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We show that recent big growth of applications of Category Theory to
Physics might be associated with unavoidable appearance of model theoret-
ical structures coming from formal languages used to describe mathematical
models of so called physical reality. Even in the simplest case of Elemen-
tary Protocolar Theory we are (to fulfil the conditions of consistency and
simplicity of the language) confined to some model theoretical limitations.
We discuss some examples. We also formulate conjectures and perspectives
for future investigations.

PACS numbers: 02.10.Ab, 03.65.Ca

1. Does physics need abstract tools of Model Theory
or Category Theory?

One, quite obvious answer is: No. As any other abstract mathematical
tool, this might be avoided just by simple keeping track of experiments and
their direct data. Let us try to describe what it means that we have theory
based on direct experimental data. First, we choose language as simple as
possible (but consistent) whose individual variables refer to (finite) numbers
of experiments. So, our sentences corresponding to experiments are to be
formulated in the language of the so called first order predicate logic and
consistency of the sentences is defined with respect to this logic. The choice
of first order logic is motivated by minimal theoretical entanglement of this
logic (see Section 2) and ability to speak directly about set of experiments
and its results. We have to speak about some logic because of the consistency
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of theory we wish to develop. Henkin had proven the completeness of the
first order predicate logic by means of explicit construction of some models
for theories in this language [34]. In particular it was proven:

Theorem 1 If T is a consistent theory in the language of first order pred-
tcate logic and if m is a cardinality of the set of its primitive symbols, then
T is satisfied in some domain of cardinality m.

In particular for m = X, we have original Léwenheim—Skolem Theorem [32].
In fact it holds: [36]

Theorem 2 (Lindstrém) First order logic is the only one which is closed
with respect to A, —, 3 and such that theorems of Compactness and Léweheim—
—Skolem hold.

Next let us suppose we are performing n experiments and as a result we have
a set of values for set of observables to be measured in each of them. We want
to describe the language which would enable one to speak in consistent and
direct way about this situation and which would be as simple as possible.
Thus the set of symbols of the language should contain

set of symbols (variables) for measurements: mq, mo,...

set of symbols (variables) for the results of measurements (numbers):

set of symbols (variables) for the observables to be measured: oby,
ObQ, e

set of predicate symbols for expressing that in measurement m; we have
measured an observable ob; and we are obtaining x: z(obj, m;)...

We require that the (intended) interpretation of the theory in such lan-
guage is the structure where domains

for m; are measurements n;, 1 =1,2,...
for z; are numbers rj, 7 =1,2,...

for oby are observables Oby, k = 1,2,... for any natural number of
performed measurements.

The theory in the above language enables one to speak about performed
measurements and to catalogue their results. This theory is to be called Ele-
mentary Protocolar Theory (EPT). Its intended models are simply measure-
ments — any finite number of them along with their results, corresponding
to some finite number of observables. None of the finite number of experi-
ments is to be expressed by the axioms of the theory so, this theory should
have models in any finite cardinality. But being the first order it holds: [9]
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Theorem 3 If theory T in the first order language has any arbitrarily large
finite model it has also infinite model.

So, our theory speaks as well about infinite number of measurements and
about collecting their results. But in fact we have:

Theorem 4 Any Elementary Protocolar Theory has nonisomorphic non-
standard models.

Proof: this is just reformulation of Léwenheim—Skolem theorem and observ-
ing that if M, N are two infinite models of the Theory of different cardinalities
then M is not isomorphic to N.

The peculiarity of this Theorem comes from our intention to formulate
EPT which would be expressing uniquely the simple situation of cataloguing
experimental data (any finite) in a consistent way; this is not possible and
in fact we are talking simultanously about any number of nonisomorphic
domains where our theory is fulfilled. This is unavoidable.

We do not list up explicitly nonlogical axioms of the theory; we simply
assume they do exist and they would enable us to fulfil our minimal require-
ments — to talk consistently about any finite number of experiments.

If such a theory does not exist it means we cannot talk about any finite
number of experiments in a direct (first order logic) and formally consistent
way. This is even worse than to have nonisomorphic models: the ability of
constructing a formally consistent physical theory based on experiments is
questionable.

