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WHY AND HOW TO USE A DIFFERENTIALEQUATION METHOD TO CALCULATEMULTI-LOOP INTEGRALS�M. Cza
hora and H. Czy»a;baInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, PolandbInstitute of Advan
ed Study, University of Bologna40138 Bologna, Italy(Re
eived O
tober 12, 2001)A short pedagogi
al introdu
tion to a di�erential method used to 
al
u-late multi-loop s
alar integrals is presented. As an example it is shown howto obtain, using the method, large mass expansion of the two-loop sunrisemaster integrals.PACS numbers: 11.10.�z, 11.10.Kk, 11.15.Bt1. Introdu
tionPre
ision measurements have be
ome one of the 
entral issues in presentparti
le physi
s allowing to test Standard Model and its extensions withunpre
edented a

ura
y. To 
onfront them with theoreti
al predi
tions itis ne
essary to know two- (or more) loop radiative 
orre
tions to the mea-sured physi
al quantities. Despite enormous e�ort of the theoreti
al physi
s
ommunity in this �eld and existen
e of many partial results a universalmethod beyond �rst loop was not developed till now. While the plannedlinear 
olliders running in gigaZ mode will push the experimental a

ura
yeven further.One of the promising new dire
tions in the �eld of multi-loop 
al
ulationis the di�erential equations method. A di�erential equations method, basedon mass derivatives, has been proposed in [1℄. In that approa
h, amplitudeswith a single non vanishing massm are expressed as a suitable integral of the� Presented by H. Czy» at the XXV International S
hool of Theoreti
al Physi
s�Parti
les and Astrophysi
s � Standard Models and Beyond�, Ustro«, Poland,September 10�16, 2001. (3823)
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orresponding massless amplitudes, whi
h are taken as known. More sys-temati
 studies making use not only of masses, but also Lorentz invariants,as independent variables were initiated in [2℄ and then 
ontinued in [3�11℄.In [3℄ small and large p2 expansions were obtained for sunrise type masterintegrals. In [4℄ the same type of expansions was obtained for the two-looptwo-point four denominator master integral. Analyti
al results for pseu-dothreshold [5℄ and threshold [6℄ expansions of the sunrise master integralswere obtained subsequently. Another appli
ation of the method is the 
al-
ulation of the massless o� shell double box 
ontributing to 
� ! 3-jetpro
ess. The di�erential equations were presented in [7℄ and subsequentlymaster integrals 
al
ulated for planar [9℄ and non-planar [10℄ topologies.In [11℄ and [12℄ e�orts towards getting 4-loop 
orre
tions to g�2 and 2-loop
orre
tions to Bhabha s
attering 
orrespondingly were started. The powerof the method, besides being relatively simple and based mostly on algebrai
manipulations, is that its mathemati
al basis was developed long ago. As itwill be shown in Se
tion 3 the master integrals ever satisfy a system of lineardi�erential equations. Theory of su
h systems of di�erential equations wasdeveloped in XIX and at the beginning of XX 
entury, so now it is a text-book knowledge (see for example [13℄). All that helps a lot, making possiblemathemati
al rigor without big e�ort.This paper is organized as follows. In the next se
tion some preliminaryde�nitions are given and integration by part identities [14℄ shortly presented.In Se
tion 3 it is shown how to get di�erential equations on
e the masterintegrals are identi�ed. In Se
tion 4 it is shown how to obtain large massexpansion of the sunrise master integrals. It is the �rst appli
ation of thedi�erential equation method to the 
al
ulation of the mass expansions. InSe
tion 5 a short summary is presented. All algebrai
 manipulations wereperformed using FORM [15℄.2. PreliminariesFor a presentation how the di�erential equation method works in pra
ti
ein a nontrivial 
ase, but in the same time still not requiring large algebrai
manipulations, we have 
hosen the two-point two-loop sunrise graph. Afamily of s
alar integrals asso
iated with that graph is de�ned byA(n;m21;m22;m23; p2;��1;��2;��3; �1; �2)=Z dnk1(2�)n�2Z dnk2(2�)n�2 (p � k1)�1(p � k2)�2(k21 +m21)�1(k22 +m22)�2((p� k1 � k2)2 +m23)�3 ;(2.1)where mi (i = 1; 2; 3 ) are the masses asso
iated with internal lines, p isthe external momentum, k1; k2 are loop momenta and �i; (i = 1; 2; 3),



