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FORMAL LANGUAGES AND MODEL THEORETICPERSPECTIVES IN PHYSICS�Jerzy KrólInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Polande-mail: iriking�pozta.fm(Reeived Otober 15, 2001)We show that reent big growth of appliations of Category Theory toPhysis might be assoiated with unavoidable appearane of model theoret-ial strutures oming from formal languages used to desribe mathematialmodels of so alled physial reality. Even in the simplest ase of Elemen-tary Protoolar Theory we are (to ful�l the onditions of onsisteny andsimpliity of the language) on�ned to some model theoretial limitations.We disuss some examples. We also formulate onjetures and perspetivesfor future investigations.PACS numbers: 02.10.Ab, 03.65.Ca1. Does physis need abstrat tools of Model Theoryor Category Theory?One, quite obvious answer is: No. As any other abstrat mathematialtool, this might be avoided just by simple keeping trak of experiments andtheir diret data. Let us try to desribe what it means that we have theorybased on diret experimental data. First, we hoose language as simple aspossible (but onsistent) whose individual variables refer to (�nite) numbersof experiments. So, our sentenes orresponding to experiments are to beformulated in the language of the so alled �rst order prediate logi andonsisteny of the sentenes is de�ned with respet to this logi. The hoieof �rst order logi is motivated by minimal theoretial entanglement of thislogi (see Setion 2) and ability to speak diretly about set of experimentsand its results. We have to speak about some logi beause of the onsisteny� Presented at the XXV International Shool of Theoretial Physis �Partiles andAstrophysis � Standard Models and Beyond�, Ustro«, Poland, September 10�16,2001. (3855)



3856 J. Królof theory we wish to develop. Henkin had proven the ompleteness of the�rst order prediate logi by means of expliit onstrution of some modelsfor theories in this language [34℄. In partiular it was proven:Theorem 1 If T is a onsistent theory in the language of �rst order pred-iate logi and if m is a ardinality of the set of its primitive symbols, thenT is satis�ed in some domain of ardinality m.In partiular for m = �Æ we have original Löwenheim�Skolem Theorem [32℄.In fat it holds: [36℄Theorem 2 (Lindström) First order logi is the only one whih is losedwith respet to ^;:;9 and suh that theorems of Compatness and Löweheim��Skolem hold.Next let us suppose we are performing n experiments and as a result we havea set of values for set of observables to be measured in eah of them. We wantto desribe the language whih would enable one to speak in onsistent anddiret way about this situation and whih would be as simple as possible.Thus the set of symbols of the language should ontainset of symbols (variables) for measurements: m1; m2; : : :set of symbols (variables) for the results of measurements (numbers):xm1 ; xm2 : : :set of symbols (variables) for the observables to be measured: ob1;ob2; : : :set of prediate symbols for expressing that in measurementmi we havemeasured an observable obj and we are obtaining x: x(obj; mi) : : :We require that the (intended) interpretation of the theory in suh lan-guage is the struture where domainsfor mi are measurements ni, i = 1; 2; : : :for xj are numbers rj , j = 1; 2; : : :for obk are observables Obk, k = 1; 2; : : : for any natural number ofperformed measurements.The theory in the above language enables one to speak about performedmeasurements and to atalogue their results. This theory is to be alled Ele-mentary Protoolar Theory (EPT). Its intended models are simply measure-ments � any �nite number of them along with their results, orrespondingto some �nite number of observables. None of the �nite number of experi-ments is to be expressed by the axioms of the theory so, this theory shouldhave models in any �nite ardinality. But being the �rst order it holds: [9℄



