling 
onstants are the following:8�2 d�dt = 12�2 � 3f4 + 6�f2 � 2� h2�� + ��7��� + 8�(1)� + 5�(3)� �i+32 ��� �3g2 + g02�+ g04 + 2g2g02 + 3g48 � ;8�2d�dt = � �6�+ 3f2 � 2� ���� + 2�(1)� + �(3)� �� 34 �3g2 + g02�� ;



Triviality and Va
uum Stability Bounds : : : 37738�2 dfdt = 94f3 + 12� h6�t� � f ���� + 2�(1)� + �(3)� + 3�(1)qt �i�f8 �9g2 + 173 g02� ;8�2 d��dt = 9�� �6�+ f2�+ 12�2 �9��� + 6�(1)� + 5�(3)� �+ 36�t�f3�94(3g2 + g02)���98 h�(1)� (3g4 + 2g2g02 + g04) + �(3)� (g2 + g02)2i ;8�2 d���dt = 2��7��� � �(1)� + �(3)� + 3���f2� � 3�t�f� � ;8�2 d�(1)�dt = 2�0���� + 5�(1)� + �(3)� + 3�(1)� f2� � 3�t�f� 1A ;8�2 d�(3)�dt = 6(�+ f2)�(3)� ;8�2 d�t�dt = �3f(f2 + �)�(1)qt + 34(5f2 � 16�)�t��12f3 �2��� + �(1)� + �(3)� � ;8�2 d�(1)qtdt = 32�(1)qt f2 ; (3.1)where t � log(�=mZ) and � denotes the renormalization s
ale.From this set of equations it is straightforward to obtain the triviality
onstraints on mh as a fun
tion of � requiring that the position of the Lan-dau pole is beyond the s
ale �. There is a 
omment here in order, namely,in a
tual 
al
ulations the position of the Landau pole 
annot be a

uratelydetermined to any �nite order in perturbation theory. Therefore, the trivi-ality bound on mh will be obtained by requiring � and �� to be
ome smallerthan spe
i�ed values (as opposed from requiring an a
tual divergen
e) up tothe s
ale �:�(t) � �max and j�i(t)j � 1:5 for 0 � t < log� �mZ� ; (3.2)where we 
onsidered �max = � and �=2. We have veri�ed that our resultsare quite insensitive to the values 
hosen as upper limits for the �i.In order to solve equations (3.1) we have to spe
ify appropriate bound-ary 
onditions. For the SM parameters these are determined by requiringthat the 
orre
t physi
al parameters (su
h as the Higgs-boson and top-quarkmasses) are obtained at the ele
troweak s
ale. These initial 
onditions should
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orre
t SM ground state is realized, in whi
h the s
alar�eld has the expe
tation value h �'i � v0=p2 = 246=p2 GeV. Althoughwe will dis
uss the e�e
tive potential in more detail later, it will be use-ful to provide here the general 1-loop relation between the SM tree-levelva
uum v and the physi
al ele
troweak va
uum in the theory de�ned byequation (2.1) v0:v0 = v + Æv for Æv � � 14�(0)v2 � �Ve� � V (tree)SM �� � �'p2� ������ �'=v=p2; (3.3)where V (tree)SM is the tree-level SM potential and Ve� is the 1-loop e�e
tivepotential that in
ludes e�e
tive operator 
ontributions; �(0) denotes therunning 
oupling 
onstant evaluated at the s
ale � = mZ . Having the va
-uum determined by the above equation, the following low-s
ale relations willbe adopted to �x initial 
onditions at � = mZ for the RG equations for �,� and f .m2h = 2�v20 �1� v204�2 �4��� + �(1)� + �(3)� + 2��� ��+m(1)h ;mt = v0p2 �f + �t� v20�2�+m(1)t ; (3.4)where m(1)h ; m(1)t denote the 1-loop radiative 
orre
tions to the 
orrespond-ing masses. In the 
al
ulations bellow we use the expression for m(1)h ofRef. [7℄. For the top-quark the deviations from the tree-level value aresmaller than the experimental error and so, for simpli
ity we will use theexpression mt = v0f=p2. The initial 
onditions are non-linear fun
tionsof the Higgs-boson mass, and so the solutions to (3.1) will depend on both� and mh.The boundary 
onditions for �i are naturally spe
i�ed at the s
ale � = �sin
e below this s
ale it is appropriate to des
ribe the e�e
ts of the heavyex
itations in terms of the 
oe�
ients �i. A