. . . a Di�erential Equation Method to Cal
ulate Multi-Loop Integrals 3825�j ; (j = 1; 2) are integer numbers. The integrals are to be performed inn-dimensional Eu
lidean spa
e. It implies we have used dimensional regular-ization and have performed Wi
k rotation. The s
ale parameter � asso
iatedwith dimensional regularization has been set to 1. Final results 
an be easilyrewritten in Minkowski spa
e by 
hanging p2 ! �p2.Not all of the integrals from the 
lass (2.1) are independent. By meansof a very simple but powerful method of integration by parts identities [14℄one 
an �nd relations between them. In this parti
ular 
ase one uses therelationsZ dnki ��(ki)�" v� (p � k1)�1(p � k2)�2(k21 +m21)�1(k22 +m22)�2((p� k1 � k2)2 +m32)�3 # = 0 ;(2.2)where i = 1; 2, while v� denotes one of the momenta p; k1 or k2. It is 
ru
ialthat in this way one gets a system of linear equations satis�ed by the integrals(2.1) with a non-homogeneous terms given by integrals with lower number(in this 
ase one) of denominators. This general property requires that oneshould start to solve a given problem from 
al
ulation of the integrals withsmallest possible number of denominators ( or if one is lu
ky enough, one
an �nd them in the literature). The integrals to be 
al
ulated �rst for thesunrise problem 
an be expressed just by one integralT �n;m2� = Z dnk(2�)n�2 1k2 +m2 = mn�2(n� 2)(n� 4)C(n) ; (2.3)where C(n) = �2p��(4�n) � �3� n2� and C(4) = 1 : (2.4)With help of (2.2) one �nds that only four independent integrals exist withinthe family (2.1) [16℄. We 
hoose them asF0(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�1;�1; 0; 0) ;F1(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�2;�1;�1; 0; 0) ;F2(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�2;�1; 0; 0) ;F3(n;m21;m22;m23; p2) = A(n;m21;m22;m23; p2;�1;�1;�2; 0; 0) : (2.5)Thereafter, we will not write expli
itly the arguments of the fun
tionsFi(n;m21;m22;m23; p2) � Fi. The independen
e of the fun
tion Fi means thatnone of them 
an be expressed by a linear 
ombination of the others and



3826 M. Cza
hor, H. Czy»polynomials of the fun
tion T (2.3) with 
oe�
ients in the form of a ratioof polynomials in p2;m21;m22;m23. However, an obvious relation o

ursFi = � ��m2i F0 ; i = 1; 2; 3: (2.6)3. How to get di�erential equations for master integralsHaving a limited number of integrals to deal with, whi
h we will 
allmaster integrals, we 
an write di�erential equations they obey. It is as simpleas to di�erentiate the given integral and then by means of the integrationby part identities express the result by the master integrals and the knownfun
tion T . To illustrate as it works we writep2 ��p2F0= 12p� ��p� Z dnk1dnk2(2�)2n�4 1(k21 +m21)(k22 +m22)((p� k1 � k2)2 +m23)= Z dnk1dnk2(2�)2n�4 �p2 + p � k1 + p � k2(k21 +m21)(k22 +m22)((p� k1 � k2)2 +m23)2 : (3.1)The last expression is nothing but a linear 
ombination of three integralsfrom the family (2.1), so one 
an express ea
h of them as a linear 
ombinationof the master integrals. This gives after a short algebrai
 
