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FORMAL LANGUAGES AND MODEL THEORETICPERSPECTIVES IN PHYSICS�Jerzy KrólInstitute of Physi
s, University of SilesiaUniwersyte
ka 4, 40-007 Katowi
e, Polande-mail: iriking�po
zta.fm(Re
eived O
tober 15, 2001)We show that re
ent big growth of appli
ations of Category Theory toPhysi
s might be asso
iated with unavoidable appearan
e of model theoret-i
al stru
tures 
oming from formal languages used to des
ribe mathemati
almodels of so 
alled physi
al reality. Even in the simplest 
ase of Elemen-tary Proto
olar Theory we are (to ful�l the 
onditions of 
onsisten
y andsimpli
ity of the language) 
on�ned to some model theoreti
al limitations.We dis
uss some examples. We also formulate 
onje
tures and perspe
tivesfor future investigations.PACS numbers: 02.10.Ab, 03.65.Ca1. Does physi
s need abstra
t tools of Model Theoryor Category Theory?One, quite obvious answer is: No. As any other abstra
t mathemati
altool, this might be avoided just by simple keeping tra
k of experiments andtheir dire
t data. Let us try to des
ribe what it means that we have theorybased on dire
t experimental data. First, we 
hoose language as simple aspossible (but 
onsistent) whose individual variables refer to (�nite) numbersof experiments. So, our senten
es 
orresponding to experiments are to beformulated in the language of the so 
alled �rst order predi
ate logi
 and
onsisten
y of the senten
es is de�ned with respe
t to this logi
. The 
hoi
eof �rst order logi
 is motivated by minimal theoreti
al entanglement of thislogi
 (see Se
tion 2) and ability to speak dire
tly about set of experimentsand its results. We have to speak about some logi
 be
ause of the 
onsisten
y� Presented at the XXV International S
hool of Theoreti
al Physi
s �Parti
les andAstrophysi
s � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3855)



3856 J. Królof theory we wish to develop. Henkin had proven the 
ompleteness of the�rst order predi
ate logi
 by means of expli
it 
onstru
tion of some modelsfor theories in this language [34℄. In parti
ular it was proven:Theorem 1 If T is a 
onsistent theory in the language of �rst order pred-i
ate logi
 and if m is a 
ardinality of the set of its primitive symbols, thenT is satis�ed in some domain of 
ardinality m.In parti
ular for m = �Æ we have original Löwenheim�Skolem Theorem [32℄.In fa
t it holds: [36℄Theorem 2 (Lindström) First order logi
 is the only one whi
h is 
losedwith respe
t to ^;:;9 and su
h that theorems of Compa
tness and Löweheim��Skolem hold.Next let us suppose we are performing n experiments and as a result we havea set of values for set of observables to be measured in ea
h of them. We wantto des
ribe the language whi
h would enable one to speak in 
onsistent anddire
t way about this situation and whi
h would be as simple as possible.Thus the set of symbols of the language should 
ontainset of symbols (variables) for measurements: m1; m2; : : :set of symbols (variables) for the results of measurements (numbers):xm1 ; xm2 : : :set of symbols (variables) for the observables to be measured: ob1;ob2; : : :set of predi
ate symbols for expressing that in measurementmi we havemeasured an observable obj and we are obtaining x: x(obj; mi) : : :We require that the (intended) interpretation of the theory in su
h lan-guage is the stru
ture where domainsfor mi are measurements ni, i = 1; 2; : : :for xj are numbers rj , j = 1; 2; : : :for obk are observables Obk, k = 1; 2; : : : for any natural number ofperformed measurements.The theory in the above language enables one to speak about performedmeasurements and to 
atalogue their results. This theory is to be 
alled Ele-mentary Proto
olar Theory (EPT). Its intended models are simply measure-ments � any �nite number of them along with their results, 
orrespondingto some �nite number of observables. None of the �nite number of experi-ments is to be expressed by the axioms of the theory so, this theory shouldhave models in any �nite 
ardinality. But being the �rst order it holds: [9℄
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tives in Physi
s 3857Theorem 3 If theory T in the �rst order language has any arbitrarily large�nite model it has also in�nite model.So, our theory speaks as well about in�nite number of measurements andabout 
olle
ting their results. But in fa
t we have:Theorem 4 Any Elementary Proto
olar Theory has nonisomorphi
 non-standard models.Proof: this is just reformulation of Löwenheim�Skolem theorem and observ-ing that if M, N are two in�nite models of the Theory of di�erent 
ardinalitiesthen M is not isomorphi
 to N.The pe
uliarity of this Theorem 
omes from our intention to formulateEPT whi
h would be expressing uniquely the simple situation of 
ataloguingexperimental data (any �nite) in a 
onsistent way; this is not possible andin fa
t we are talking simultanously about any number of nonisomorphi
domains where our theory is ful�lled. This is unavoidable.We do not list up expli
itly nonlogi
al axioms of the theory; we simplyassume they do exist and they would enable us to ful�l our minimal require-ments � to talk 
onsistently about any �nite number of experiments.If su
h a theory does not exist it means we 
annot talk about any �nitenumber of experiments in a dire
t (�rst order logi
) and formally 
onsistentway. This is even worse than to have nonisomorphi
 models: the ability of
onstru
ting a formally 
onsistent physi
al theory based on experiments isquestionable.Now let us suppose we are performing some number of experiments, sayk 2 N. In k-th measurement we are getting a natural number k as anoutput. We are formulating some senten
e (predi
ate) in the �rst orderlanguage about natural numbers. It holds:Theorem 5 Suppose, that we have 
ountably in�nite number of experimen-tal outputs, whi
h are interpreted by Standard Natural Numbers. With ea
houtput we asso
iate some predi
ate related to natural numbers (if only it isexpressible in the �rst order predi
ate language, where ea
h Standard NaturalNumber has a name). Also, with ea
h output we asso
iate some true for-mula of Peano Arithmeti
. Even then, there is no 
onsistent Theory (in thelanguage of the �rst order logi
), whi
h would be generated by the above se-quen
e, and whi
h would allow one to des
ribe what Standard Natural Num-bers are.Proof: the theory (No,S, +, �) of the stru
ture of Standard Natural Numbersis not axiomatizable.The explanation of this is due to essential in
ompleteness of Peano Arith-meti
 (PA) whi
h is axiomati
, �rst order theory of natural numbers. Infa
t it holds: [11℄



