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A short pedagogical introduction to a differential method used to calcu-
late multi-loop scalar integrals is presented. As an example it is shown how
to obtain, using the method, large mass expansion of the two-loop sunrise
master integrals.
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1. Introduction

Precision measurements have become one of the central issues in present
particle physics allowing to test Standard Model and its extensions with
unprecedented accuracy. To confront them with theoretical predictions it
is necessary to know two- (or more) loop radiative corrections to the mea-
sured physical quantities. Despite enormous effort of the theoretical physics
community in this field and existence of many partial results a universal
method beyond first loop was not developed till now. While the planned
linear colliders running in gigaZ mode will push the experimental accuracy
even further.

One of the promising new directions in the field of multi-loop calculation
is the differential equations method. A differential equations method, based
on mass derivatives, has been proposed in [1]. In that approach, amplitudes
with a single non vanishing mass m are expressed as a suitable integral of the
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corresponding massless amplitudes, which are taken as known. More sys-
tematic studies making use not only of masses, but also Lorentz invariants,
as independent variables were initiated in [2] and then continued in [3-11].
In [3] small and large p? expansions were obtained for sunrise type master
integrals. In [4] the same type of expansions was obtained for the two-loop
two-point four denominator master integral. Analytical results for pseu-
dothreshold [5] and threshold [6] expansions of the sunrise master integrals
were obtained subsequently. Another application of the method is the cal-
culation of the massless off shell double box contributing to v* — 3-jet
process. The differential equations were presented in [7] and subsequently
master integrals calculated for planar [9] and non-planar [10] topologies.
In [11] and [12] efforts towards getting 4-loop corrections to g —2 and 2-loop
corrections to Bhabha scattering correspondingly were started. The power
of the method, besides being relatively simple and based mostly on algebraic
manipulations, is that its mathematical basis was developed long ago. As it
will be shown in Section 3 the master integrals ever satisfy a system of linear
differential equations. Theory of such systems of differential equations was
developed in XIX and at the beginning of XX century, so now it is a text-
book knowledge (see for example [13]). All that helps a lot, making possible
mathematical rigor without big effort.

This paper is organized as follows. In the next section some preliminary
definitions are given and integration by part identities [14] shortly presented.
In Section 3 it is shown how to get differential equations once the master
integrals are identified. In Section 4 it is shown how to obtain large mass
expansion of the sunrise master integrals. It is the first application of the
differential equation method to the calculation of the mass expansions. In
Section 5 a short summary is presented. All algebraic manipulations were
performed using FORM [15].

2. Preliminaries

For a presentation how the differential equation method works in practice
in a nontrivial case, but in the same time still not requiring large algebraic
manipulations, we have chosen the two-point two-loop sunrise graph. A
family of scalar integrals associated with that graph is defined by

2 2 2 2
A(namlam27m37p , —Q, —Q2, —053,,81,,82)

:/ dnkl / dnkg (p . kl)ﬂl (p . kg)/BQ
(2m)n=2) (2m)" =2 (kY + m) (kF +m3)°2 ((p — K — ka)? + mi)*s |
(2.1)

where m; (1 = 1,2,3 ) are the masses associated with internal lines, p is
the external momentum, kq,ks are loop momenta and «;, (i = 1,2,3),
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Bj, (7 = 1,2) are integer numbers. The integrals are to be performed in
n-dimensional Euclidean space. It implies we have used dimensional regular-
ization and have performed Wick rotation. The scale parameter y associated
with dimensional regularization has been set to 1. Final results can be easily
rewritten in Minkowski space by changing p? — —p?.

Not all of the integrals from the class (2.1) are independent. By means
of a very simple but powerful method of integration by parts identities [14]
one can find relations between them. In this particular case one uses the
relations

0
d"k;
/ 8(ki)u

where 4 = 1,2, while v, denotes one of the momenta p, k1 or ks. It is crucial
that in this way one gets a system of linear equations satisfied by the integrals
(2.1) with a non-homogeneous terms given by integrals with lower number
(in this case one) of denominators. This general property requires that one
should start to solve a given problem from calculation of the integrals with
smallest possible number of denominators ( or if one is lucky enough, one
can find them in the literature). The integrals to be calculated first for the
sunrise problem can be expressed just by one integral

vy (k1) (p - k)P
(kT +m7)r (k3 +m3)22 ((p — ki — k2)? + m3)s

=0,

(2.2)

k1 mn=?
T (nm?) = / e me - e mopC 2D
where
Cn) = (2vm) ™ r (3 - g) and  C(4)=1. (2.4)

With help of (2.2) one finds that only four independent integrals exist within
the family (2.1) [16]. We choose them as