Formal Languages and Model Theoreti Perspetives in Physis 3857Theorem 3 If theory T in the �rst order language has any arbitrarily large�nite model it has also in�nite model.So, our theory speaks as well about in�nite number of measurements andabout olleting their results. But in fat we have:Theorem 4 Any Elementary Protoolar Theory has nonisomorphi non-standard models.Proof: this is just reformulation of Löwenheim�Skolem theorem and observ-ing that if M, N are two in�nite models of the Theory of di�erent ardinalitiesthen M is not isomorphi to N.The peuliarity of this Theorem omes from our intention to formulateEPT whih would be expressing uniquely the simple situation of ataloguingexperimental data (any �nite) in a onsistent way; this is not possible andin fat we are talking simultanously about any number of nonisomorphidomains where our theory is ful�lled. This is unavoidable.We do not list up expliitly nonlogial axioms of the theory; we simplyassume they do exist and they would enable us to ful�l our minimal require-ments � to talk onsistently about any �nite number of experiments.If suh a theory does not exist it means we annot talk about any �nitenumber of experiments in a diret (�rst order logi) and formally onsistentway. This is even worse than to have nonisomorphi models: the ability ofonstruting a formally onsistent physial theory based on experiments isquestionable.Now let us suppose we are performing some number of experiments, sayk 2 N. In k-th measurement we are getting a natural number k as anoutput. We are formulating some sentene (prediate) in the �rst orderlanguage about natural numbers. It holds:Theorem 5 Suppose, that we have ountably in�nite number of experimen-tal outputs, whih are interpreted by Standard Natural Numbers. With eahoutput we assoiate some prediate related to natural numbers (if only it isexpressible in the �rst order prediate language, where eah Standard NaturalNumber has a name). Also, with eah output we assoiate some true for-mula of Peano Arithmeti. Even then, there is no onsistent Theory (in thelanguage of the �rst order logi), whih would be generated by the above se-quene, and whih would allow one to desribe what Standard Natural Num-bers are.Proof: the theory (No,S, +, �) of the struture of Standard Natural Numbersis not axiomatizable.The explanation of this is due to essential inompleteness of Peano Arith-meti (PA) whih is axiomati, �rst order theory of natural numbers. Infat it holds: [11℄



3858 J. KrólTheorem 6 PA has 2!o nonelementary equivalent ountable models.This phenomenon is a diret onsequene of Gödel Inompleteness Theorem[37℄. From the other side PA has unique Standard Model whih is thestruture (No,S, +, �) whereNo is a set of all natural numbers with suessorfuntional symbol S. The theory Th(No) of all true �rst order sentenes inthe standard struture an be haraterized: [8℄Theorem 7 The Theory Th(No) is hereditarily undeidable.Notie, that hereditary undeidability is stronger ondition than undeid-ability [8℄. We also know that: [11℄Theorem 8 If Theory T is onsistent, omplete and axiomatizable then Tis deidable.Th(No) is omplete beause all its true sentenes are true in the model No(from de�nition); it is also onsistent (it has a model No ). Then we anonlude:Theorem 9 Th(No) is not axiomatizable.So, although we have Standard Model for PA whih is unique we annotuse any reoursive set of sentenes (in �rst order language) generating thetheory Th(No). PA, being desribed formally by a reoursively axiomati-zable means, allows in�nitely (ontinuous) many nonisomorphi ountablemodels. In fat we have proved:Theorem 10 One annot give an in�nite, in fat, reoursively enumerablelist of sentenes in the language of the �rst order prediate logi desrib-ing experimental outputs whih would be expressing the theory of all naturalnumbers whih order that list.The order and reoursive harater of in�nite experimental data annot beexplained by the theory generated by protoolar sentenes assoiated to thedata, even in the ase when every suessive experiment is produing su-essive natural number. Even in�nite sequene of experimental protoolarsentenes plus PA are not able to over formally all true sentenes in thestruture (Mo, S, +, �), whereMo are natural numbers indexing experimentsunder onsideration.Theorem 11 We are performing in�nite ountably many experiments gen-erating prediates fP n� (xn)g1n=1 about natural numbers. We annot generatethe theory of standard natural numbers (even for every n we have xn = n).



