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WHY AND HOW TO USE A DIFFERENTIALEQUATION METHOD TO CALCULATEMULTI-LOOP INTEGRALS�M. Czahora and H. Czy»a;baInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, PolandbInstitute of Advaned Study, University of Bologna40138 Bologna, Italy(Reeived Otober 12, 2001)A short pedagogial introdution to a di�erential method used to alu-late multi-loop salar integrals is presented. As an example it is shown howto obtain, using the method, large mass expansion of the two-loop sunrisemaster integrals.PACS numbers: 11.10.�z, 11.10.Kk, 11.15.Bt1. IntrodutionPreision measurements have beome one of the entral issues in presentpartile physis allowing to test Standard Model and its extensions withunpreedented auray. To onfront them with theoretial preditions itis neessary to know two- (or more) loop radiative orretions to the mea-sured physial quantities. Despite enormous e�ort of the theoretial physisommunity in this �eld and existene of many partial results a universalmethod beyond �rst loop was not developed till now. While the plannedlinear olliders running in gigaZ mode will push the experimental aurayeven further.One of the promising new diretions in the �eld of multi-loop alulationis the di�erential equations method. A di�erential equations method, basedon mass derivatives, has been proposed in [1℄. In that approah, amplitudeswith a single non vanishing massm are expressed as a suitable integral of the� Presented by H. Czy» at the XXV International Shool of Theoretial Physis�Partiles and Astrophysis � Standard Models and Beyond�, Ustro«, Poland,September 10�16, 2001. (3823)



3824 M. Czahor, H. Czy»orresponding massless amplitudes, whih are taken as known. More sys-temati studies making use not only of masses, but also Lorentz invariants,as independent variables were initiated in [2℄ and then ontinued in [3�11℄.In [3℄ small and large p2 expansions were obtained for sunrise type masterintegrals. In [4℄ the same type of expansions was obtained for the two-looptwo-point four denominator master integral. Analytial results for pseu-dothreshold [5℄ and threshold [6℄ expansions of the sunrise master integralswere obtained subsequently. Another appliation of the method is the al-ulation of the massless o� shell double box ontributing to � ! 3-jetproess. The di�erential equations were presented in [7℄ and subsequentlymaster integrals alulated for planar [9℄ and non-planar [10℄ topologies.In [11℄ and [12℄ e�orts towards getting 4-loop orretions to g�2 and 2-looporretions to Bhabha sattering orrespondingly were started. The powerof the method, besides being relatively simple and based mostly on algebraimanipulations, is that its mathematial basis was developed long ago. As itwill be shown in Setion 3 the master integrals ever satisfy a system of lineardi�erential equations. Theory of suh systems of di�erential equations wasdeveloped in XIX and at the beginning of XX entury, so now it is a text-book knowledge (see for example [13℄). All that helps a lot, making possiblemathematial rigor without big e�ort.This paper is organized as follows. In the next setion some preliminaryde�nitions are given and integration by part identities [14℄ shortly presented.In Setion 3 it is shown how to get di�erential equations one the masterintegrals are identi�ed. In Setion 4 it is shown how to obtain large massexpansion of the sunrise master integrals. It is the �rst appliation of thedi�erential equation method to the alulation of the mass expansions. InSetion 5 a short summary is presented. All algebrai manipulations wereperformed using FORM [15℄.2. PreliminariesFor a presentation how the di�erential equation method works in pratiein a nontrivial ase, but in the same time still not requiring large algebraimanipulations, we have hosen the two-point two-loop sunrise graph. Afamily of salar integrals assoiated with that graph is de�ned byA(n;m21;m22;m23; p2;��1;��2;��3; �1; �2)=Z dnk1(2�)n�2Z dnk2(2�)n�2 (p � k1)�1(p � k2)�2(k21 +m21)�1(k22 +m22)�2((p� k1 � k2)2 +m23)�3 ;(2.1)where mi (i = 1; 2; 3 ) are the masses assoiated with internal lines, p isthe external momentum, k1; k2 are loop momenta and �i; (i = 1; 2; 3),