Fo(n,m3,m3,m3,p*) = A(n, ml,mQ,mg,p ,—1,-1,-1,0,0),
Fi(n,m?,m3,m3,p*) = A(n, ml,m2,m3,p ,—2,—1,-1,0,0),
Fy(n,m3,m3,m3,p*) = A(n, ml,mQ,mg,p ,—1,-2,-1,0,0),
Fy(n,m?,m3,m3,p*) = A(n,m?,m3,m3,p* —1,-1,-2,0,0). (2.5)

Thereafter, we will not write explicitly the arguments of the functions
F;(n,m?%,m3, m3,p?) = F;. The independence of the function F; means that
none of them can be expressed by a linear combination of the others and
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polynomials of the function T' (2.3) with coefficients in the form of a ratio

of polynomials in p?, m?,m3, m% However, an obvious relation occurs
0 .
E = —WFO, 1= 1,2,3. (26)

1

3. How to get differential equations for master integrals

Having a limited number of integrals to deal with, which we will call
master integrals, we can write differential equations they obey. It is as simple
as to differentiate the given integral and then by means of the integration
by part identities express the result by the master integrals and the known
function T'. To illustrate as it works we write

0
P
— F
Bp 0
19 [ dadh 1
2" Opy | @y T+ md) (R + m3) (p — hr — Ka)? + )
_ / d"kyd" ko P’ +p-kitp-ky (3.1)
(2m)2n =t (K + mi) (k3 + m3)((p — b — k2)? +mi)? '

The last expression is nothing but a linear combination of three integrals
from the family (2.1), so one can express each of them as a linear combination
of the master integrals. This gives after a short algebraic calculation [3]

0
2 Fy=(n—3)Fy +miF, + miF, + m3F3. (3.2)
Similarly one finds [3]

9 0

p’D(m?,m3,m2,p )aQF ZM”F +T;, i=1,2,3 (3.3)

7=0

where explicit form of functions T; (which can be expressed by the function
T (2.3)) and M;; (polynomials of p?, m?,m3,m3 ) can be found in [3]. The
function D is defined by

D(m}, m3,m3,p°) = (p2+(m1+m2+m3) ) (p2+(m1+m2—m3)2)

x (p*+(m1—mao+m3)?) (p*+(mi—ma—ms)?) ,
(3.4)

and is equal to zero at the three pseudothresholds and at the threshold of
the master integrals.



... a Differential Equation Method to Calculate Multi-Loop Integrals 3827

Differential equations with m; as an independent variables can be found
in a similar way. They are presented in the Appendix of [3] or can be
obtained from the formulae presented there by appropriate permutations of
the masses m;, 1 =1,2,3.

The property that the derivative of a given master integral is a linear
combination of the master integrals plus terms with smaller number of de-
nominators is obviously a general property of all possible multi-loop scalar
integrals. It is valid due to linearity of the integration by parts identities and
the differentiation operation itself, and also due to the form of the integrands,
which are ever ratios of polynomials of masses and Lorentz invariants.

4. An application: Large mass expansion of the master integrals

Let us assume that one of the square of the masses, say m2, is much

larger then m2,m2 and |p?|. The general form of the expansion in that

region can be written [13] as

Fy= S (md)e S F (mlg)k , (4.1)

where A is a finite set of numbers, whose differences are not equal to an
integer number. Other master integrals are related to Fy by (2.6). The
allowed values of a can be found from the system of equations (with m3 as
an independent variable) itself. One substitutes the F; in the system with
its expansions and by examining the coefficients of the highest powers in
m3 (they have to be equal to zero) one finds allowed values of a’s. In this
particular case

—4
A:{—l, nT’ n— 3, gn—él}z{r, 81, 8o, 33}, (4.2)

where a shorthand notation was introduced for different values of a’s. The
series with an integer power of « is called the regular series, while the other
are called singular series. The singular parts are sources of logarithmic terms
when expanded around n = 4, the value of n we are interested in.

Not always all parts of the expansion corresponding to allowed values of
a’s are actually present in the solution. That depends on the initial condi-
tions and the regularity of the F; at p? = 0 is crucial for their properties [3].
We will see that also in the presented below example. It reflects the fact
that the differential equations can be satisfied by a wider class of functions,
not only by the master integrals. It means also that usually one has to
calculate the master integrals for special values of the parameters by other
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means then the differential equations to fix constants of integration. That,
however, is always simpler then the general case.