Formal Languages and Model Theoreti Perspetives in Physis 3859This theorem announes an important thing: we annot treat experimentaldata literally. Sentenes fP n� g(n) expressing that n is just n, for every n,do not express that we are in fat dealing with unique domain of standardnatural numbers. So, literal and onsistent treating of experimental datais not fully legitimate. This is also a hint toward neessity to use ModelTheoreti analysis, at least in some ases when we are to formulate formaltheories with intention to be very tightly onneted to experiments.Even if we are treating every measurement and every result orrespond-ing to it (expressed by prediates) as axioms we are formally talking aboutnonountably many nonequivalent domains and there is no way to improveit by performing more experiments and adjoining more protoolar sentenesas axioms (in fat any �rst order) into the language of the theory.We an, of ourse, avoid this strange behaviour just by onsidering onlya �nite number of formal sentenes, say k, orresponding to �nite numberof experiments but again we an try to built the formal, onsistent theory(in �rst order language), whih would be about those protoolar sentenes(about any �nite number of them), having arbitrarily large �nite intendedmodels; the reason is the statement: `We have exatly k-�nite events' is nota logial axiom and is not nonlogial as well (we do not formulate the theoryjust about k events and not about k+1, there is no logial reason for that).Also, assuming that we already know well what the set of all naturalnumbers is (or any other mathematial objet is) not aring about their notunique formal desription as a �rst order theory, we are obtaining the soalled many-sorted logi [36℄. This logi an be equivalently formulated as a�rst order [36℄ and Löwenheim�Skolem theorem also holds for it (althoughtompatness theorem does not hold).If it is about Set Theory it an have axiomati form, so alled Zermelo�Fraenkel Set Theory (ZF) possibly with addition of the axiom of hoie(ZFC). ZFC is the theory in the �rst order language without any funtionalor onstant symbols; the only prediate symbol is binary 2-symbol, express-ing property of being an element [10℄. As usual we have ountably manyindividual variable symbols. As the �rst order theory (possibly onsistent)it posseses also a ountable model (from Löwenheim�Skolem theorem). Thisis a little bit strange but let us notie that this model an be standard in thesense of aordane of its internal E-symbol (expressing being an element)to external, usual 2-symbol [38℄. Moreover, this model an be standardwith respet to equality whih an be the same as external one (normalmodel). Then we see that for ZFC there does not even exist a unique Stan-dard Model and the variety of its standard and nonstandard models is realyhuge [10, 33℄. ZFC does not respet our intention to speak uniquelly aboutsome standard universe of sets. Moreover, we an de�ne Natural Numbersin ZFC (e.g. [46℄). If one tries to regard ZFC as a basi theory this wouldlead to relativisation phenomena even for �nite natural numbers.



3860 J. Król2. Higher order theoriesWe have seen that in some sense �rst order theory of Standard Natu-ral Numbers is not experimental � it annot be generated by a ountablenumber of �rst order axioms oming from the experiments.Turning to the higher order theory one beomes immediately equippedwith some additional theoretial tool. The seond order theory is the onebased on the language allowing, roughly speaking, for quanti�ations oversubsets of some set M and over funtions F :M �M !M . The �rst ordertheory allows for quanti�ations only over elements of set M .Some notions whih are not unique in �rst order theory in higher ordertheories sometimes beome unique (up to isomorphism). A good exampleis the ordered �eld of real numbers i.e. the struture R = (R;+; �; <; 0; 1).We have: [36℄Theorem 12 There does not exist a set of axioms in the �rst order logiwhih would haraterize R uniquelly up to isomorphism.Proof: it is diret onsequene of Löwenheim�Skolem theorem and observa-tion that language of the �rst order logi is ountable and the number of�rst order formulas true in R is ountable. Then there exists a ountablemodel; this model is not isomorphi to R.But it is known that seond order logi haraterizes R uniquely up toisomorphism [36℄.The axiom whih annot be formulated in �rst order logi is the om-pleteness axiom:8X � R(if:(X = ;) is bounded, then X has least upper bound)This axiom is dealing with universum of Set Theory by taking use of powerset operation. This phenomenon is harateristi for higher order theories �we have to rely on the set theory whih in turn has very nontrivial spetrumof its models. So, we an sometimes avoid nonuniqueness of desriptionof some mathematial strutures (in �rst order language) by appealling tohigher order language but at the expense of dealing with nonunique modelsoming from set theory. (By the seond Gödel Inompleteness Theorem [37℄the statement `ZFC has a model' annot be proved by formal means in ZFCitself, but if there does not exist any model of ZFC at all, ZFC would beinonsistent [10℄.) For higher order logis we have also many nonisomor-phi nonstandard models whih were originally onstruted by Henkin [35℄.He also showed that the higher order logi is not omplete without takinginto aount these nonstandard models. Higher order logi is omplete onlywith respet to its nonstandard models. Hene, we see that we are expressing