. . . a Di�erential Equation Method to Calulate Multi-Loop Integrals 3825�j ; (j = 1; 2) are integer numbers. The integrals are to be performed inn-dimensional Eulidean spae. It implies we have used dimensional regular-ization and have performed Wik rotation. The sale parameter � assoiatedwith dimensional regularization has been set to 1. Final results an be easilyrewritten in Minkowski spae by hanging p2 ! �p2.Not all of the integrals from the lass (2.1) are independent. By meansof a very simple but powerful method of integration by parts identities [14℄one an �nd relations between them. In this partiular ase one uses therelationsZ dnki ��(ki)�" v� (p � k1)�1(p � k2)�2(k21 +m21)�1(k22 +m22)�2((p� k1 � k2)2 +m32)�3 # = 0 ;(2.2)where i = 1; 2, while v� denotes one of the momenta p; k1 or k2. It is ruialthat in this way one gets a system of linear equations satis�ed by the integrals(2.1) with a non-homogeneous terms given by integrals with lower number(in this ase one) of denominators. This general property requires that oneshould start to solve a given problem from alulation of the integrals withsmallest possible number of denominators ( or if one is luky enough, onean �nd them in the literature). The integrals to be alulated �rst for thesunrise problem an be expressed just by one integralT �n;m2� = Z dnk(2�)n�2 1k2 +m2 = mn�2(n� 2)(n� 4)C(n) ; (2.3)where C(n) = �2p��(4�n) � �3� n2� and C(4) = 1 : (2.4)With help of (2.2) one �nds that only four independent integrals exist withinthe family (2.1) [16℄. We hoose them asF0(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�1;�1; 0; 0) ;F1(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�2;�1;�1; 0; 0) ;F2(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�2;�1; 0; 0) ;F3(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�1;�2; 0; 0) : (2.5)Thereafter, we will not write expliitly the arguments of the funtionsFi(n;m21;m22;m23; p2) � Fi. The independene of the funtion Fi means thatnone of them an be expressed by a linear ombination of the others and



3826 M. Czahor, H. Czy»polynomials of the funtion T (2.3) with oe�ients in the form of a ratioof polynomials in p2;m21;m22;m23. However, an obvious relation oursFi = � ��m2i F0 ; i = 1; 2; 3: (2.6)3. How to get di�erential equations for master integralsHaving a limited number of integrals to deal with, whih we will allmaster integrals, we an write di�erential equations they obey. It is as simpleas to di�erentiate the given integral and then by means of the integrationby part identities express the result by the master integrals and the knownfuntion T . To illustrate as it works we writep2 ��p2F0= 12p� ��p� Z dnk1dnk2(2�)2n�4 1(k21 +m21)(k22 +m22)((p� k1 � k2)2 +m23)= Z dnk1dnk2(2�)2n�4 �p2 + p � k1 + p � k2(k21 +m21)(k22 +m22)((p� k1 � k2)2 +m23)2 : (3.1)The last expression is nothing but a linear ombination of three integralsfrom the family (2.1), so one an express eah of them as a linear ombinationof the master integrals. This gives after a short algebrai alulation [3℄p2 ��p2F0 = (n� 3)F0 +m21F1 +m22F2 +m23F3 : (3.2)Similarly one �nds [3℄p2D(m21;m22;m23; p2) ��p2Fi = 3Xj=0Mi;jFj + Ti ; i = 1; 2; 3 (3.3)where expliit form of funtions Ti (whih an be expressed by the funtionT (2.3)) and Mi;j (polynomials of p2;m21;m22;m23 ) an be found in [3℄. Thefuntion D is de�ned byD(m21;m22;m23; p2) = �p2+(m1+m2+m3)2� �p2+(m1+m2�m3)2�� �p2+(m1�m2+m3)2� �p2+(m1�m2�m3)2� ;(3.4)and is equal to zero at the three pseudothresholds and at the threshold ofthe master integrals.