al
ulation [3℄p2 ��p2F0 = (n� 3)F0 +m21F1 +m22F2 +m23F3 : (3.2)Similarly one �nds [3℄p2D(m21;m22;m23; p2) ��p2Fi = 3Xj=0Mi;jFj + Ti ; i = 1; 2; 3 (3.3)where expli
it form of fun
tions Ti (whi
h 
an be expressed by the fun
tionT (2.3)) and Mi;j (polynomials of p2;m21;m22;m23 ) 
an be found in [3℄. Thefun
tion D is de�ned byD(m21;m22;m23; p2) = �p2+(m1+m2+m3)2� �p2+(m1+m2�m3)2�� �p2+(m1�m2+m3)2� �p2+(m1�m2�m3)2� ;(3.4)and is equal to zero at the three pseudothresholds and at the threshold ofthe master integrals.
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ulate Multi-Loop Integrals 3827Di�erential equations with mi as an independent variables 
an be foundin a similar way. They are presented in the Appendix of [3℄ or 
an beobtained from the formulae presented there by appropriate permutations ofthe masses mi; i = 1; 2; 3.The property that the derivative of a given master integral is a linear
ombination of the master integrals plus terms with smaller number of de-nominators is obviously a general property of all possible multi-loop s
alarintegrals. It is valid due to linearity of the integration by parts identities andthe di�erentiation operation itself, and also due to the form of the integrands,whi
h are ever ratios of polynomials of masses and Lorentz invariants.4. An appli
ation: Large mass expansion of the master integralsLet us assume that one of the square of the masses, say m23, is mu
hlarger then m21;m22 and jp2j. The general form of the expansion in thatregion 
an be written [13℄ asF0 = X�2A(m23)� 1Xk=0F (�)k 1(m23)k ; (4.1)where A is a �nite set of numbers, whose di�eren
es are not equal to aninteger number. Other master integrals are related to F0 by (2.6). Theallowed values of � 
an be found from the system of equations (with m23 asan independent variable) itself. One substitutes the Fi in the system withits expansions and by examining the 
oe�
ients of the highest powers inm23 (they have to be equal to zero) one �nds allowed values of �'s. In thisparti
ular 
aseA = ��1; n� 42 ; n� 3; 32n� 4� � �r; s1; s2; s3� ; (4.2)where a shorthand notation was introdu
ed for di�erent values of �'s. Theseries with an integer power of � is 
alled the regular series, while the otherare 
alled singular series. The singular parts are sour
es of logarithmi
 termswhen expanded around n = 4, the value of n we are interested in.Not always all parts of the expansion 
orresponding to allowed values of�'s are a
tually present in the solution. That depends on the initial 
ondi-tions and the regularity of the Fi at p2 = 0 is 
ru
ial for their properties [3℄.We will see that also in the presented below example. It re�e
ts the fa
tthat the di�erential equations 
an be satis�ed by a wider 
lass of fun
tions,not only by the master integrals. It means also that usually one has to
al
ulate the master integrals for spe
ial values of the parameters by other