Now let us suppose we are performing some number of experiments, say
k € N. In k-th measurement we are getting a natural number £ as an
output. We are formulating some sentence (predicate) in the first order
language about natural numbers. It holds:

Theorem 5 Suppose, that we have countably infinite number of experimen-
tal outputs, which are interpreted by Standard Natural Numbers. With each
output we associate some predicate related to natural numbers (if only it is
expressible in the first order predicate language, where each Standard Natural
Number has a name). Also, with each output we associate some true for-
mula of Peano Arithmetic. Even then, there is no consistent Theory (in the
language of the first order logic), which would be generated by the above se-
quence, and which would allow one to describe what Standard Natural Num-
bers are.

Proof: the theory (N,,S, +, -) of the structure of Standard Natural Numbers
is not axiomatizable.
The explanation of this is due to essential incompleteness of Peano Arith-

metic (PA) which is axiomatic, first order theory of natural numbers. In
fact it holds: [11]
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Theorem 6 PA has 2“° nonelementary equivalent countable models.

This phenomenon is a direct consequence of Gédel Incompleteness Theorem
[37]. From the other side PA has unique Standard Model which is the
structure (N,,S, +, -) where N, is a set of all natural numbers with successor
functional symbol S. The theory Th(N,) of all true first order sentences in
the standard structure can be characterized: [8]

Theorem 7 The Theory Th(N,) is hereditarily undecidable.

Notice, that hereditary undecidability is stronger condition than undecid-
ability [8]. We also know that: [11]

Theorem 8 If Theory T is consistent, complete and axiomatizable then T
15 decidable.

Th(N,) is complete because all its true sentences are true in the model N,
(from definition); it is also consistent (it has a model N, ). Then we can
conclude:

Theorem 9 Th(N,) is not axiomatizable.

So, although we have Standard Model for PA which is unique we cannot
use any recoursive set of sentences (in first order language) generating the
theory Th(N,). PA, being described formally by a recoursively axiomati-
zable means, allows infinitely (continuous) many nonisomorphic countable
models. In fact we have proved:

Theorem 10 One cannot give an infinite, in fact, recoursively enumerable
list of sentences in the language of the first order predicate logic describ-
ing experimental outputs which would be expressing the theory of all natural
numbers which order that list.

The order and recoursive character of infinite experimental data cannot be
explained by the theory generated by protocolar sentences associated to the
data, even in the case when every successive experiment is producing suc-
cessive natural number. Even infinite sequence of experimental protocolar
sentences plus PA are not able to cover formally all true sentences in the
structure (M,, S, +, -), where M, are natural numbers indexing experiments
under consideration.

Theorem 11 We are performing infinite countably many experiments gen-
erating predicates { Py (xn)}p>q about natural numbers. We cannot generate
the theory of standard natural numbers (even for every n we have x, = n).
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This theorem announces an important thing: we cannot treat experimental
data literally. Sentences {Pj}(n) expressing that n is just n, for every n,
do not express that we are in fact dealing with unique domain of standard
natural numbers. So, literal and consistent treating of experimental data
is not fully legitimate. This is also a hint toward necessity to use Model
Theoretic analysis, at least in some cases when we are to formulate formal
theories with intention to be very tightly connected to experiments.

Even if we are treating every measurement and every result correspond-
ing to it (expressed by predicates) as axioms we are formally talking about
noncountably many nonequivalent domains and there is no way to improve
it by performing more experiments and adjoining more protocolar sentences
as axioms (in fact any first order) into the language of the theory.

We can, of course, avoid this strange behaviour just by considering only
a finite number of formal sentences, say k, corresponding to finite number
of experiments but again we can try to built the formal, consistent theory
(in first order language), which would be about those protocolar sentences
(about any finite number of them), having arbitrarily large finite intended
models; the reason is the statement: ‘We have exactly k-finite events’ is not
a logical axiom and is not nonlogical as well (we do not formulate the theory

just about k events and not about k 4+ 1, there is no logical reason for that).
Also, assuming that we already know well what the set of all natural

numbers is (or any other mathematical object is) not caring about their not
unique formal description as a first order theory, we are obtaining the so
called many-sorted logic [36]. This logic can be equivalently formulated as a
first order [36] and Lowenheim—Skolem theorem also holds for it (althought
compactness theorem does not hold).