3858 J. KrólTheorem 6 PA has 2!o nonelementary equivalent 
ountable models.This phenomenon is a dire
t 
onsequen
e of Gödel In
ompleteness Theorem[37℄. From the other side PA has unique Standard Model whi
h is thestru
ture (No,S, +, �) whereNo is a set of all natural numbers with su

essorfun
tional symbol S. The theory Th(No) of all true �rst order senten
es inthe standard stru
ture 
an be 
hara
terized: [8℄Theorem 7 The Theory Th(No) is hereditarily unde
idable.Noti
e, that hereditary unde
idability is stronger 
ondition than unde
id-ability [8℄. We also know that: [11℄Theorem 8 If Theory T is 
onsistent, 
omplete and axiomatizable then Tis de
idable.Th(No) is 
omplete be
ause all its true senten
es are true in the model No(from de�nition); it is also 
onsistent (it has a model No ). Then we 
an
on
lude:Theorem 9 Th(No) is not axiomatizable.So, although we have Standard Model for PA whi
h is unique we 
annotuse any re
oursive set of senten
es (in �rst order language) generating thetheory Th(No). PA, being des
ribed formally by a re
oursively axiomati-zable means, allows in�nitely (
ontinuous) many nonisomorphi
 
ountablemodels. In fa
t we have proved:Theorem 10 One 
annot give an in�nite, in fa
t, re
oursively enumerablelist of senten
es in the language of the �rst order predi
ate logi
 des
rib-ing experimental outputs whi
h would be expressing the theory of all naturalnumbers whi
h order that list.The order and re
oursive 
hara
ter of in�nite experimental data 
annot beexplained by the theory generated by proto
olar senten
es asso
iated to thedata, even in the 
ase when every su

