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LEPTOGENESIS, NEUTRINOLESS DOUBLE BETADECAY AND TERRESTRIAL CP VIOLATION�Werner RodejohannInstitut für Theoretishe Physik, Universität DortmundOtto-Hahn-Str. 4, 44221 Dortmund, Germanye-mail: rodejoha�xena.physik.uni-dortmund.de(Reeived Otober 11, 2001)Leptogenesis in left�right symmetri theories is studied. The usualsee-saw mehanism is modi�ed by the presene of a left-handed Higgstriplet. A simple onnetion between the properties of the light left-handedand heavy right-handed neutrinos is found. Preditions of this senario forneutrinoless double beta deay and terrestrial CP violation in long-baselineexperiments are given. These observables an in priniple distinguish dif-ferent realizations of the model.PACS numbers: 14.60.St, 14.60.Pq, 98.80.Cq1. IntrodutionOne of the problems waiting to be solved in partile physis and os-mology is the explanation of the baryon asymmetry of the Universe. SineStandard Model baryogenesis fails to produe a su�ient baryon asymme-try, other, new physis approahes are being followed. Among them standsout leptogenesis [1℄ as one of the most popular. Heavy right-handed Majo-rana neutrinos violate CP and lepton number during their out of equilib-rium deay, thereby � when sphalerons [2℄ onvert the lepton asymmetryin a baryon asymmetry � ful�lling all of Sakharov's three onditions [3℄.The impressive evidene for non-vanishing neutrino masses opens nowthe possibility to study this new physis problem on a broader phenomeno-logial basis. Typial models build to explain the neutrino mass and mixingsheme predit also heavy right-handed Majorana neutrinos, mostly due tosome see-saw [4℄ mehanism. It is now a fruitful question to ask if a given� Presented at the XXV International Shool of Theoretial Physis �Partiles andAstrophysis � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3845)



3846 W. Rodejohannmodel for neutrino masses also explains the baryon asymmetry via the lep-togenesis mehanism. A number of groups have studied this within theirrespetive approah [5℄.As the name already indiates, Left�Right (LR) symmetri theories rep-resent a natural way to onnet the light left-handed with the heavy right-handed neutrino setor. In [7℄ the relationship of both setors and the impaton leptogenesis was analyzed. An observable e�et of the relation betweenneutrino osillation and leptogenesis was then proposed in [8℄. The threeyet unknown phases in the left-handed neutrino mass matrix govern themagnitude of the e�etive neutrino mass measured in neutrinoless doublebeta deay and the size of terrestrial CP violating e�ets in long-baselineexperiments. Many models explain the baryon asymmetry as well as thelight mass and mixing sheme. Preditions of other observables are thenvery helpful to rule out or on�rm models. The relationship of terrestrialCP violation and leptogenesis was also analyzed in [9℄.The paper is organized as follows: In Setion 2 the onnetion of lep-togenesis and neutrino osillation in left�right symmetri theories is givenand the results on the baryon asymmetry are presented. The onnetion toterrestrial CP violation is made in Setion 3 and the onlusions are drawnin Setion 4.2. Neutrino osillation and leptogenesis in left�rightsymmetri theoriesIn LR symmetri theories the see-saw formula readsm� = mL � ~mDM�1R ~mTD ; (1)where mL and MR are Majorana mass matries generated by Higgs tripletsand ~mD is a Dira mass matrix. The matrix m� is further diagonalized byUTL m� UL = diag(m1;m2;m3) ; (2)where mi are the light neutrino masses. The symmetri matrix MR alsoappears in the Lagrangian�LY = liL �v ~mD ij N 0Rj + 12 N 0RiMRij N 0Rj + h:: (3)with liL the leptoni doublet and v ' 174 GeV the vauum expetation value(vev) of the Higgs doublet �. Diagonalizing MR brings us to the physialbasis UTR MR UR = diag(M1;M2;M3) : (4)