If it is about Set Theory it can have axiomatic form, so called Zermelo—
Fraenkel Set Theory (ZF) possibly with addition of the axiom of choice
(ZFC). ZFC is the theory in the first order language without any functional
or constant symbols; the only predicate symbol is binary €-symbol, express-
ing property of being an element [10]. As usual we have countably many
individual variable symbols. As the first order theory (possibly consistent)
it posseses also a countable model (from Léwenheim-Skolem theorem). This
is a little bit strange but let us notice that this model can be standard in the
sense of accordance of its internal E-symbol (expressing being an element)
to external, usual €-symbol [38]. Moreover, this model can be standard
with respect to equality which can be the same as external one (normal
model). Then we see that for ZFC there does not even exist a unique Stan-
dard Model and the variety of its standard and nonstandard models is realy
huge [10,33]. ZFC does not respect our intention to speak uniquelly about
some standard universe of sets. Moreover, we can define Natural Numbers
in ZFC (e.g. [46]). If one tries to regard ZFC as a basic theory this would
lead to relativisation phenomena even for finite natural numbers.
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2. Higher order theories

We have seen that in some sense first order theory of Standard Natu-
ral Numbers is not experimental — it cannot be generated by a countable
number of first order axioms coming from the experiments.

Turning to the higher order theory one becomes immediately equipped
with some additional theoretical tool. The second order theory is the one
based on the language allowing, roughly speaking, for quantifications over
subsets of some set M and over functions F' : M x M — M. The first order
theory allows for quantifications only over elements of set M.

Some notions which are not unique in first order theory in higher order
theories sometimes become unique (up to isomorphism). A good example
is the ordered field of real numbers i.e. the structure R = (R, +,-,<,0,1).
We have: [36]

Theorem 12 There does not exist a set of axioms in the first order logic
which would characterize R uniquelly up to isomorphism.

Proof: it is direct consequence of Lowenheim—Skolem theorem and observa-
tion that language of the first order logic is countable and the number of
first order formulas true in R is countable. Then there exists a countable
model; this model is not isomorphic to R.

But it is known that second order logic characterizes R uniquely up to
isomorphism [36].

The axiom which cannot be formulated in first order logic is the com-
pleteness axiom:

VX C R(if—(X = 0) is bounded, then X has least upper bound)

This axiom is dealing with universum of Set Theory by taking use of power
set operation. This phenomenon is characteristic for higher order theories —
we have to rely on the set theory which in turn has very nontrivial spectrum
of its models. So, we can sometimes avoid nonuniqueness of description
of some mathematical structures (in first order language) by appealling to
higher order language but at the expense of dealing with nonunique models
coming from set theory. (By the second Gddel Incompleteness Theorem [37]
the statement ‘ZFC has a model’ cannot be proved by formal means in ZFC
itself, but if there does not exist any model of ZFC at all, ZFC would be
inconsistent [10].) For higher order logics we have also many nonisomor-
phic nonstandard models which were originally constructed by Henkin [35].
He also showed that the higher order logic is not complete without taking
into account these nonstandard models. Higher order logic is complete only
with respect to its nonstandard models. Hence, we see that we are expressing
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some uniqueness of mathematical structures in higher order theories by use
of the language which is not complete by itself with respect to standard
structures [45].

There exists so called Hilbert thesis [36] which states that it should be
possible to translate all mathematical statements (nonlogical) into first order
language and proofs (provability relations), even nonformal, which exist in
mathematics, would become formal in the sense of first order logic.

This is also plausible that most of the formal, based on mathematics,
reasonings in physics could be (in principle) expressed in first order logic.
Every day language used in physics does not care about its order and it
is rather arbitrary mixture of orders and self referential expressions. But
this does not change the fact that in the end physics tries to refer to formal
reasonings which are dependent on distinguishing orders and as a result to
situations sensitive for theory of models.

3. Why do physicists in practice avoid model theoretic reasoning?

We list here some reasons answering the question in the title.

1. Construction of models for the first order theory (and not only [49])
might be performed by the use of closed well formed formulas (cwif)
of the language of the theory; there is an infinite number of them. But
in practice we are conducting physical analysis in finitistic way, using
only finite number of sentences from the every day language. Even
formal languages are considered finitistically. From the other side we
freely analyse infinite numbers of various formal objects like quantum
states, dimensions of Hilbert space, particles, degrees of freedom etc.
So, the finiteness is only with respect to formal languages used.