Formal Languages and Model Theoreti Perspetives in Physis 3861some uniqueness of mathematial strutures in higher order theories by useof the language whih is not omplete by itself with respet to standardstrutures [45℄.There exists so alled Hilbert thesis [36℄ whih states that it should bepossible to translate all mathematial statements (nonlogial) into �rst orderlanguage and proofs (provability relations), even nonformal, whih exist inmathematis, would beome formal in the sense of �rst order logi.This is also plausible that most of the formal, based on mathematis,reasonings in physis ould be (in priniple) expressed in �rst order logi.Every day language used in physis does not are about its order and itis rather arbitrary mixture of orders and self referential expressions. Butthis does not hange the fat that in the end physis tries to refer to formalreasonings whih are dependent on distinguishing orders and as a result tosituations sensitive for theory of models.3. Why do physiists in pratie avoid model theoreti reasoning?We list here some reasons answering the question in the title.1. Constrution of models for the �rst order theory (and not only [49℄)might be performed by the use of losed well formed formulas (w�)of the language of the theory; there is an in�nite number of them. Butin pratie we are onduting physial analysis in �nitisti way, usingonly �nite number of sentenes from the every day language. Evenformal languages are onsidered �nitistially. From the other side wefreely analyse in�nite numbers of various formal objets like quantumstates, dimensions of Hilbert spae, partiles, degrees of freedom et.So, the �niteness is only with respet to formal languages used.2. We do not analyze the situation of having in�nite number of formulasor sentenes whih are expressing something in nonintended way, whihseems to be unavoidable beause of the formal language used.3. We do not explore the struture of the sentenes; they apperentlylook like being transparent. Beause of this the logi also seems to betransparent.4. We treat mathematis as a losed, ready to use, given for grantedsystem of proedures whih an or annot be used for spei� applia-tions.5. The above fats always allow one to be in a distinguished position;from one side we are outside of the internal problems and tehniquesspei� to mathematis. We use only proedures generated somewhere



3862 J. Króloutside and we have diret aess to them by using transparent lan-guage. From the other side we have always diret aess to experimentsand their results whih is possible also beause of the transpareny anddiretness of the language.6. Beause of the assumed transpareny of the language (formal) whatwe freely use is not a formal language but the one whih mixes orders,logis and is selfreferential.7. Also beause of the transpareny of the language we treat objets andits names as equally managable.Those onditions are inidentally harateristi also for lassial desrip-tions of the physial world. The lassial language seems to be nonappro-priate to desribe some Quantum Mehanial phenomena. That is why, themain �eld where Model Theory would �nd appliations is Quantum Me-hanis.4. Some arguments for using tools of Model Theory in physisAlthough we have given some evidene for nonuniqueness of formal de-sriptions of some simple situations dealing with making experiments andataloguing their results, we still do not see the neessity of using tools ofModel Theory in physis. Here we ollet arguments for the existene ofappropriate plae for them in physis.First: physis is not free of di�ulties; some of them are very basi (e.g.Quantum Gravity and its bakground independent formulation [48℄).Seond: the arguments oming from Model Theory are purely mathe-matial in fat, and, in priniple, ould be used in physis (and in fat theyare [see Setion 5℄).Third: every day physial pratie is to built various mathematial mod-els of the so alled reality. Language is also a part of the reality (with itswell established formal shape). Why we do not need at all the models of thelanguage in a orret mathematial modelling of the reality?From the disussion of the previous paragraphs we an formulate thegeneral rule of transpareny of the language:General Rule 0 We are talking diretly about the results of experimentsand we are building diret mathematial models of the reality. Preision ofthe measurement is the only obstrution for models to be perfet.We learly see that the above rule is not valid in QM. There are inherentreasons for measurements not to be preise, it does not matter how preisemeasuring devies are. It might be that this is onneted with the opposite



