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TRIVIALITY AND VACUUM STABILITY BOUNDSON THE HIGGS BOSON MASSBEYOND THE STANDARD MODEL�Bohdan GrzadkowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warsaw, Polande-mail: bohdan.grzadkowski�fuw.edu.pland José WudkaDepartment of Physis, University of California-RiversideCalifornia 92521-0419, USAe-mail: jose.wudka�ur.edu(Reeived Otober 11, 2001)The triviality and vauum stability bounds on the Higgs-boson masswere revisited in presene of weakly-oupled new interations parameterizedin a model-independent way by e�etive operators of dimension 6. It wasshown that for the sale of new physis in the region � ' 0:5 � 50 TeVthe Standard Model triviality upper bound remains unmodi�ed whereas itis natural to expet that the lower bound derived from the requirement ofvauum stability is inreased by 40�60 GeV depending on the sale � andstrength of oe�ients of e�etive operators. It turns out that if the Higgs-boson mass is lose to its lower LEP limit then the sale of new physisthat follows from the vauum stability requirement would be dereaseddramatially even for modest values of oe�ients of e�etive operatorsimplying new physis already at the sale of a few TeV.PACS numbers: 14.80.Bn, 14.80.Cp1. IntrodutionIn spite of a huge experimental e�ort, the Higgs partile, the last miss-ing ingredient of the Standard Model (SM) of eletroweak interations hasnot been disovered yet. For a Higgs-boson mass mh <� 115 GeV the mostpromising prodution hannel has been the radiation o� a Z-boson at LEP2:� Presented by B. Grzadkowski at the XXV International Shool of Theoretial Physis�Partiles and Astrophysis � Standard Models and Beyond�, Ustro«, Poland,September 10�16, 2001. (3769)



3770 B. Grzadkowski, J. Wudkae+e� ! Zh; using this reation the LEP data provided a limit [1℄ on theSM Higgs-boson mass: mh > 113:2 GeV. The Higgs partile also ontributesradiatively to several well measured quantities, this an be used to derive anupper bound [2℄ on mh: mh <� 212 GeV at 95 % C.L.. However, one shouldbe aware that both limits are highly model-dependent.There exist other theoretial restritions of mh based on the so-alledtriviality and vauum stability arguments. As it is well known [3℄ the renor-malized �4 theory annot ontain an interation term (��4) for any non-zerosalar mass: the theory must be trivial. Within a perturbative approah thestatement orresponds to the fat that for any non-zero salar mass (sinethe mass is / p� this ondition orresponds to a non-vanishing initial valuefor the Renormalization Group (RG) evolution of �) there exists a �niteenergy sale at whih � diverges (the Landau pole). Consequently, only forzero salar mass the theory an be onsistent for all energy sales. An anal-ogous e�et ours in the salar setor of the SM (modi�ed to some extendby the presene of gauge and Yukawa interations). This, however, does notneessarily implies zero Higgs-boson mass sine there is no reason to believethat the SM is valid at arbitrarily high energy sale. For example, it is oftenassumed that the SM represents the low energy limit of some underlyingmore fundamental theory whose heavy exitations deouple at low energy,but beome manifest at a sale �. Within that senario the SM is an e�e-tive theory valid possibly only at the energy sale of the order of the Fermisale: G�1=2F ' 300 GeV.If the SM is to be aurate for energies below � the Landau pole shouldour at sale � or above, and this ondition gives an (�-dependent) upperbound on mh [4℄. On the other hand, for su�iently small mh radiativeorretions an destabilize the ground state. This ours if the salar selfoupling onstant � beomes negative at some sale that an be identi�edwith the sale of new physis �. Alternatively requiring the SM vauum tobe stable for sales below � implies a lower bound on mh [5℄.The onsequenes of the above arguments (triviality and vauum stabil-ity) are usually disussed assuming SM interations. However, if the sale ofnew physis is su�iently low (of the order of a few TeV) one ould expetthat the non-standard interations would modify the eletroweak theory atthe lower sale and in�uene the salar potential in suh a way that theabove bounds on the Higgs-boson mass are hanged. The problem deservesa speial attention in the ontext of possible Higgs-boson disovery [6℄ atLEP2 at the mass mh ' 115 GeV sine in this ase the SM onstraint fromvauum stability requires � <�O(100) TeV [7℄ (the preise number dependson the top quark mass) with the attrative possibility that � is atuallymuh lower.