. . . a Di�erential Equation Method to Calulate Multi-Loop Integrals 3827Di�erential equations with mi as an independent variables an be foundin a similar way. They are presented in the Appendix of [3℄ or an beobtained from the formulae presented there by appropriate permutations ofthe masses mi; i = 1; 2; 3.The property that the derivative of a given master integral is a linearombination of the master integrals plus terms with smaller number of de-nominators is obviously a general property of all possible multi-loop salarintegrals. It is valid due to linearity of the integration by parts identities andthe di�erentiation operation itself, and also due to the form of the integrands,whih are ever ratios of polynomials of masses and Lorentz invariants.4. An appliation: Large mass expansion of the master integralsLet us assume that one of the square of the masses, say m23, is muhlarger then m21;m22 and jp2j. The general form of the expansion in thatregion an be written [13℄ asF0 = X�2A(m23)� 1Xk=0F (�)k 1(m23)k ; (4.1)where A is a �nite set of numbers, whose di�erenes are not equal to aninteger number. Other master integrals are related to F0 by (2.6). Theallowed values of � an be found from the system of equations (with m23 asan independent variable) itself. One substitutes the Fi in the system withits expansions and by examining the oe�ients of the highest powers inm23 (they have to be equal to zero) one �nds allowed values of �'s. In thispartiular aseA = ��1; n� 42 ; n� 3; 32n� 4� � �r; s1; s2; s3� ; (4.2)where a shorthand notation was introdued for di�erent values of �'s. Theseries with an integer power of � is alled the regular series, while the otherare alled singular series. The singular parts are soures of logarithmi termswhen expanded around n = 4, the value of n we are interested in.Not always all parts of the expansion orresponding to allowed values of�'s are atually present in the solution. That depends on the initial ondi-tions and the regularity of the Fi at p2 = 0 is ruial for their properties [3℄.We will see that also in the presented below example. It re�ets the fatthat the di�erential equations an be satis�ed by a wider lass of funtions,not only by the master integrals. It means also that usually one has toalulate the master integrals for speial values of the parameters by other



3828 M. Czahor, H. Czy»means then the di�erential equations to �x onstants of integration. That,however, is always simpler then the general ase.Having the allowed values of � one an try to alulate oe�ients in theexpansion (4.1). The ruial point is to �nd the �rst oe�ient in eah ofthe series as the others an be found by solving a system of linear algebraiequations (in this ase system of 3 linear equations). Two of the oe�ientsare �xed by non-homogeneous terms in the di�erential equations and readF r0 = C2(n)(n� 4)2(n� 2)2 (m21m22)n�22 ; (4.3)F s10 = � C2(n)((n� 4)(n� 2))2�(m21)n�22 + (m22)n�22 � : (4.4)The other two annot be �xed this way as in the non-homogeneous partof the equations there is no term � (m23)s2 or � (m23)s3 . One an �nd,however, the following relations between the next to leading and the leadingterms in the expansionF s21 = �(n� 3)h(m21 +m22 + p2)� 4np2iF s20+4n(n� 3)m21(m21 + p2) ��m21F s20+4n(n� 3)m22(m22 + p2) ��m22F s20��m21F s21 = (n� 3)h(p2 �m21 +m22) ��m21F s20 � F s20 i��m22F s21 = (n� 3)h(p2 +m21 �m22) ��m22F s20 � F s20 i : (4.5)Using di�erential equations (3.2) and (3.3), the expression (4.1) and theabove relations one �nds that F s20 satis�es the following system of di�erentialequations �m21 ��m21F s20 �m22 ��m22F s20 � p2 ��p2F s20 = 0 ; (4.6)n� 22 ��m21F s20 + p2 ��m21 ��p2F s20 = 0 ;n� 22 ��m22F s20 + p2 ��m22 ��p2F s20 = 0 : (4.7)