ording to Ref. [12℄ it is naturalto assume that �ij�=� ' O(1).The triviality bound is obtained by solving equations (3.1) with themixed (de�ned in part at the ele
troweak s
ale mZ and at the new-physi
ss
ale �) boundary 
onditions des
ribed above and requiring that at leastone of the inequalities in Eq. (3.2) is saturated. This provides a relationshipbetween mh and � that we plot in Fig. 1(a) for two values of �max. Inorder to understand qualitatively the 
orre
tions to the triviality bound wehave obtained, it is useful to swit
h o� all �i but ��. Then, as it is seenfrom Eq. (3.1) a Landau pole in the evolution of �(t) 
auses a singularity in
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Fig. 1. The upper (a) (originating from the perturbativity requirement, Eq. (3.2)),and the lower (b) (from the 
ondition of the ele
troweak va
uum stability, Eq. (4.6))bounds on the Higgs-boson mass mh as a fun
tion of the new-physi
s s
ale �. Thelower bounds were obtained for ��(�) < 0 and mt = 175 GeV.evolution of �� at this same energy s
ale. However, as we have just men-tioned it is natural to assume ��j�=� ' 1, it is 
lear that stri
tly speakingit is impossible to satisfy that 
ondition. Nevertheless, sin
e we are usinga perturbation expansion, we must stop the evolution at a s
ale that 
orre-sponds to a large but �nite value �max, therefore, we 
an satisfy ��j�=� ' 1.However, sin
e d log��=dt is positive2, therefore, in the evolution from thes
ale � down, ��(t) de
reases rea
hing typi
ally 10�1 � 10�2 at the s
ale� = mZ . That explains s
reening of the e�e
ts generated by operator O�:even if ��j�=� ' 1 it 
an not grow any larger3. So 
on
luding, the 
orre
-tions to the SM triviality bound from the non-standard physi
s (embeddedin the 
oe�
ients �i) are negligible.2 Here we 
onsider heavy Higgs bosons, therefore, � remains positive in the wholeintegration region, it addition f >� g; g0 what guarantees that d log ��=dt > 0.3 For strongly 
oupled new-physi
s 
orre
tions to this bound see [13℄.
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uum stability boundIn order to investigate the va
uum stru
ture of the e�e
tive theory wewill �rst 
al
ulate the e�e
tive potential:Ve� = �XN 1N !� (N)(0) �'n; (4.1)where � (N)(0) are N -point one-parti
le-irredu
ible Green's fun
tions withzero external momenta and �' is the 
lassi
al s
alar �eld. Adopting theLandau gauge4 we obtained:Ve�( �') = ���2j �'j2 + �j �'j4 � ��j �'j63�2+ 164�2"H2�ln H�2 � 32�+ 3G2�ln G�2 � 32�+ 6W 2�lnW�2 � 56�+3Z2�ln Z�2 � 56�� 12T 2 �ln T�2 � 32�� 4�2�4�ln ��2�2 � 32�#; (4.2)whereH = �(�v2 + 6j �'j2)� h�(�v2 + 6j �'j2)(2��� + �(1)� + �(3)� ) + 5��j �'j2i j �'j2�2 ;G = �(�v2 + 2j �'j2)� ��(�v2 + 2j �'j2)13(3�(1)� + �(3)� ) + ��j �'j2� j �'j2�2 ;W = g22 j �'j20�1 + j �'j2�(1)��2 1A ;Z = g2 + g022 j �'j20�1 + j �'j2(�(1)� + �(3)� )�2 1A ;T = f2j �'j2�1 + 2�t�j �'j2f�2 � ;where g and g0 denote the SU(2) and U(1) running gauge 
oupling 
onstants,respe
tively. The form of the e�e
tive potential is pre
isely the same as4 As it has been noti
ed in Ref. [14℄ the e�e
tive potential (as a sum of o�-shell Greensfun
tions) is gauge dependent. Therefore the bounds on the Higgs-boson mass de-rived from va
uum stability arguments 
an depend on the gauge parameter adoptedin the loop 
al
ulation [15℄. However, sin
e the � fun
tions and the tree-level po-tential V (tree)e� are gauge-independent, a 
onsistent RG improved tree-level e�e
tivepotential is in fa
t gauge independent. For the one-loop SM RG improved e�e
tivepotential, the error 
aused by the gauge dependen
e has been estimated in Ref. [7℄at �mh <� 0:5 GeV.
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uum Stability Bounds : : : 3777the one in the pure SM, the whole e�e
t of the e�e
tive operators 
an beabsorbed in a re-de�nition of the SM quantities H, G, et
.5 It should benoti
ed here that the last term in Eq. (4.2) is a 
onstant that is needed to
onstru
t a s
ale invariant e�e
tive potential, for details see Ref. [17℄. The
onstant term 
hosen here is 
onsistent with the diagrammati
 de�nition ofthe e�e
tive potential Eq. (4.1), whi
h implies Ve�( �' = 0) = 0.Sin
e we will 
onsider values of �' substantially larger then the ele
-troweak s
ale v0, we shall 
hose an appropriate renormalization s
ale � � �'in order to moderate the logarithms that appear in the e�e
tive potential.As in the previous se
tion we shall use the RG running equations to relatethe 
oupling 
onstants renormalized at the high s
ale �' to the low-s
aleparameters v0, mt and mh.Finally, (and unlike the pure �4) the intera
tion of the s
alars with thefermions and gauge bosons, generate a non-trivial s
alar �eld anomalousdimension 
. We, therefore, also in
lude the 
orresponding s
ale dependen
eof �': �'(t) = exp8<:� tZtz 
[�(t0); �(t0); f(t0); �i(t0)℄dt09=; �'(tz) ; (4.3)where 
 = 116�2 �3f2 � 94g2 � 34g02 � � ���� + 2�(1)� + �(3)� �� : (4.4)Hereafter we will 
onsider the RG improved e�e
tive potential Ve�( �'(t)).We note that the RG improved e�e
tive potential given by Eq. (4.2) iss
ale invariant. That is, to one loop and ignoring terms quadrati
 in the �i,Ve� obeys the renormalization group equation:���V (1�loop)e� + Xi �i��i � 
 �'� �'!V (tree)e� = 0 ; (4.5)where V (tree)e� and V (1�loop)e� denote, respe
tively, the tree, Eq. (2.3), and1-loop, Eq. (4.2), 
ontributions to Ve� , and �i are de�ned in (3.1). We notethat terms quadrati
 (and higher) in the �i are asso
iated with 
ontributionsof the order of 1=�4 to the e�e
tive Lagrangian and are sub-dominant.Fig. 2 (a) illustrates the behavior of the e�e
tive potential renormalizedat the s
ale � = �'. Sin
e the minimum at h �'i = v0=p2 is very shallow,5 The same result (in the leading order in �i) for the e�e
tive potential have beenobtained adopting the diagrammati
 approa
h (with one insertion of an e�e
tiveoperator) a