Triviality and Vauum Stability Bounds : : : 3771It then beomes interesting to determine the manner in whih heavyphysis with sales in the 10 TeV region modify the stability and trivialitybounds on the Higgs-boson mass. In this leture we address this question ina model-independent way. We parameterize the heavy physis e�ets usingan e�etive Lagrangian satisfying the SM gauge symmetries. Sine LHC,the future proton�proton ollider, is expeted to be sensitive to sales �of the order of a few TeV, the results will be presented for sales between0:5 and 50 TeV.The paper is organized as follows. In Setion 2, we de�ne the Lagrangianrelevant for our disussion. Setion 3 is devoted to the derivation of thetriviality bound inluding e�ets of non-standard interations. In Setion 4,we alulate the e�etive potential with one insertion of an e�etive operatorand disuss its onsequenes for the vauum stability bounds. Conludingremarks are given in Setion 5.2. Non-standard interationsOur study of the stability and triviality onstraints on the Higgs-bosonmass will be based on the SM Lagrangian modi�ed by the addition of a seriesof e�etive operators whose oe�ients parameterize the low-energy e�etsof the heavy physis [8℄. Assuming that these non-standard e�ets deou-ple implies [9℄ that the operators appear multiplied by appropriate inversepowers of �. The leading e�ets are then generated by operators of mass-dimension 6 (dimension 5 operators neessarily violate lepton number [10℄and are assoiated with new physis at very large sales; so we an safelyignore their e�ets). Given our emphasis on Higgs-boson physis the e�etsof all fermions exepting the top-quark an be ignored 1. We then haveLtree = �14F i��F i�� � 14B��B�� + jD�j2 � � ��12v2 + j�j2�2+i�q 6Dq + i�t 6Dt+ f ��q ~�t+ h..�+Xi �i�2Oi ; (2.1)where � (~� = �i�2��), q and t are the salar doublet, third generation left-handed quark doublet and the right-handed top singlet, respetively. D, F i��and B�� denote a ovariant derivative and SU(2), U(1) �eld strength whoseouplings we denote by g and g0.The fators �i are unknown oe�ients that parameterize the low-energye�ets of the non-standard interations and we have negleted ontributions/ 1=�4. In addition, for weakly oupled theories, the �i, that an be gener-ated only through loop e�ets, are sub-dominant as they are suppressed by1 We assume that the masses are natural in the tehnial sense [11℄ so that e�etiveouplings ontaining the Higgs boson and the light fermions are suppressed by powersof the orresponding Yukawa ouplings.



3772 B. Grzadkowski, J. Wudkanumerial fators � 1=(4�)2 [12℄; hene we will onsider only those operatorswhih an be generated at tree-level by the heavy physis. Even with all theabove restritions there remain 16 operators whih involve exlusively the�elds in (2.1). Of these only 5 ontribute diretly to the e�etive potential,the remaining 11 a�et the results only through their RG mixing whih,being suppressed by a fator � (v=�)2 are expeted to play a sub-dominantrole. In the alulations below we will inlude only one of these operators;our results do justify the laim that the orresponding e�ets are small.The following set of operators will be onsidered:O� = 13 j�j6 ; O�� = 12 ��j�j2�2 ; O(1)� = j�j2 jD�j2 ;O(3)� = ����yD����2 ; Ot� = j�j2 ��q ~�t+ h..