Formal Languages and Model Theoreti Perspetives in Physis 3863rule of nontranspareny of the language and this would show exatly theplae where Model Theory might be applied? We an formulate the possiblerule as follows:General Rule 1 Formal languages (and also physial reasoning based onthem) are talking diretly about their models, not about reality, usually arenot uniquely determined. Experiments and their results are given to us bynonavoidable protoolar formal language. This language is assoiated to themas a formal language to its models.Let us observe that the language of QM is not usually diretly onnetedto the so alled reality: we are talking about quantum states, or amplitudesfor example whih are not observable in priniple. They have only the-oretial meaning as a nondispensable part of the struture of the theory.Observables, even ommuting lose their meaning as having assigned valuesbefore experiment (see Kohen�Speker theorem in Setion 5). One an-not measure non ommuting observables simultaneously with the arbitrarilyhigh preision. All this is not just failure of our desription and/or lak ofpreision of the measurements but they are very features of reality � as ifformal language would beome the part of it. One proposition for realiza-tion of these ideas in ontext of QM an be found in Setion 5. It is alsowell known that logi generated by QM is not lassial [51℄. The so alledQuantum Logis are intensively explored, and also from this perspetive [7℄the onnetion between QM and Category Theory is evident.Anoher lue for using tools of model theory omes from existene ofhighly theoretial (speulative) branhes of physis. There are: Superstringtheory (so alled M-theory and related AdS/CFT orrespondee, the prini-ple of Holography), Quantum Gravity approahes (bakground independenttheories [loop QG and ategori�ation℄, ausal sets) or even Cosmology.Formal mathematial models require formal languages whih are subjetsto Model Theory. Those branhes of physis are not so tightly onnetedwith experiments and formal aspets like internal onsisteny of the theoryplays a big role here.This is the reason why modelling of the formal languagemight be also a valuable tool (see e.g. [43, 44℄). Let us notie an importantfeature of a model theoretial approah: the formal language beomes anobjet whih in turn is investigated. From mathematial point of view weknow that the objet in question is speial ategory whih is alled topos[49℄. That is why the appearanes of topos struture in physial theories (inessential way) give a strong hint toward ability of model theoretial analysis.Also, our dealing with various non trivial (whih are not Set) Categories, inthe ontext of physial onsiderations justi�es Model Theoretial approah.Category Theory [7℄ is a orret language to talk about toposes whih inturn allows model theory onsiderations [49℄.



3864 J. KrólWe shall return to this point in Setion 6. In the next setion we givephysial examples where Model Theory and Categories are essentially in-volved. 5. Examples5.1. QM and toposesIt has reently been proposed [1,2℄ how the struture of the toposes arisesin QM. It was ahieved by restating the so alled Kohen�Speker theoremin QM [3℄ in terms of nonexistene of global elements in a speial toposSetW? (of sheaves of dual Boole'an subalgebras of the lattie of projetionoperators in Hilbert spae H, dim(H)> 2).Theorem 13 (Kohen�Speker 1965, 1967) Let � be a family of ob-servables (self adjoint, linear operators) over Hilbert spae H, dim(H)> 2suh that identity Id 2 � and let us onsider funtions (partial homomor-phisms):h : �! R suh thatwhenever A;B 2 � and [A;B℄ = 0 andh(AB) = h(A)h(B); h(�A+ �B) = �h(A) + �h(B); h(Id) = 1then there does not exist global homomorphismh : �! Rompatible with partial ones.Hene, no global assignment of real values to observables is possible indim(H)> 2. The Isham onstrution shows that nonexistene of ompatibleextension for partial valuations over all observables from � is expressibleexatly as, so alled funtional ondition for nonexistene of global elementin the topos SetW? : jW1(�) = jW2(�) ;where  is a global element and � is any operator from � and from theommon part of W1 and W2 as any subalgebras of �. This result is a di-ret indiation for a deep relation between toposes � whih are models ofhigher order (intuitionisti) logi � and QM. Also in the ontext of Quan-tum Gravity, Isham and Butter�eld [1℄ have pointed out onnetions withtoposes.