ording to Eq. (4.1) and also using the fun
tional de�nition of the e�e
tivepotential proposed by Ja
kiw [16℄.
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Fig. 2. The e�e
tive potential renormalized at the s
ale � = � (a), the running of� (b) and �� (
) for the parameter sets (1) and (2) de�ned in the text.in order to make it visible we plot the following fun
tion of the e�e
tivepotential: sign(Ve� ) log10[(Ve�=1 TeV4) + 1℄. To show the relevan
e of RGrunning of e�e
tive-potential parameters we also plot in Fig. 2 the evolutionof � (b) and �� (
). The 
urves 
ontained in the �gure 
orrespond to twosets of initial 
onditions (1) and (2) that lead to the Higgs-boson mass andthe new-physi
s s
ale marked in Fig. 1 by ?'s. As it is seen from the �guree�e
ts of the running are substantial, e.g. for the set (2) � 
hanges byalmost 100% while �� by more than 200%. At the ele
troweak s
ale, ��'sstart with positive values, however then, through the evolution they swit
hsigns and eventually rea
h �� = �1. That should illustrate the fa
t that theRG running of the 
oe�
ients �i is 
ru
ial for the stability of the system6.6 Corre
tions to the SM va
uum stability bound that emerge in presen
e of the oper-ator O� has been previously dis
ussed in Ref. [18℄. However, there the authors didnot 
onsider one-loop 
ontributions to the e�e
tive potential that are generated byinsertions of e�e
tive operators. RG running of �� has also been negle
ted.
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uum Stability Bounds : : : 3779The initial 
onditions for the running 
ouplings guarantee that the ele
-troweak va
uum is at h �'i = v0=p2. However, if Ve� at some large valueof the �eld �'high is smaller than Ve�(h �'i) this va
uum be
omes unstable(as there would be a possibility of tunneling7 towards the region of lowerenergy). This will o