3828 M. Cza
hor, H. Czy»means then the di�erential equations to �x 
onstants of integration. That,however, is always simpler then the general 
ase.Having the allowed values of � one 
an try to 
al
ulate 
oe�
ients in theexpansion (4.1). The 
ru
ial point is to �nd the �rst 
oe�
ient in ea
h ofthe series as the others 
an be found by solving a system of linear algebrai
equations (in this 
ase system of 3 linear equations). Two of the 
oe�
ientsare �xed by non-homogeneous terms in the di�erential equations and readF r0 = C2(n)(n� 4)2(n� 2)2 (m21m22)n�22 ; (4.3)F s10 = � C2(n)((n� 4)(n� 2))2�(m21)n�22 + (m22)n�22 � : (4.4)The other two 
annot be �xed this way as in the non-homogeneous partof the equations there is no term � (m23)s2 or � (m23)s3 . One 
an �nd,however, the following relations between the next to leading and the leadingterms in the expansionF s21 = �(n� 3)h(m21 +m22 + p2)� 4np2iF s20+4n(n� 3)m21(m21 + p2) ��m21F s20+4n(n� 3)m22(m22 + p2) ��m22F s20��m21F s21 = (n� 3)h(p2 �m21 +m22) ��m21F s20 � F s20 i��m22F s21 = (n� 3)h(p2 +m21 �m22) ��m22F s20 � F s20 i : (4.5)Using di�erential equations (3.2) and (3.3), the expression (4.1) and theabove relations one �nds that F s20 satis�es the following system of di�erentialequations �m21 ��m21F s20 �m22 ��m22F s20 � p2 ��p2F s20 = 0 ; (4.6)n� 22 ��m21F s20 + p2 ��m21 ��p2F s20 = 0 ;n� 22 ��m22F s20 + p2 ��m22 ��p2F s20 = 0 : (4.7)
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ulate Multi-Loop Integrals 3829From this system one 
an dedu
e, eliminatingm2i derivatives, that F s20 ful�llsa very simple di�erential equation�p2 �2�(p2)2F s20 � 12n ��p2F s20 = 0 : (4.8)Its solution has the following formF s20 = 2S2(n;m21;m22)n� 2 (p2)�n�22 + S1(n;m21;m22) ; (4.9)where Si(n;m21;m22); i = 1; 2 are still unknown fun
tions. Using (4.7) and(4.9) one �nds ��m21S1(n;m21;m22) = ��m22S1(n;m21;m22) = 0 ; (4.10)so the fun
tion S1 does not depend on masses: S1(n;m21;m22) = S1(n). Thisinformation together with (4.5) and (4.6) gives S2(n;m21;m22) = 0. It meansthat F s20 is a fun
tion of n only. Its value will be found later on.Similar, but even simpler, analysis 
an be done for � = s3. From thedi�erential equations with m3 as an independent variable one �nds that F s30does not depend on the masses. Using that information, from di�erentialequations (3.2) and (3.3) one �ndsp2 ��p2F s30 = �12(n� 2)F s30 ; (4.11)whi
h gives F s30 = S(n)(p2)�n�22 ; (4.12)where S(n) is a fun
tion depending only on n. As the master integrals forn = 4 are analyti
 fun
tions at p2 = 0, the fun
tion S(n) and 
onsequentlyF s30 have to be identi
ally equal to zero. As all higher order 
oe�
ientsF s3i � F s30 ; i = 1; � � �, the whole series with � = s3 vanishes.The only unknown fun
tion F s20 (n) 
an be found using known analyti
alresult for F0(n; 0; 0;m2; p2) [3℄. Performing its expansion for large m2 and
omparing the appropriate terms with (4.1),where two masses were set tozero, one �ndsF s20 (n) = C2(n)16 �� 2(n� 4)2 + 3(n� 4) ��72 + �2�+O(n� 4)� : (4.13)



3830 M. Cza
hor, H. Czy»As F0(n; 0; 0;m2; p2) was given [3℄ in a form of an expansion aroundn = 4 the fun
tion F s20 (n) is given only in the form of the n = 4 expansion.As this was the last missing part of the expansion one 
an �nd now the
omplete formula. We report here only leading terms of the expansion, buthigher order terms 
an be easily found by algebrai
 means, if ne
essary.F0(n;m21;m22;m23; p2) = pole terms in (n� 4)+C2(n)�� 116m23 log2(m23) + 316m23 log(m23)� 116m23�72 + �(2)�+ 132�m21 +m22� log2(m23)+ 132�2m21 + 2m22 + p2 � 2m21 log(m21)� 2m22 log(m22)� log(m23)+ 1128�� 3p2 + 16m21 log(m21) + 16m22 log(m22)� 4m21 log2(m21)�4m22 log2(m22) + (8�(2)� 20)(m21 +m22)�+O� 1m23 ; n� 4��: (4.14)The pole terms being identi
al to the exa
t pole terms [3℄ are not re-ported here. As a 
ross 
he
k we have 
ompared the above result with thesmall p2 expansion of F0(n;m21;m22;m23; p2). We have expanded the �rsttwo 
oe�
ients of the expansion in p2 [3℄, dependent on m1;m2;m3, assum-ing m23 � m21;m22 and found 
omplete agreement between the two results.The result (4.14), whi
h is valid for arbitrary p2;m21 and m22 provided theyare mu
h smaller then m23, 
annot be, however, dedu
ed from the small p2expansion itself. 5. SummaryA short introdu
tion to the di�erential equations method used in 
al
ula-tion of the s
alar multi-loop integrals was presented. A nontrivial large massexpansion of the master two-loop sunrise integrals was obtained almost 
om-pletely by algebrai
 means. The only 'di�
ult' task, besides solving systemsof linear algebrai
 equations, was to solve two simple di�erential equations(4.8) and (4.11). It shows that the method is extremely powerful and opensnew possibilities in the �eld of multi-loop 
al
ulations.We would like to thank Mi
hele Ca�o for dis
ussion and 
areful readingof the manus
ript.
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