Formal Languages and Model Theoreti Perspetives in Physis 38655.2. Models of ZFC and QMWe propose here a diret appliation of methods of Model Theory toQM whih ould be, at least, applied to interpretational investigations ofQM. The work is in progress. Let us withhold the statement that Zermelo�Fraenkel axiomati Set Theory with the Axiom of Choie- ZFC -speaks di-retly about �reality�. It tells the truths about its models. Let us supposethat ZFC is onsistent, so, some model of ZFC does exist. We know fromLöwenheim�Skolem theorem and from ollapsing Mostowski's lemma [10℄that there exists Countable Transitive Model (standard) (CTM) � M.The sentene ': �M is ountable� is not provable in M (if it were it wouldause that every set in M was ountable, but 2�o is not ountable in ZFCand also in M). It means that the funtion f: N ! M(`1 to 1') is not a setin M. Of ourse, from the outside any fx 2 M j	g is ountable as being asubset of N.We laim that disreteness of measured spetra of some physial observ-ables might be onneted to ountability of Models of ZFC where also realsR are ountable from the `outside' (with respet to metatheory). Notie,that all sentenes expressing any �rst order property of ZFC are valid as wellin any ountable model M. The set of all real numbers in M is also ount-able from the outside. So, measuring any real valued quantity in M gives usountable spetra. This observation is basi in trials to explain QuantumMehanial phenomena via Model Theory. This is in total agreement withour General Rule 1 from Setion 4.In a diret way we an (by the use of formal theory) speak about mod-els of the theory (not about the so alled reality); that is why there aresituations where our statements about what we atually measure are `�l-tered' through the models of the theory. In the ase of ZFC where almostall lassial mathematis an be expressed [36℄ we have a very fundamen-tal phenomenon omparable to generating Everettian worlds. Any outputof the measurement is primarily onneted (if it is about its set theoretialproperties) to some model of ZFC (not neessarily to Standard one whih isnot formally distinguished but only intended).To be more preise we need the method of so alled foring whih wasoriginally invented by Cohen [38℄ as a way to prove independene of Axiomof Choie and Continuum Hypothesis from the axioms of ZF.From our perspetive foring is a passage from one model M of ZF(C)to another model N just by adding some set (or sets) not originally inludedin M. Suh a set is alled generi. If the Generi Set is just a subset of theset of natural numbers we all it generi real and this is what Cohen foringadds to M (we all it also Cohen real). For ountable models of ZF(C) thegeneri set Q always exists [10℄. The proedure of foring is a beautiful andnontrivial subjet in itself and sine 1963 it has been developed in variousdiretions:



3866 J. KrólA. Boole'an Valued Models [29℄B. Model theoreti Foring (�nite and in�nite) (Robinson in seventies [36℄).C. Categorial (topos theoreti Foring) [30℄.D. Foring in so alled Desriptive Set Theory [47℄.In the ontext of our approah to QM we formulate the following ruleshowing the role of foring;General Rule 2 Every output of the experiment (whih is a real number)is given by a foring whih adds this real (reals) into some model (models)of ZF(C).This supposition does not mean we have a good knowledge of Modelsof ZF(C) under onsideration. By the above supposition we an treat realnumbers as being bounded by the foring proedure, so, they are modeldependent rather then reals whih stay the same no matter what is theontext in whih they appear. All this requires more detailed analysis. Thework on this approah is arried out by the author.5.3. Non-Standard Analysis and PhysisDeep onnetions of QM and Model Theory were exhibited in the on-text of the so alled Non-Standard Analysis (NA) [40℄. NA was reated anddeveloped by Abraham Robinson in sixties [18℄. Robinson had made a hugeontribution to many branhes of Model Theory [36℄. NA is a diret appli-ation of nonstandard models (in the sense of �rst order prediate logi) ofthe theory of real numbers into mathematial analysis. This enables one, forthe �rst time, to speak onsistently about in�nitely big and small quantities.The work of Farrukh shows usefulness and naturality of nonstandard notions(for example Nonstandard Hilbert Spae) in the ontext of QM and its useof so alled rigged Hilbert spaes and notorious use of Æ-funtions in QM.Muh work on NA and QM was also done by Kobayashi [15, 16℄. He hadapproahed the problem of measurement by means of model theoretial on-strutions. Robinson also wrote some papers on physis and NA [17℄. NA isabout reals, so it obviously an be formally adopted into many branhes ofphysis and mathematis, but usually (in the ontext of physis or analysis)it gives equivalent desription and sometimes simpli�es formal proofs [18℄.The appearane of NA and its appliations to physis are big lue towardorretness of the use of Model Theoreti methods in physis.