Leptogenesis, Neutrinoless Double Beta Deay : : : 3847The asymmetry is aused by the interferene of tree level with one looporretions for the deays of the lightest Majorana, N1! � l and N1! �y l:" = � (N1 ! � l)� � (N1 ! �y l)� (N1 ! � l) + � (N1 ! �y l)= 18� v2 1(myDmD)11 Xj=2;3 Im(myDmD)21j f  M2jM21 ! : (5)The funtion f inludes terms from vertex and self-energy ontributions:f(x) = px�1 + 11� x � (1 + x) ln�1 + xx �� ' � 32px : (6)The approximation holds for x� 1.In our approah, the left�right symmetry [10℄ plays an important role.It relates the unitary matries UL and UR to eah other sine the tripletindued Majorana mass matries in Eq. (1) have the same oupling matrixf in generation spae:mL = f vL and MR = f vR : (7)The numbers vL;R are the vevs of the left- and right-handed Higgs triplets,whose existene is needed to maintain the left�right symmetry. They reeivetheir vevs at the minimum of the potential, produing at the same timemasses for the gauge bosons. In general [10℄, this results invL vR '  v2 ; (8)where the onstant  is a model dependent parameter of O(1). Insertingthis equation as well as Eq. (7) in (1) yieldsm� = vL �f � ~mD f�1 v2 ~mTD� : (9)If one ompares the relative magnitude of the two ontributions in Eq. (1),denoting the largest mass in the Dira matrix with m, one �nds thatj ~mDM�1R ~mTDjjmLj ' m2vR 1vL ' m2 v2 : (10)Here, we only used Eq. (8) and assumed that the matrix elements of f andf�1 are of the same order of magnitude. It is seen that this ratio is of orderone only for the top quark mass, i.e. if one identi�es the Dira mass matrixwith the up quark mass matrix.



3848 W. RodejohannWe �nally speify the order of magnitude of vL;R. The sale ofm� = vL fis 10�2 : : : 10�3 eV, whih, for not too small f , is only ompatible withvL vR '  v2 for vR ' 1014 : : : 1015 GeV. This means that vR is lose to thegrand uni�ation sale and vL is of the order of the neutrino masses, whihis expeted sine mL is the dominating ontribution to m� . In the following,vR = 1015 GeV and  = 1 is assumed.From the deay asymmetry " the baryon asymmetry YB is obtained byYB =  � "g� ; (11)where  ' �0:55 is the fration of the lepton asymmetry onverted intoa baryon asymmetry via sphaleron proesses [11℄, � a suppression fatordue to lepton-number violating wash-out proesses (see [6℄ for an improved�t) and g� ' 110 the number of massless degrees of freedom at the timeof the deay. Experimentally, the preferred range for the asymmetry is [12℄YB ' (0:1 : : : 1)� 10�10.The strategy goes as follows: In Eq. (9) one inserts the solar solution, i.e.the small angle (SMA), large angle (LMA) or quasi-vauum (QVO) solution.The light neutrino masses mi are obtained by assuming the hierarhialsheme. The Dira mass matrix ~mD an be expeted to be an up (down)quark or lepton mass matrix, denoted mup; mdown and mlep, respetively.Eq. (9) is then solved for f =MR=vR and MR is diagonalized to obtain thebaryon asymmetry via Eqs. (5), (11).Performing a random san of the allowed osillation parameters (seee.g. [13℄) and the three phases, it is found that if ~mD is a down quark orlepton mass matrix, m1 should not be too small, i.e. larger than 10�6 eV.The LMA solution gives in more ases the orret baryon asymmetry andis thus slightly favored over SMA and QVO. If ~mD is an up quark massmatrix, �ne tuning of the parameters is required. Due to the large hierarhyof the quark and lepton masses, it is su�ient to use a mass matrix whihhas just the heaviest mass as the (33) entry. Fig. 1 shows YB in ase of~mD = mlep.If we identify ~mD with the down quark or harged lepton mass matrix,then the ratio in Eq. (10) is always muh smaller than one, so that theseond term in Eq. (9) an be negleted and it follows [8℄f ' 1vL m� : (12)Therefore, with the help of Eqs. (2), (4), (7), one arrives at a very simpleonnetion between the left- and right-handed neutrino setors:UR = UL and Mi = mi vRvL : (13)