� ; O(1)qt = 12 j�qtj2 ; (2.2)where O�, O��, O(1)� , O(3)� , Ot� are the 5 operators ontributing to the e�e-tive potential, while O(1)qt is inluded to estimate the e�ets of RG mixing.Of the �rst �ve operators only O� = 13 j�j6 ontributes at the tree levelto the salar potential:V (tree) = ���2j�j2 + �j�j4 � ��3�2 j�j6 ; (2.3)where we have used the notation: � � �v2=�2.3. Triviality boundIn order to test the high energy behavior of the salar potential onehas to derive the RG running equations for �, � and ��. The � funtionsfor these parameters are in�uened by all the operators in (2.2) and bythe gauge and Yukawa interations, so the full RG evolution also requiresthe � funtion for the orresponding ouplings. Both for the � funtionsand then for the e�etive potential we will adopt dimensional regularizationand MS renormalization sheme. We will restrit ourselves to the one-loopapproximation keeping SM ontributions and terms linear in the e�etiveoperators, de�ned by Eq. (2.2). The evolution equations for the runningoupling onstants are the following:8�2 d�dt = 12�2 � 3f4 + 6�f2 � 2� h2�� + ��7��� + 8�(1)� + 5�(3)� �i+32 ��� �3g2 + g02�+ g04 + 2g2g02 + 3g48 � ;8�2d�dt = � �6�+ 3f2 � 2� ���� + 2�(1)� + �(3)� �� 34 �3g2 + g02�� ;



Triviality and Vauum Stability Bounds : : : 37738�2 dfdt = 94f3 + 12� h6�t� � f ���� + 2�(1)� + �(3)� + 3�(1)qt �i�f8 �9g2 + 173 g02� ;8�2 d��dt = 9�� �6�+ f2�+ 12�2 �9��� + 6�(1)� + 5�(3)� �+ 36�t�f3�94(3g2 + g02)���98 h�(1)� (3g4 + 2g2g02 + g04) + �(3)� (g2 + g02)2i ;8�2 d���dt = 2��7��� � �(1)� + �(3)� + 3���f2� � 3�t�f� � ;8�2 d�(1)�dt = 2�0���� + 5�(1)� + �(3)� + 3�(1)� f2� � 3�t�f� 1A ;8�2 d�(3)�dt = 6(�+ f2)�(3)� ;8�2 d�t�dt = �3f(f2 + �)�(1)qt + 34(5f2 � 16�)�t��12f3 �2��� + �(1)� + �(3)� � ;8�2 d�(1)qtdt = 32�(1)qt f2 ; (3.1)where t � log(�=mZ) and � denotes the renormalization sale.From this set of equations it is straightforward to obtain the trivialityonstraints on mh as a funtion of � requiring that the position of the Lan-dau pole is beyond the sale �. There is a omment here in order, namely,in atual alulations the position of the Landau pole annot be auratelydetermined to any �nite order in perturbation theory. Therefore, the trivi-ality bound on mh will be obtained by requiring � and �� to beome smallerthan spei�ed values (as opposed from requiring an atual divergene) up tothe sale �:�(t) � �max and j�i(t)j � 1:5 for 0 � t < log� �mZ� ; (3.2)where we onsidered �max = � and �=2. We have veri�ed that our resultsare quite insensitive to the values hosen as upper limits for the �i.In order to solve equations (3.1) we have to speify appropriate bound-ary onditions. For the SM parameters these are determined by requiringthat the orret physial parameters (suh as the Higgs-boson and top-quarkmasses) are obtained at the eletroweak sale. These initial onditions should



3774 B. Grzadkowski, J. Wudkaalso insure that the orret SM ground state is realized, in whih the salar�eld has the expetation value h �'i � v0=p2 = 246=p2 GeV. Althoughwe will disuss the e�etive potential in more detail later, it will be use-ful to provide here the general 1-loop relation between the SM tree-levelvauum v and the physial eletroweak vauum in the theory de�ned byequation (2.1) v0:v0 = v + Æv for Æv � � 14�(0)v2 � �Ve� � V (tree)SM �� � �'p2� ������ �'=v=p2; (3.3)where V (tree)SM is the tree-level SM potential and Ve� is the 1-loop e�etivepotential that inludes e�etive operator ontributions; �(0) denotes therunning oupling onstant evaluated at the sale � = mZ . Having the va-uum determined by the above equation, the following low-sale relations willbe adopted to �x initial onditions at � = mZ for the RG equations for �,� and f .m2h = 2�v20 �1� v204�2 �4��� + �(1)� + �(3)� + 2��� ��+m(1)h ;mt = v0p2 �f + �t� v20�2�+m(1)t ; (3.4)where m(1)h ; m(1)t denote the 1-loop radiative orretions to the orrespond-ing masses. In the alulations bellow we use the expression for m(1)h ofRef. [7℄. For the top-quark the deviations from the tree-level value aresmaller than the experimental error and so, for simpliity we will use theexpression mt = v0f=p2. The initial onditions are non-linear funtionsof the Higgs-boson mass, and so the solutions to (3.1) will depend on both� and mh.The boundary onditions for �i are naturally spei�ed at the sale � = �sine below this sale it is appropriate to desribe the e�ets of the heavyexitations in terms of the oe�ients �i. Aording to Ref. [12℄ it is naturalto assume that �ij�=� ' O(1).The triviality bound is obtained by solving equations (3.1) with themixed (de�ned in part at the eletroweak sale mZ and at the new-physissale �) boundary onditions desribed above and requiring that at leastone of the inequalities in Eq. (3.2) is saturated. This provides a relationshipbetween mh and � that we plot in Fig. 1(a) for two values of �max. Inorder to understand qualitatively the orretions to the triviality bound wehave obtained, it is useful to swith o� all �i but ��. Then, as it is seenfrom Eq. (3.1) a Landau pole in the evolution of �(t) auses a singularity in
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Fig. 1. The upper (a) (originating from the perturbativity requirement, Eq. (3.2)),and the lower (b) (from the ondition of the eletroweak vauum stability, Eq. (4.6))bounds on the Higgs-boson mass mh as a funtion of the new-physis sale �. Thelower bounds were obtained for ��(�) < 0 and mt = 175 GeV.evolution of �� at this same energy sale. However, as we have just men-tioned it is natural to assume ��j�=� ' 1, it is lear that stritly speakingit is impossible to satisfy that ondition. Nevertheless, sine we are usinga perturbation expansion, we must stop the evolution at a sale that orre-sponds to a large but �nite value �max, therefore, we an satisfy ��j�=� ' 1.However, sine d log��=dt is positive2, therefore, in the evolution from thesale � down, ��(t) dereases reahing typially 10�1 � 10�2 at the sale� = mZ . That explains sreening of the e�ets generated by operator O�:even if ��j�=� ' 1 it an not grow any larger3. So onluding, the orre-tions to the SM triviality bound from the non-standard physis (embeddedin the oe�ients �i) are negligible.2 Here we onsider heavy Higgs bosons, therefore, � remains positive in the wholeintegration region, it addition f >� g; g0 what guarantees that d log ��=dt > 0.3 For strongly oupled new-physis orretions to this bound see [13℄.



3776 B. Grzadkowski, J. Wudka4. Vauum stability boundIn order to investigate the vauum struture of the e�etive theory wewill �rst alulate the e�etive potential:Ve� = �XN 1N !� (N)(0) �'n; (4.1)where � (N)(0) are N -point one-partile-irreduible Green's funtions withzero external momenta and �' is the lassial salar �eld. Adopting theLandau gauge4 we obtained:Ve�( �') = ���2j �'j2 + �j �'j4 � ��j �'j63�2+ 164�2"H2�ln H�2 � 32�+ 3G2�ln G�2 � 32�+ 6W 2�lnW�2 � 56�+3Z2�ln Z�2 � 56�� 12T 2 �ln T�2 � 32�� 4�2�4�ln ��2�2 � 32�#; (4.2)whereH = �(�v2 + 6j �'j2)� h�(�v2 + 6j �'j2)(2��� + �(1)� + �(3)� ) + 5��j �'j2i j �'j2�2 ;G = �(�v2 + 2j �'j2)� ��(�v2 + 2j �'j2)13(3�(1)� + �(3)� ) + ��j �'j2� j �'j2�2 ;W = g22 j �'j20�1 + j �'j2�(1)��2 1A ;Z = g2 + g022 j �'j20�1 + j �'j2(�(1)� + �(3)� )�2 1A ;T = f2j �'j2�1 + 2�t�j �'j2f�2 � ;where g and g0 denote the SU(2) and U(1) running gauge oupling onstants,respetively. The form of the e�etive potential is preisely the same as4 As it has been notied in Ref. [14℄ the e�etive potential (as a sum of o�-shell Greensfuntions) is gauge dependent. Therefore the bounds on the Higgs-boson mass de-rived from vauum stability arguments an depend on the gauge parameter adoptedin the loop alulation [15℄. However, sine the � funtions and the tree-level po-tential V (tree)e� are gauge-independent, a onsistent RG improved tree-level e�etivepotential is in fat gauge independent. For the one-loop SM RG improved e�etivepotential, the error aused by the gauge dependene has been estimated in Ref. [7℄at �mh <� 0:5 GeV.