Having the allowed values of « one can try to calculate coefficients in the
expansion (4.1). The crucial point is to find the first coefficient in each of
the series as the others can be found by solving a system of linear algebraic
equations (in this case system of 3 linear equations). Two of the coefficients
are fixed by non-homogeneous terms in the differential equations and read

2 n n—2
B = g g mind) s (43

s1 C?(n) m2) 5% 4 (m2)%5
R = g () @)

The other two cannot be fixed this way as in the non-homogeneous part
of the equations there is no term ~ (m32)*? or ~ (m32)**. One can find,
however, the following relations between the next to leading and the leading
terms in the expansion

4
F? = —(n—-3) [(m% +m2 4 p?) — ;pQ] F§?
+£(n — 3)m?(m? +p2)iFs2
n LA Bm% 0
4 o .
+E(n — 3)m%(m% +p2)8—m%F02
a S a S S
Gz = (=3) ((? = m? )5 S - Fy?|
iFS2 = (n—3) [(p2 +m? —m3)—s 0 Fi? — F”} . (4.5)
om3 ! ! 2 8m2 0

Using differential equations (3.2) and (3.3), the expression (4.1) and the
above relations one finds that Fjj? satisfies the following system of differential
equations

) ) B
2 2 . 2 _
i G FP - Q—am%ng gl =0, (4.6)
n—2 0 _, o 0 s
2 om3 0 P amrarto ~ O
—9
n=2 90 pum 0 0 gl =0 (4.7)
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From this system one can deduce, eliminating mf derivatives, that Fj? fulfills
a very simple differential equation

ok 1 0
2 Y ps2 2 Y sy
D 8(p2)2F0 2n8p2F0 0. (4.8)

Its solution has the following form

252('"'7 m%a m%)

n—

Fd” = (p2)_72 + Sl(na m%7 m%) ) (49)

n—2

where S;(n,m?,m3), i = 1,2 are still unknown functions. Using (4.7) and
(4.9) one finds

9 2

a—,rn%‘s’l(namimQ) = Sl(namfam%) =0, (4'10)

0
om?
so the function S; does not depend on masses: Si(n,m?,m3) = Sy(n). This
information together with (4.5) and (4.6) gives Sa(n, m?, m3) = 0. It means
that Fy? is a function of n only. Its value will be found later on.

Similar, but even simpler, analysis can be done for a = s3. From the
differential equations with mj3 as an independent variable one finds that Fjj*

does not depend on the masses. Using that information, from differential
equations (3.2) and (3.3) one finds

0 1
which gives
Fyr = Sm)(p?) ", (4.12)

where S(n) is a function depending only on n. As the master integrals for
n = 4 are analytic functions at p? = 0, the function S(n) and consequently
F§*® have to be identically equal to zero. As all higher order coefficients
F?* ~ F§*, i=1,---, the whole series with & = s3 vanishes.

The only unknown function F;;?(n) can be found using known analytical
result for Fy(n,0,0,m2,p?) [3]. Performing its expansion for large m? and
comparing the appropriate terms with (4.1),where two masses were set to
zero, one finds

2 n
Fg*(n) = Clé ) _(n_24)2 + (n:) - <;+§2> +O(n—4)] . (4.13)
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As Fy(n,0,0,m?,p?) was given [3| in a form of an expansion around
n = 4 the function Fj*(n) is given only in the form of the n = 4 expansion.
As this was the last missing part of the expansion one can find now the
complete formula. We report here only leading terms of the expansion, but
higher order terms can be easily found by algebraic means, if necessary.

Fo(n,m?,m3,m3,p>) = pole terms in (n — 4)

1 3 1 7
2 b o 9 9y 9 9 2y L _of(
+C ) = g tog?(o) + spm3log(ond) ~ fomd (5 +<@)

1
+3—2 <m% + m%) log2(m§)

1
s (m% T 2m3 4 p? — 2m? log(m?) — 2m] mg(m;)) log(m2)

1
+ﬁ < — 3p% 4 16m7 log(m?) + 16m3 log(m3) — 4m? log?(m?)

—4m3log?(m3) + (8¢(2) — 20)(m? + mg)) +0 <mi§ n— 4)}. (4.14)

The pole terms being identical to the exact pole terms [3] are not re-
ported here. As a cross check we have compared the above result with the
small p? expansion of Fy(n,m?,m3,m3,p?). We have expanded the first
two coefficients of the expansion in p? 3|, dependent on m1, mo, m3, assum-
ing m3 > m?,m2 and found complete agreement between the two results.
The result (4.14), which is valid for arbitrary p?,m? and m2 provided they
are much smaller then m3, cannot be, however, deduced from the small p?
expansion itself.

5. Summary

A short introduction to the differential equations method used in calcula-
tion of the scalar multi-loop integrals was presented. A nontrivial large mass
expansion of the master two-loop sunrise integrals was obtained almost com-
pletely by algebraic means. The only ’difficult’ task, besides solving systems
of linear algebraic equations, was to solve two simple differential equations
(4.8) and (4.11). It shows that the method is extremely powerful and opens
new possibilities in the field of multi-loop calculations.

We would like to thank Michele Caffo for discussion and careful reading
of the manuscript.
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