Formal Languages and Model Theoreti Perspetives in Physis 38675.4. GR and toposesThere exists ategorial approah to the analysis of in�nitesimals soalled Syntheti Di�erential Geometry [5℄. The work of Moerdijk and Reyes[6℄ deals with models of in�nitesimal analysis in toposes whih are naturallygenerated in this ontext. The attempts to apply these ideas to physis weremade in several papers [12�14℄. They have tried to plae General Relativityin the ontext of intuitionisti logi showing that the language of SynthetiDi�erential Geometry and toposes enables us to see various spae-time solu-tions of the Einstein's Equations as just single varying objet (in the senseof Lawvere [27℄). Isham [1℄ also suggests the usefulness of Syntheti Di�er-ential Geometry in some approah to QG � so alled Consistent Historiesformulation. 5.5. The program of ategori�ationExpliitly, the program of ategori�ation has been proposed by Baez[28℄. In the eighties Abbhay Ashtekar [50℄ have introdued his new oordi-nates into GR. Sine then it was possible to develop bakground independentnonperturbative quantum theory of gravity via so alled loop QG [48℄. Thistheory for the �rst time was able to produe expliitly solutions of quantumWheeler�de Witt equations. Witten then onjetured [28℄ lose onnetionof this solution to Jones invariant of links.Many authors have produed invariants of 3-dim and 4-dim ompatmanifolds [21�23, 25℄. It was along growing evidene for neessity to useabstrat ategories in this ontext (for example Hopf or Braided Monoidalategories). These invariants are widely used in onnetion with modellingof quantities (as transition amplitudes) of QG: from the one side we havetriangulations of manifolds and olouring tehnique assoiating to it repre-sentations of groups and vertex operators resulting in alulations of invari-ants as traes in the so alled tensor ategories, but from the other side theinvariant is a real topologial invariant (it does not depend on triangula-tion used). For some reasons representations of groups should be replaedby Categories (Category of Representations of Hopf algebra) entering thehigher order ategories [23℄.Very aurate language for onsidering QG in this ontext is the oneoming from the so alled Topologial Quantum Field Theories where generalobordisms of the manifolds orrespond to state transitions in QG. It was�rstly formulated in axiomati way by Atiyah in 1988 and developed in [28℄.Categori�ation as an indispensable tehnique in QG was onjeturedfrom the very beginning and then developed in a very promising diretionby Crane [19, 20℄.



3868 J. KrólThe neessity to use ategories in this kind of onsiderations relies alsoon the peuliar fat (whih is deeply Model Theoreti) that some onsistenttheories do not possess models in Set Category [42℄.6. Conlusions and perspetives6.1. First order ategorial logiThe idea that language an be a kind of objet whih should be equallytaken under onsideration as any other objet is not new but in the on-text of formal languages was realized not very long ago. It was originallydone by Lawvere [26℄ who introdued ategorial formulation of algebraitheories. Inidently Lawvere was one of the reators of topos theory andits wide appliations [27℄. To treat the language as any other objet, seemsto be strange (openness of the every day language) but on formal level thisis ruial � we do not have simply mathematial strutures desribed in atransparent language; the struture is e�eted by the language used. Clearlythe equivalene of the so alled oherent theory T (whih is somewhat re-strited version of the �rst order theory) with speial ategory RT (built ofsome formulas of the theory T) was done in [31℄. So, to speak about modelsof T in a ategory (topos) Q we an equivalently speak about some funtorsM: RT ! Q. Suh a piture enables one to replae logi by ategories. Alsofor speial �rst order theories we an assoiate naturally toposes whih are`to lassify' theories (Classifying toposes); they fully reognise the ategoryof models (in toposes) of the theory. This approah enables one to developinvestigation of models of theories and theories itself as the same kind ofobjets in uni�ed way [4℄.6.2. Higher order ategorial logiWe have seen lose onnetions of some physial theories with toposeswhih are speial ategories. From the perspetive of the Model Theory,the toposes arose as natural objets whose internal language is the higherorder intuitionisti one [49℄. Henkin [35℄ proved ompleteness of higher orderlogi with respet to so alled Nonstandard Models (the theory has enoughnonstandard models to ensure that its theorems are semantially valid).Later it was realized that orret desription of this phenomenon is just bymodels in toposes; moreover any (higher order) language generates toposT(L) whose internal language L(T (L)) naturally interprets the languageL [49℄. So, the objetivisation of the languages (�rst or higher order) bymeans of Model Theory gives us toposes as objets to be onsidered in thisontext. That is why toposes whih arose in the ontext of physial theories
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