Triviality and Vauum Stability Bounds : : : 3777the one in the pure SM, the whole e�et of the e�etive operators an beabsorbed in a re-de�nition of the SM quantities H, G, et.5 It should benotied here that the last term in Eq. (4.2) is a onstant that is needed toonstrut a sale invariant e�etive potential, for details see Ref. [17℄. Theonstant term hosen here is onsistent with the diagrammati de�nition ofthe e�etive potential Eq. (4.1), whih implies Ve�( �' = 0) = 0.Sine we will onsider values of �' substantially larger then the ele-troweak sale v0, we shall hose an appropriate renormalization sale � � �'in order to moderate the logarithms that appear in the e�etive potential.As in the previous setion we shall use the RG running equations to relatethe oupling onstants renormalized at the high sale �' to the low-saleparameters v0, mt and mh.Finally, (and unlike the pure �4) the interation of the salars with thefermions and gauge bosons, generate a non-trivial salar �eld anomalousdimension . We, therefore, also inlude the orresponding sale dependeneof �': �'(t) = exp8<:� tZtz [�(t0); �(t0); f(t0); �i(t0)℄dt09=; �'(tz) ; (4.3)where  = 116�2 �3f2 � 94g2 � 34g02 � � ���� + 2�(1)� + �(3)� �� : (4.4)Hereafter we will onsider the RG improved e�etive potential Ve�( �'(t)).We note that the RG improved e�etive potential given by Eq. (4.2) issale invariant. That is, to one loop and ignoring terms quadrati in the �i,Ve� obeys the renormalization group equation:���V (1�loop)e� + Xi �i��i �  �'� �'!V (tree)e� = 0 ; (4.5)where V (tree)e� and V (1�loop)e� denote, respetively, the tree, Eq. (2.3), and1-loop, Eq. (4.2), ontributions to Ve� , and �i are de�ned in (3.1). We notethat terms quadrati (and higher) in the �i are assoiated with ontributionsof the order of 1=�4 to the e�etive Lagrangian and are sub-dominant.Fig. 2 (a) illustrates the behavior of the e�etive potential renormalizedat the sale � = �'. Sine the minimum at h �'i = v0=p2 is very shallow,5 The same result (in the leading order in �i) for the e�etive potential have beenobtained adopting the diagrammati approah (with one insertion of an e�etiveoperator) aording to Eq. (4.1) and also using the funtional de�nition of the e�etivepotential proposed by Jakiw [16℄.
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Fig. 2. The e�etive potential renormalized at the sale � = � (a), the running of� (b) and �� () for the parameter sets (1) and (2) de�ned in the text.in order to make it visible we plot the following funtion of the e�etivepotential: sign(Ve� ) log10[(Ve�=1 TeV4) + 1℄. To show the relevane of RGrunning of e�etive-potential parameters we also plot in Fig. 2 the evolutionof � (b) and �� (). The urves ontained in the �gure orrespond to twosets of initial onditions (1) and (2) that lead to the Higgs-boson mass andthe new-physis sale marked in Fig. 1 by ?'s. As it is seen from the �guree�ets of the running are substantial, e.g. for the set (2) � hanges byalmost 100% while �� by more than 200%. At the eletroweak sale, ��'sstart with positive values, however then, through the evolution they swithsigns and eventually reah �� = �1. That should illustrate the fat that theRG running of the oe�ients �i is ruial for the stability of the system6.6 Corretions to the SM vauum stability bound that emerge in presene of the oper-ator O� has been previously disussed in Ref. [18℄. However, there the authors didnot onsider one-loop ontributions to the e�etive potential that are generated byinsertions of e�etive operators. RG running of �� has also been negleted.