essive experiment is produ
ing su
-
essive natural number. Even in�nite sequen
e of experimental proto
olarsenten
es plus PA are not able to 
over formally all true senten
es in thestru
ture (Mo, S, +, �), whereMo are natural numbers indexing experimentsunder 
onsideration.Theorem 11 We are performing in�nite 
ountably many experiments gen-erating predi
ates fP n� (xn)g1n=1 about natural numbers. We 
annot generatethe theory of standard natural numbers (even for every n we have xn = n).
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tives in Physi
s 3859This theorem announ
es an important thing: we 
annot treat experimentaldata literally. Senten
es fP n� g(n) expressing that n is just n, for every n,do not express that we are in fa
t dealing with unique domain of standardnatural numbers. So, literal and 
onsistent treating of experimental datais not fully legitimate. This is also a hint toward ne
essity to use ModelTheoreti
 analysis, at least in some 
ases when we are to formulate formaltheories with intention to be very tightly 
onne
ted to experiments.Even if we are treating every measurement and every result 
orrespond-ing to it (expressed by predi
ates) as axioms we are formally talking aboutnon
ountably many nonequivalent domains and there is no way to improveit by performing more experiments and adjoining more proto
olar senten
esas axioms (in fa
t any �rst order) into the language of the theory.We 
an, of 
ourse, avoid this strange behaviour just by 
onsidering onlya �nite number of formal senten
es, say k, 
orresponding to �nite numberof experiments but again we 
an try to built the formal, 
onsistent theory(in �rst order language), whi
h would be about those proto
olar senten
es(about any �nite number of them), having arbitrarily large �nite intendedmodels; the reason is the statement: `We have exa
tly k-�nite events' is nota logi
al axiom and is not nonlogi
al as well (we do not formulate the theoryjust about k events and not about k+1, there is no logi
al reason for that).Also, assuming that we already know well what the set of all naturalnumbers is (or any other mathemati
al obje
t is) not 
aring about their notunique formal des
ription as a �rst order theory, we are obtaining the so
alled many-sorted logi
 [36℄. This logi
 
an be equivalently formulated as a�rst order [36℄ and Löwenheim�Skolem theorem also holds for it (althought
ompa
tness theorem does not hold).If it is about Set Theory it 
an have axiomati
 form, so 
alled Zermelo�Fraenkel Set Theory (ZF) possibly with addition of the axiom of 
hoi
e(ZFC). ZFC is the theory in the �rst order language without any fun
tionalor 
onstant symbols; the only predi
ate symbol is binary 2-symbol, express-ing property of being an element [10℄. As usual we have 
ountably manyindividual variable symbols. As the �rst order theory (possibly 
onsistent)it posseses also a 
ountable model (from Löwenheim�Skolem theorem). Thisis a little bit strange but let us noti
e that this model 
an be standard in thesense of a

ordan
e of its internal E-symbol (expressing being an element)to external, usual 2-symbol [38℄. Moreover, this model 
an be standardwith respe
t to equality whi
h 
an be the same as external one (normalmodel). Then we see that for ZFC there does not even exist a unique Stan-dard Model and the variety of its standard and nonstandard models is realyhuge [10, 33℄. ZFC does not respe
t our intention to speak uniquelly aboutsome standard universe of sets. Moreover, we 
an de�ne Natural Numbersin ZFC (e.g. [46℄). If one tries to regard ZFC as a basi
 theory this wouldlead to relativisation phenomena even for �nite natural numbers.



3860 J. Król2. Higher order theoriesWe have seen that in some sense �rst order theory of Standard Natu-ral Numbers is not experimental � it 
annot be generated by a 
ountablenumber of �rst order axioms 
oming from the experiments.Turning to the higher order theory one be
omes immediately equippedwith some additional theoreti
al tool. The se
ond order theory is the onebased on the language allowing, roughly speaking, for quanti�
ations oversubsets of some set M and over fun
tions F :M �M !M . The �rst ordertheory allows for quanti�
ations only over elements of set M .Some notions whi
h are not unique in �rst order theory in higher ordertheories sometimes be
ome unique (up to isomorphism). A good exampleis the ordered �eld of real numbers i.e. the stru
ture R = (R;+; �; <; 0; 1).We have: [36℄Theorem 12 There does not exist a set of axioms in the �rst order logi
whi
h would 
hara
terize R uniquelly up to isomorphism.Proof: it is dire
t 
onsequen
e of Löwenheim�Skolem theorem and observa-tion that language of the �rst order logi
 is 
ountable and the number of�rst order formulas true in R is 
ountable. Then there exists a 
ountablemodel; this model is not isomorphi
 to R.But it is known that se
ond order logi
 