ur when the Higgs-boson mass is su�
iently small(
orresponding to a small value of �(0)), and will provide a lower bound onmh. In this 
ase �'high de�nes a s
ale at whi
h the theory breaks down, sothat �'high � �. In a
tual 
al
ulations we took �'high = 0:75� sin
e (2.1) isvalid for s
ales below �, hen
e the stability bound on mh is determined bythe 
onditionVe�( �' = 0:75�)j�=0:75� = Ve� � �' = v0p2������=v0=p2 (4.6)where, as mentioned previously, we have 
hosen the renormalization s
ale �to tame the e�e
ts of the logarithmi
 
ontributions to Ve�( �'). The resultingbound on mh as a fun
tion of � for various 
hoi
es of �i(�) is plotted inFig. 1(b).In obtaining the stability bounds of Fig. 1(b) we assumed all 
ouplings�i had the same magnitude at the high s
ale �, and �� < 0 (the results areinsensitive to the sign of the other �i ex
ept �t�). For other values of �i wefound that when � > 300 GeV there is a 
urve in the �� � �t� plane belowwhi
h either �' = 174 GeV is not a minimum or, if it is, then there is anotherdeeper minimum at a s
ale 174 GeV < �' < 0:75�; we 
an roughly say thatthis unphysi
al s
enario 
an be avoided if �� <� � 0:1 8.There is an important remark here in order. If the Higgs boson mass,as suggested by LEP data, is indeed [6℄ ' 115 GeV, then the SM va
uumstability bound implies � <�O(100) TeV. As it is seen in Fig. 1(b) presen
eof e�e
tive operators 
ould dramati
ally 
hange the SM pi
ture. Even forthe modest values of the 
oe�
ient j�ij = 0:25; 0:50; 0:60 the upper boundon � is signi�
antly redu
ed to � ' 20; 4; 1 TeV, respe
tively!Other limits on the s
ale � 
ould be obtained form the so 
alled pre-
ision observables. The most elegant approa
h is to 
al
ulate the obliqueparameters S, T and U [20℄ within the e�e
tive theory9 and then �t their7 The tunneling time will not be 
al
ulated here, it 
an be obtained using the pro
eduredes
ribed in [19℄; we assume that it is smaller than the age of the Universe.8 We do not expe
t this result to be modi�ed signi�
antly when terms of order 1=�4are in
luded: a 
ontribution � �(8) �'8=�4 
an balan
e the destabilizing e�e
t of O�only when �' � � whi
h again leads to � � 300 GeV.9 It should be noti
ed that among operators 
onsidered here onlyO(3)� 
ontributes to theoblique parameters (T ) and, therefore, is 
onstrained by the pre
ision data, however,as it has been shown here the operator that is most relevant for the triviality andva
uum stability bound is O� and 
ontributions from O(3)� are mu
h less important.



3780 B. Grzadkowski, J. Wudkaexperimental values [21, 22℄. The limits obtained that way depend also onthe Higgs-boson mass mh, therefore, it would be interesting to superim-pose pre
ision-measurement limits, the dire
t LEP limit and those obtainedhere, 
onsistently taking into a

ount higher dimensional operators, that is,however, beyond the s
ope of this paper10.5. Summary and 
on
lusionsWe have 
onsidered restri
tions on the Higgs-boson mass that emergeform requirement of perturbative behavior of the quarti
 
oupling 
onstant(the triviality bound) and from the 
ondition of stable ele
troweak va
uumtaking into a

ount possible non-standard intera
tions des
ribed by e�e
tiveoperators of dimension � 6. It was shown that for the s
ale of new physi
sin the region � ' 0:5 � 50 TeV the Standard Model triviality upper boundremains unmodi�ed whereas the lower bound from requirement of va
uumstability is naturally in
reased by 40 � 60 GeV depending on the s
ale �and strength of 
oe�
ients of e�e
tive operators. Therefore, the allowedregion of the Higgs-boson mass is redu
ed substantially. If the Higgs-bosonmass is 
lose to its lower LEP limit then the upper bound on the s
aleof new physi
s that follows from the va
uum stability requirement 
ouldbe de
reased dramati
ally even for modest values of 
oe�
ients of e�e
tiveoperators implying new physi
s already at the s
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