Triviality and Vauum Stability Bounds : : : 3779The initial onditions for the running ouplings guarantee that the ele-troweak vauum is at h �'i = v0=p2. However, if Ve� at some large valueof the �eld �'high is smaller than Ve�(h �'i) this vauum beomes unstable(as there would be a possibility of tunneling7 towards the region of lowerenergy). This will our when the Higgs-boson mass is su�iently small(orresponding to a small value of �(0)), and will provide a lower bound onmh. In this ase �'high de�nes a sale at whih the theory breaks down, sothat �'high � �. In atual alulations we took �'high = 0:75� sine (2.1) isvalid for sales below �, hene the stability bound on mh is determined bythe onditionVe�( �' = 0:75�)j�=0:75� = Ve� � �' = v0p2������=v0=p2 (4.6)where, as mentioned previously, we have hosen the renormalization sale �to tame the e�ets of the logarithmi ontributions to Ve�( �'). The resultingbound on mh as a funtion of � for various hoies of �i(�) is plotted inFig. 1(b).In obtaining the stability bounds of Fig. 1(b) we assumed all ouplings�i had the same magnitude at the high sale �, and �� < 0 (the results areinsensitive to the sign of the other �i exept �t�). For other values of �i wefound that when � > 300 GeV there is a urve in the �� � �t� plane belowwhih either �' = 174 GeV is not a minimum or, if it is, then there is anotherdeeper minimum at a sale 174 GeV < �' < 0:75�; we an roughly say thatthis unphysial senario an be avoided if �� <� � 0:1 8.There is an important remark here in order. If the Higgs boson mass,as suggested by LEP data, is indeed [6℄ ' 115 GeV, then the SM vauumstability bound implies � <�O(100) TeV. As it is seen in Fig. 1(b) preseneof e�etive operators ould dramatially hange the SM piture. Even forthe modest values of the oe�ient j�ij = 0:25; 0:50; 0:60 the upper boundon � is signi�antly redued to � ' 20; 4; 1 TeV, respetively!Other limits on the sale � ould be obtained form the so alled pre-ision observables. The most elegant approah is to alulate the obliqueparameters S, T and U [20℄ within the e�etive theory9 and then �t their7 The tunneling time will not be alulated here, it an be obtained using the proeduredesribed in [19℄; we assume that it is smaller than the age of the Universe.8 We do not expet this result to be modi�ed signi�antly when terms of order 1=�4are inluded: a ontribution � �(8) �'8=�4 an balane the destabilizing e�et of O�only when �' � � whih again leads to � � 300 GeV.9 It should be notied that among operators onsidered here onlyO(3)� ontributes to theoblique parameters (T ) and, therefore, is onstrained by the preision data, however,as it has been shown here the operator that is most relevant for the triviality andvauum stability bound is O� and ontributions from O(3)� are muh less important.



3780 B. Grzadkowski, J. Wudkaexperimental values [21, 22℄. The limits obtained that way depend also onthe Higgs-boson mass mh, therefore, it would be interesting to superim-pose preision-measurement limits, the diret LEP limit and those obtainedhere, onsistently taking into aount higher dimensional operators, that is,however, beyond the sope of this paper10.5. Summary and onlusionsWe have onsidered restritions on the Higgs-boson mass that emergeform requirement of perturbative behavior of the quarti oupling onstant(the triviality bound) and from the ondition of stable eletroweak vauumtaking into aount possible non-standard interations desribed by e�etiveoperators of dimension � 6. It was shown that for the sale of new physisin the region � ' 0:5 � 50 TeV the Standard Model triviality upper boundremains unmodi�ed whereas the lower bound from requirement of vauumstability is naturally inreased by 40 � 60 GeV depending on the sale �and strength of oe�ients of e�etive operators. Therefore, the allowedregion of the Higgs-boson mass is redued substantially. If the Higgs-bosonmass is lose to its lower LEP limit then the upper bound on the saleof new physis that follows from the vauum stability requirement ouldbe dereased dramatially even for modest values of oe�ients of e�etiveoperators implying new physis already at the sale of � 1� 2 TeV.This work is supported in part by the Polish State Committee for Si-enti� Researh under grant no. 5 P03B 121 20 and funds provided by theU.S. Department of Energy under grant no. DE-FG03-94ER40837. One ofthe authors (BG) is indebted to CERN, SLAC and U.C. Riverside for thewarm hospitality extended to him while this work was performed.REFERENCES[1℄ T. Junk, The LEP Higgs Working Group, at LEP Fest Otober 10th 2000,http://lephiggs.web.ern.h/LEPHIGGS/talks/index.html.[2℄ E. Tourne�er, The LEP Eletroweak Working Group, talk presented at the36th Renontres De Moriond On Eletroweak Interations And Uni�ed The-ories, 2001, Les Ars, Frane, hep-ex/0105091.[3℄ K. Wilson, Phys. Rev. B4, 3184 (1971).[4℄ L. Maiani, G. Parisi, R. Petronzio, Nul. Phys. B136, 115 (1979); M. Lindner,Z. Phys. C31, 295 (1986).10 Searhes that neglet higher-dimensional-operator orretions to both the trivialityand the vauum stability Higgs-boson bounds are published, see Ref. [22℄.
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