hara
terizes R uniquely up toisomorphism [36℄.The axiom whi
h 
annot be formulated in �rst order logi
 is the 
om-pleteness axiom:8X � R(if:(X = ;) is bounded, then X has least upper bound)This axiom is dealing with universum of Set Theory by taking use of powerset operation. This phenomenon is 
hara
teristi
 for higher order theories �we have to rely on the set theory whi
h in turn has very nontrivial spe
trumof its models. So, we 
an sometimes avoid nonuniqueness of des
riptionof some mathemati
al stru
tures (in �rst order language) by appealling tohigher order language but at the expense of dealing with nonunique models
oming from set theory. (By the se
ond Gödel In
ompleteness Theorem [37℄the statement `ZFC has a model' 
annot be proved by formal means in ZFCitself, but if there does not exist any model of ZFC at all, ZFC would bein
onsistent [10℄.) For higher order logi
s we have also many nonisomor-phi
 nonstandard models whi
h were originally 
onstru
ted by Henkin [35℄.He also showed that the higher order logi
 is not 
omplete without takinginto a

ount these nonstandard models. Higher order logi
 is 
omplete onlywith respe
t to its nonstandard models. Hen
e, we see that we are expressing
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s 3861some uniqueness of mathemati
al stru
tures in higher order theories by useof the language whi
h is not 
omplete by itself with respe
t to standardstru
tures [45℄.There exists so 
alled Hilbert thesis [36℄ whi
h states that it should bepossible to translate all mathemati
al statements (nonlogi
al) into �rst orderlanguage and proofs (provability relations), even nonformal, whi
h exist inmathemati
s, would be
ome formal in the sense of �rst order logi
.This is also plausible that most of the formal, based on mathemati
s,reasonings in physi
s 
ould be (in prin
iple) expressed in �rst order logi
.Every day language used in physi
s does not 
are about its order and itis rather arbitrary mixture of orders and self referential expressions. Butthis does not 
hange the fa
t that in the end physi
s tries to refer to formalreasonings whi
h are dependent on distinguishing orders and as a result tosituations sensitive for theory of models.3. Why do physi
ists in pra
ti
e avoid model theoreti
 reasoning?We list here some reasons answering the question in the title.1. Constru
tion of models for the �rst order theory (and not only [49℄)might be performed by the use of 
losed well formed formulas (
w�)of the language of the theory; there is an in�nite number of them. Butin pra
ti
e we are 
ondu
ting physi
al analysis in �nitisti
 way, usingonly �nite number of senten
es from the every day language. Evenformal languages are 
onsidered �nitisti
ally. From the other side wefreely analyse in�nite numbers of various formal obje
ts like quantumstates, dimensions of Hilbert spa
e, parti
les, degrees of freedom et
.So, the �niteness is only with respe
t to formal languages used.2. We do not analyze the situation of having in�nite number of formulasor senten
es whi
h are expressing something in nonintended way, whi
hseems to be unavoidable be
ause of the formal language used.3. We do not explore the stru
ture of the senten
es; they apperentlylook like being transparent. Be
ause of this the logi
 also seems to betransparent.4. We treat mathemati
s as a 
losed, ready to use, given for grantedsystem of pro
edures whi
h 
an or 
annot be used for spe
i�
 appli
a-tions.5. The above fa
ts always allow one to be in a distinguished position;from one side we are outside of the internal problems and te
hniquesspe
i�
 to mathemati
s. We use only pro
edures generated somewhere



3862 J. Króloutside and we have dire
t a

ess to them by using transparent lan-guage. From the other side we have always dire
t a