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YB � 1010 <� 4:1 11� 2 s3 Æ � mGeV�2�8<:�s2�+4 s3 sÆ 2�� m1q�m2� + 2�s2(�+Æ)�2 s3 s2�+Æ� m1q�m2A9=;; (15)where Æ = os Æ, s2� = sin2� and so on. The solar (atmospheri) �m2 isdenoted �m2� (�m2A). It is seen expliitly that YB vanishes if CP onserva-tion holds, i.e. if all phases are zero or �. The asymmetry is proportional tothe square of the heaviest entry in ~mD, i.e. the tau or bottom quark mass.Furthermore, YB is proportional to the lightest neutrino mass eigenstate m1,whih an be used to set a lower limit on it, it is of the order 10�7 to 10�8 eV.3. Terrestrial CP violationIf ~mD = mup then m� reeives a ontribution from the onventional see-saw term ~mDM�1R ~mTD and the proportionality to m1 vanishes, see [7℄ fordetails.The remaining unknowns in this approah are the three CP violatingphases in the mixing matrix UL and the size of the smallest mass eigen-state m1. Within the parametrisation Eq. (14) the phases � and � governthe magnitude of neutrinoless double beta deay. The third phase Æ is re-sponsible for CP violating e�ets in osillation experiments.The latest SuperKamiokande [14℄ and �rst SNO [15℄ data favor LMAover the other solar solutions. This is good news sine leptoni CP viola-tion in long-baseline experiments an only be measured if nature has hosenLMA. E�ets of CP violation are proportional to the re-phasing invariantdeterminant JCP [19℄, whih shows up e.g. in the di�erene between the CPonjugated osillation probabilitiesP (�e! ��)�P (��e! ���) / JCP = 18 sin 2�1 sin 2�2 sin 2�3 os �3 sin Æ� 14 sin �3(1� sin2 �3) : (16)In addition, the higher �m2� is, the higher are the prospets for deteting theCP violation [16℄, though the details depend on the experimental failities.In the hierarhial mass sheme, LMA also provides the highest Majoranamass for the eletron neutrino, whih an be measured through neutrinolessdouble beta deay (0���). It is de�ned as



Leptogenesis, Neutrinoless Double Beta Deay : : : 3851hmi =Xi U2L eimi (17)and due to the omplex matrix elements UL�i there is the possibility ofanellation [17℄ of terms in Eq. (17).The quantities hmi and JCP are observables, whih are depending onthe CP violating phases whih also govern the lepton asymmetry. It istherefore interesting to ask if the parameters that produe a satisfying YBalso deliver sizable hmi and/or JCP . To study this, a random san of theallowed variables of the LMA solution was performed. The highest frationof parameter sets providing su�ient YB ours for highm1 and a �low� Diramass matrix, i.e. ~mD should be a lepton (43 %) or down quark (23 %) massmatrix. It is interesting to note that in the most simple realization of LRmodels ~mD is the harged lepton mass matrix. For lower m1 or ~mD = mupthe fration of parameters produing a orret asymmetry dereases to lessthan 5%. As mentioned, basially no m1 dependene exists for ~mD = mup.Approximately all the parameter sets providing a orret asymmetry alsoprodue hmi bigger than 2 � 10�3 eV, the lowest limit ahievable by theGENIUS projet [18℄. For m1 = 10�3 eV, about 4 % of the parameter setsgive hmi bigger than 0.01 eV. Fig. 2 shows the distribution of events in thehmi � sin2 �3 plane. The di�erene for di�erent ases is easily seen.
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Fig. 2. Distribution of events in the hmi � sin2 �3 plane for the LMA solution,di�erent m1 and ~mD.
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