. . . a Di�erential Equation Method to Calulate Multi-Loop Integrals 3829From this system one an dedue, eliminatingm2i derivatives, that F s20 ful�llsa very simple di�erential equation�p2 �2�(p2)2F s20 � 12n ��p2F s20 = 0 : (4.8)Its solution has the following formF s20 = 2S2(n;m21;m22)n� 2 (p2)�n�22 + S1(n;m21;m22) ; (4.9)where Si(n;m21;m22); i = 1; 2 are still unknown funtions. Using (4.7) and(4.9) one �nds ��m21S1(n;m21;m22) = ��m22S1(n;m21;m22) = 0 ; (4.10)so the funtion S1 does not depend on masses: S1(n;m21;m22) = S1(n). Thisinformation together with (4.5) and (4.6) gives S2(n;m21;m22) = 0. It meansthat F s20 is a funtion of n only. Its value will be found later on.Similar, but even simpler, analysis an be done for � = s3. From thedi�erential equations with m3 as an independent variable one �nds that F s30does not depend on the masses. Using that information, from di�erentialequations (3.2) and (3.3) one �ndsp2 ��p2F s30 = �12(n� 2)F s30 ; (4.11)whih gives F s30 = S(n)(p2)�n�22 ; (4.12)where S(n) is a funtion depending only on n. As the master integrals forn = 4 are analyti funtions at p2 = 0, the funtion S(n) and onsequentlyF s30 have to be identially equal to zero. As all higher order oe�ientsF s3i � F s30 ; i = 1; � � �, the whole series with � = s3 vanishes.The only unknown funtion F s20 (n) an be found using known analytialresult for F0(n; 0; 0;m2; p2) [3℄. Performing its expansion for large m2 andomparing the appropriate terms with (4.1),where two masses were set tozero, one �ndsF s20 (n) = C2(n)16 �� 2(n� 4)2 + 3(n� 4) ��72 + �2�+O(n� 4)� : (4.13)



3830 M. Czahor, H. Czy»As F0(n; 0; 0;m2; p2) was given [3℄ in a form of an expansion aroundn = 4 the funtion F s20 (n) is given only in the form of the n = 4 expansion.As this was the last missing part of the expansion one an �nd now theomplete formula. We report here only leading terms of the expansion, buthigher order terms an be easily found by algebrai means, if neessary.F0(n;m21;m22;m23; p2) = pole terms in (n� 4)+C2(n)�� 116m23 log2(m23) + 316m23 log(m23)� 116m23�72 + �(2)�+ 132�m21 +m22� log2(m23)+ 132�2m21 + 2m22 + p2 � 2m21 log(m21)� 2m22 log(m22)� log(m23)+ 1128�� 3p2 + 16m21 log(m21) + 16m22 log(m22)� 4m21 log2(m21)�4m22 log2(m22) + (8�(2)� 20)(m21 +m22)�+O� 1m23 ; n� 4��: (4.14)The pole terms being idential to the exat pole terms [3℄ are not re-ported here. As a ross hek we have ompared the above result with thesmall p2 expansion of F0(n;m21;m22;m23; p2). We have expanded the �rsttwo oe�ients of the expansion in p2 [3℄, dependent on m1;m2;m3, assum-ing m23 � m21;m22 and found omplete agreement between the two results.The result (4.14), whih is valid for arbitrary p2;m21 and m22 provided theyare muh smaller then m23, annot be, however, dedued from the small p2expansion itself. 5. SummaryA short introdution to the di�erential equations method used in alula-tion of the salar multi-loop integrals was presented. A nontrivial large massexpansion of the master two-loop sunrise integrals was obtained almost om-pletely by algebrai means. The only 'di�ult' task, besides solving systemsof linear algebrai equations, was to solve two simple di�erential equations(4.8) and (4.11). It shows that the method is extremely powerful and opensnew possibilities in the �eld of multi-loop alulations.We would like to thank Mihele Ca�o for disussion and areful readingof the manusript.
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