ess to experimentsand their results whi
h is possible also be
ause of the transparen
y anddire
tness of the language.6. Be
ause of the assumed transparen
y of the language (formal) whatwe freely use is not a formal language but the one whi
h mixes orders,logi
s and is selfreferential.7. Also be
ause of the transparen
y of the language we treat obje
ts andits names as equally managable.Those 
onditions are in
identally 
hara
teristi
 also for 
lassi
al des
rip-tions of the physi
al world. The 
lassi
al language seems to be nonappro-priate to des
ribe some Quantum Me
hani
al phenomena. That is why, themain �eld where Model Theory would �nd appli
ations is Quantum Me-
hani
s.4. Some arguments for using tools of Model Theory in physi
sAlthough we have given some eviden
e for nonuniqueness of formal de-s
riptions of some simple situations dealing with making experiments and
ataloguing their results, we still do not see the ne
essity of using tools ofModel Theory in physi
s. Here we 
olle
t arguments for the existen
e ofappropriate pla
e for them in physi
s.First: physi
s is not free of di�
ulties; some of them are very basi
 (e.g.Quantum Gravity and its ba
kground independent formulation [48℄).Se
ond: the arguments 
oming from Model Theory are purely mathe-mati
al in fa
t, and, in prin
iple, 
ould be used in physi
s (and in fa
t theyare [see Se
tion 5℄).Third: every day physi
al pra
ti
e is to built various mathemati
al mod-els of the so 
alled reality. Language is also a part of the reality (with itswell established formal shape). Why we do not need at all the models of thelanguage in a 
orre
t mathemati
al modelling of the reality?From the dis
ussion of the previous paragraphs we 
an formulate thegeneral rule of transparen
y of the language:General Rule 0 We are talking dire
tly about the results of experimentsand we are building dire
t mathemati
al models of the reality. Pre
ision ofthe measurement is the only obstru
tion for models to be perfe
t.We 
learly see that the above rule is not valid in QM. There are inherentreasons for measurements not to be pre
ise, it does not matter how pre
isemeasuring devi
es are. It might be that this is 
onne
ted with the opposite
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s 3863rule of nontransparen
y of the language and this would show exa
tly thepla
e where Model Theory might be applied? We 
an formulate the possiblerule as follows:General Rule 1 Formal languages (and also physi
al reasoning based onthem) are talking dire
tly about their models, not about reality, usually arenot uniquely determined. Experiments and their results are given to us bynonavoidable proto
olar formal language. This language is asso
iated to themas a formal language to its models.Let us observe that the language of QM is not usually dire
tly 
onne
tedto the so 
alled reality: we are talking about quantum states, or amplitudesfor example whi
h are not observable in prin
iple. They have only the-oreti
al meaning as a nondispensable part of the stru
ture of the theory.Observables, even 
ommuting lose their meaning as having assigned valuesbefore experiment (see Ko
hen�Spe
ker theorem in Se
tion 5). One 
an-not measure non 
ommuting observables simultaneously with the arbitrarilyhigh pre
ision. All this is not just failure of our des
ription and/or la
k ofpre
ision of the measurements but they are very features of reality � as ifformal language would be
ome the part of it. One proposition for realiza-tion of these ideas in 
ontext of QM 
an be found in Se
tion 5. It is alsowell known that logi
 generated by QM is not 
lassi
al [51℄. The so 
alledQuantum Logi
s are intensively explored, and also from this perspe
tive [7℄the 
onne
tion between QM and Category Theory is evident.Anoher 
lue for using tools of model theory 
omes from existen
e ofhighly theoreti
al (spe
ulative) bran
hes of physi
s. There are: Superstringtheory (so 
alled M-theory and related AdS/CFT 
orresponde
e, the prin
i-ple of Holography), Quantum Gravity approa
hes (ba
kground independenttheories [loop QG and 
ategori�
ation℄, 
ausal sets) or even Cosmology.Formal mathemati
al models require formal languages whi
h are subje
tsto Model Theory. Those bran
hes of physi
s are not so tightly 
onne
tedwith experiments and formal aspe
ts like internal 
onsisten
y of the theoryplays a big role here.This is the reason why modelling of the formal languagemight be also a valuable tool (see e.g. [43, 44℄). Let us noti
e an importantfeature of a model theoreti
al approa
h: the formal language be
omes anobje
t whi
h in turn is investigated. From mathemati
al point of view weknow that the obje
t in question is spe
ial 
ategory whi
h is 
alled topos[49℄. That is why the appearan
es of topos stru
ture in physi
al theories (inessential way) give a strong hint toward ability of model theoreti
al analysis.Also, our dealing with various non trivial (whi
h are not Set) Categories, inthe 
ontext of physi
al 
onsiderations justi�es Model Theoreti
al approa
h.Category Theory [7℄ is a 
orre
t language to talk about toposes whi
h inturn allows model theory 
onsiderations [49℄.



3864 J. KrólWe shall return to this point in Se
tion 6. In the next se
tion we givephysi
al examples where Model Theory and Categories are essentially in-volved. 5. Examples5.1. QM and toposesIt has re
ently been proposed [1,2℄ how the stru
ture of the toposes arisesin QM. It was a
hieved by restating the so 
alled Ko
hen�Spe
ker theoremin QM [3℄ in terms of nonexisten
e of global elements in a spe
ial toposSetW? (of sheaves of dual Boole'an subalgebras of the latti
e of proje
tionoperators in Hilbert spa
e H, dim(H)> 2).Theorem 13 (Ko
hen�Spe
ker 1965, 1967) Let � be a family of ob-servables (self adjoint, linear operators) over Hilbert spa
e H, dim(H)> 2su
h that identity Id 2 � and let us 
onsider fun
tions (partial homomor-phisms):h : �! R su
h thatwhenever A;B 2 � and [A;B℄ = 0 andh(AB) = h(A)h(B); h(�A+ �B) = �h(A) + �h(B); h(Id) = 1then there does not exist global homomorphismh : �! R
ompatible with partial ones.Hen
e, no global assignment of real values to observables is possible indim(H)> 2. The Isham 
onstru
tion shows that nonexisten
e of 
ompatibleextension for partial valuations over all observables from � is expressibleexa
tly as, so 
alled fun
tional 
ondition for nonexisten
e of global elementin the topos SetW? : 
jW1(�) = 
jW2(�) ;where 
 is a global element and � is any operator from � and from the
ommon part of W1 and W2 as any subalgebras of �. This result is a di-re
t indi
ation for a deep relation between toposes � whi
h are models ofhigher order (intuitionisti
) logi
 � and QM. Also in the 
ontext of Quan-tum Gravity, Isham and Butter�eld [1℄ have pointed out 
onne
tions withtoposes.
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s 38655.2. Models of ZFC and QMWe propose here a dire
t appli
ation of methods of Model Theory toQM whi
h 
ould be, at least, applied to interpretational investigations ofQM. The work is in progress. Let us withhold the statement that Zermelo�Fraenkel axiomati
 Set Theory with the Axiom of Choi
e- ZFC -speaks di-re
tly about �reality�. It tells the truths about its models. Let us supposethat ZFC is 
onsistent, so, some model of ZFC does exist. We know fromLöwenheim�Skolem theorem and from 
ollapsing Mostowski's lemma [10℄that there exists Countable Transitive Model (standard) (CTM) � M.The senten
e ': �M is 
ountable� is not provable in M (if it were it would
ause that every set in M was 
ountable, but 2�o is not 
ountable in ZFCand also in M). It means that the fun
tion f: N ! M(`1 to 1') is not a setin M. Of 
ourse, from the outside any fx 2 M j	g is 
ountable as being asubset of N.We 
laim that dis
reteness of measured spe
tra of some physi
al observ-ables might be 
onne
ted to 
ountability of Models of ZFC where also realsR are 
ountable from the `outside' (with respe
t to metatheory). Noti
e,that all senten
es expressing any �rst order property of ZFC are valid as wellin any 
ountable model M. The set of all real numbers in M is also 
ount-able from the outside. So, measuring any real valued quantity in M gives us
ountable spe
tra. This observation is basi
 in trials to explain QuantumMe
hani
al phenomena via Model Theory. This is in total agreement withour General Rule 1 from Se
tion 4.In a dire
t way we 
an (by the use of formal theory) speak about mod-els of the theory (not about the so 
alled reality); that is why there aresituations where our statements about what we a
tually measure are `�l-tered' through the models of the theory. In the 
ase of ZFC where almostall 
lassi
al mathemati
s 
an be expressed [36℄ we have a very fundamen-tal phenomenon 
omparable to generating Everettian worlds. Any outputof the measurement is primarily 
onne
ted (if it is about its set theoreti
alproperties) to some model of ZFC (not ne
essarily to Standard one whi
h isnot formally distinguished but only intended).To be more pre
ise we need the method of so 
alled for
ing whi
h wasoriginally invented by Cohen [38℄ as a way to prove independen
e of Axiomof Choi
e and Continuum Hypothesis from the axioms of ZF.From our perspe
tive for
ing is a passage from one model M of ZF(C)to another model N just by adding some set (or sets) not originally in
ludedin M. Su
h a set is 
alled generi
. If the Generi
 Set is just a subset of theset of natural numbers we 
all it generi
 real and this is what Cohen for
ingadds to M (we 
all it also Cohen real). For 
ountable models of ZF(C) thegeneri
 set Q always exists [10℄. The pro
edure of for
ing is a beautiful andnontrivial subje
t in itself and sin
e 1963 it has been developed in variousdire
tions:



3866 J. KrólA. Boole'an Valued Models [29℄B. Model theoreti
 For
ing (�nite and in�nite) (Robinson in seventies [36℄).C. Categori
al (topos theoreti
 For
ing) [30℄.D. For
ing in so 
alled Des
riptive Set Theory [47℄.In the 
ontext of our approa
h to QM we formulate the following ruleshowing the role of for
ing;General Rule 2 Every output of the experiment (whi
h is a real number)is given by a for
ing whi
h adds this real (reals) into some model (models)of ZF(C).This supposition does not mean we have a good knowledge of Modelsof ZF(C) under 
onsideration. By the above supposition we 
an treat realnumbers as being bounded by the for
ing pro
edure, so, they are modeldependent rather then reals whi
h stay the same no matter what is the
ontext in whi
h they appear. All this requires more detailed analysis. Thework on this approa
h is 
arried out by the author.5.3. Non-Standard Analysis and Physi
sDeep 
onne
tions of QM and Model Theory were exhibited in the 
on-text of the so 
alled Non-Standard Analysis (NA) [40℄. NA was 
reated anddeveloped by Abraham Robinson in sixties [18℄. Robinson had made a huge
ontribution to many bran
hes of Model Theory [36℄. NA is a dire
t appli-
ation of nonstandard models (in the sense of �rst order predi
ate logi
) ofthe theory of real numbers into mathemati
al analysis. This enables one, forthe �rst time, to speak 
onsistently about in�nitely big and small quantities.The work of Farrukh shows usefulness and naturality of nonstandard notions(for example Nonstandard Hilbert Spa
e) in the 
ontext of QM and its useof so 
alled rigged Hilbert spa
es and notorious use of Æ-fun
tions in QM.Mu
h work on NA and QM was also done by Kobayashi [15, 16℄. He hadapproa
hed the problem of measurement by means of model theoreti
al 
on-stru
tions. Robinson also wrote some papers on physi
s and NA [17℄. NA isabout reals, so it obviously 
an be formally adopted into many bran
hes ofphysi
s and mathemati
s, but usually (in the 
ontext of physi
s or analysis)it gives equivalent des
ription and sometimes simpli�es formal proofs [18℄.The appearan
e of NA and its appli
ations to physi
s are big 
lue toward
orre
tness of the use of Model Theoreti
 methods in physi
s.
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tives in Physi
s 38675.4. GR and toposesThere exists 
ategori
al approa
h to the analysis of in�nitesimals so
alled Syntheti
 Di�erential Geometry [5℄. The work of Moerdijk and Reyes[6℄ deals with models of in�nitesimal analysis in toposes whi
h are naturallygenerated in this 
ontext. The attempts to apply these ideas to physi
s weremade in several papers [12�14℄. They have tried to pla
e General Relativityin the 
ontext of intuitionisti
 logi
 showing that the language of Syntheti
Di�erential Geometry and toposes enables us to see various spa
e-time solu-tions of the Einstein's Equations as just single varying obje
t (in the senseof Lawvere [27℄). Isham [1℄ also suggests the usefulness of Syntheti
 Di�er-ential Geometry in some approa
h to QG � so 
alled Consistent Historiesformulation. 5.5. The program of 
ategori�
ationExpli
itly, the program of 
ategori�
ation has been proposed by Baez[28℄. In the eighties Abbhay Ashtekar [50℄ have introdu
ed his new 
oordi-nates into GR. Sin
e then it was possible to develop ba
kground independentnonperturbative quantum theory of gravity via so 
alled loop QG [48℄. Thistheory for the �rst time was able to produ
e expli
itly solutions of quantumWheeler�de Witt equations. Witten then 
onje
tured [28℄ 
lose 
onne
tionof this solution to Jones invariant of links.Many authors have produ
ed invariants of 3-dim and 4-dim 
ompa
tmanifolds [21�23, 25℄. It was along growing eviden
e for ne
essity to useabstra
t 
ategories in this 
ontext (for example Hopf or Braided Monoidal
ategories). These invariants are widely used in 
onne
tion with modellingof quantities (as transition amplitudes) of QG: from the one side we havetriangulations of manifolds and 
olouring te
hnique asso
iating to it repre-sentations of groups and vertex operators resulting in 
al
ulations of invari-ants as tra
es in the so 
alled tensor 
ategories, but from the other side theinvariant is a real topologi
al invariant (it does not depend on triangula-tion used). For some reasons representations of groups should be repla
edby Categories (Category of Representations of Hopf algebra) entering thehigher order 
ategories [23℄.Very a

urate language for 
onsidering QG in this 
ontext is the one
oming from the so 
alled Topologi
al Quantum Field Theories where general
obordisms of the manifolds 
orrespond to state transitions in QG. It was�rstly formulated in axiomati
 way by Atiyah in 1988 and developed in [28℄.Categori�
ation as an indispensable te
hnique in QG was 
onje
turedfrom the very beginning and then developed in a very promising dire
tionby Crane [19, 20℄.
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essity to use 
ategories in this kind of 
onsiderations relies alsoon the pe
uliar fa
t (whi
h is deeply Model Theoreti
) that some 
onsistenttheories do not possess models in Set Category [42℄.6. Con
lusions and perspe
tives6.1. First order 
ategori
al logi
The idea that language 
an be a kind of obje
t whi
h should be equallytaken under 
onsideration as any other obje
t is not new but in the 
on-text of formal languages was realized not very long ago. It was originallydone by Lawvere [26℄ who introdu
ed 
ategori
al formulation of algebrai
theories. In
idently Lawvere was one of the 
reators of topos theory andits wide appli
ations [27℄. To treat the language as any other obje
t, seemsto be strange (openness of the every day language) but on formal level thisis 
ru
ial � we do not have simply mathemati
al stru
tures des
ribed in atransparent language; the stru
ture is e�e
ted by the language used. Clearlythe equivalen
e of the so 
alled 
oherent theory T (whi
h is somewhat re-stri
ted version of the �rst order theory) with spe
ial 
ategory RT (built ofsome formulas of the theory T) was done in [31℄. So, to speak about modelsof T in a 
ategory (topos) Q we 
an equivalently speak about some fun
torsM: RT ! Q. Su
h a pi
ture enables one to repla
e logi
 by 
ategories. Alsofor spe
ial �rst order theories we 
an asso
iate naturally toposes whi
h are`to 
lassify' theories (Classifying toposes); they fully re
ognise the 
ategoryof models (in toposes) of the theory. This approa
h enables one to developinvestigation of models of theories and theories itself as the same kind ofobje
ts in uni�ed way [4℄.6.2. Higher order 
ategori
al logi
We have seen 
lose 
onne
tions of some physi
al theories with toposeswhi
h are spe
ial 
ategories. From the perspe
tive of the Model Theory,the toposes arose as natural obje
ts whose internal language is the higherorder intuitionisti
 one [49℄. Henkin [35℄ proved 
ompleteness of higher orderlogi
 with respe
t to so 
alled Nonstandard Models (the theory has enoughnonstandard models to ensure that its theorems are semanti
ally valid).Later it was realized that 
orre
t des
ription of this phenomenon is just bymodels in toposes; moreover any (higher order) language generates toposT(L) whose internal language L(T (L)) naturally interprets the languageL [49℄. So, the obje
tivisation of the languages (�rst or higher order) bymeans of Model Theory gives us toposes as obje
ts to be 
onsidered in this
ontext. That is why toposes whi
h arose in the 
ontext of physi
al theories
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s 3869are hints for deep internal entanglement of Model Theory tools with somephysi
al theories.There is a big di�eren
e between intended domain whi
h we want theformal theory to des
ribe and true domain it deals with and at least in some
ases it has to be taken into a

ount also by physi
ists. Espe
ially it 
ouldbe done (in prin
iple) in the 
ontext of:� Anti-deSitter � Conformal Field Theory 
orresponden
e,� M-theory, Dualities in Superstrings, Holography,� Interpretations of QM,� QG.Detailed studies of the 
ases are in preparation. We 
an 
on
lude by sayingthat some analysis in physi
s that negle
t Model Theory perspe
tives are atbest approximate.The author would like to thank W. Dere
howski for mu
h help and dis-
ussion, Z. Król for dis
ussion and bibliographi
al help and to J. Sªadkowskifor 
reating the opportunity to present this paper and his help during thepreparation. Spe
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