2. We do not analyze the situation of having infinite number of formulas
or sentences which are expressing something in nonintended way, which
seems to be unavoidable because of the formal language used.

3. We do not explore the structure of the sentences; they apperently
look like being transparent. Because of this the logic also seems to be
transparent.

4. We treat mathematics as a closed, ready to use, given for granted
system of procedures which can or cannot be used for specific applica-
tions.

5. The above facts always allow one to be in a distinguished position;
from one side we are outside of the internal problems and techniques
specific to mathematics. We use only procedures generated somewhere
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outside and we have direct access to them by using transparent lan-
guage. From the other side we have always direct access to experiments
and their results which is possible also because of the transparency and
directness of the language.

6. Because of the assumed transparency of the language (formal) what
we freely use is not a formal language but the one which mixes orders,
logics and is selfreferential.

7. Also because of the transparency of the language we treat objects and
its names as equally managable.

Those conditions are incidentally characteristic also for classical descrip-
tions of the physical world. The classical language seems to be nonappro-
priate to describe some Quantum Mechanical phenomena. That is why, the
main field where Model Theory would find applications is Quantum Me-
chanics.

4. Some arguments for using tools of Model Theory in physics

Although we have given some evidence for nonuniqueness of formal de-
scriptions of some simple situations dealing with making experiments and
cataloguing their results, we still do not see the necessity of using tools of
Model Theory in physics. Here we collect arguments for the existence of
appropriate place for them in physics.

First: physics is not free of difficulties; some of them are very basic (e.g.
Quantum Gravity and its background independent formulation [48]).

Second: the arguments coming from Model Theory are purely mathe-
matical in fact, and, in principle, could be used in physics (and in fact they
are [see Section 5]).

Third: every day physical practice is to built various mathematical mod-
els of the so called reality. Language is also a part of the reality (with its
well established formal shape). Why we do not need at all the models of the
language in a correct mathematical modelling of the reality?

From the discussion of the previous paragraphs we can formulate the
general rule of transparency of the language:

General Rule 0 We are talking directly about the results of experiments
and we are building direct mathematical models of the reality. Precision of
the measurement is the only obstruction for models to be perfect.

We clearly see that the above rule is not valid in QM. There are inherent
reasons for measurements not to be precise, it does not matter how precise
measuring devices are. It might be that this is connected with the opposite
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rule of nontransparency of the language and this would show exactly the
place where Model Theory might be applied? We can formulate the possible
rule as follows:

General Rule 1 Formal languages (and also physical reasoning based on
them) are talking directly about their models, not about reality, usually are
not uniquely determined. FExperiments and their results are given to us by
nonavoidable protocolar formal language. This language is associated to them
as a formal language to its models.

Let us observe that the language of QM is not usually directly connected
to the so called reality: we are talking about quantum states, or amplitudes
for example which are not observable in principle. They have only the-
oretical meaning as a nondispensable part of the structure of the theory.
Observables, even commuting lose their meaning as having assigned values
before experiment (see Kochen-Specker theorem in Section 5). One can-
not measure non commuting observables simultaneously with the arbitrarily
high precision. All this is not just failure of our description and/or lack of
precision of the measurements but they are very features of reality — as if
formal language would become the part of it. One proposition for realiza-
tion of these ideas in context of QM can be found in Section 5. It is also
well known that logic generated by QM is not classical [51]. The so called
Quantum Logics are intensively explored, and also from this perspective [7]
the connection between QM and Category Theory is evident.

Anoher clue for using tools of model theory comes from existence of
highly theoretical (speculative) branches of physics. There are: Superstring
theory (so called M-theory and related AdS/CFT correspondece, the princi-
ple of Holography), Quantum Gravity approaches (background independent
theories [loop QG and categorification|, causal sets) or even Cosmology.

Formal mathematical models require formal languages which are subjects
to Model Theory. Those branches of physics are not so tightly connected
with experiments and formal aspects like internal consistency of the theory
plays a big role here.This is the reason why modelling of the formal language
might be also a valuable tool (see e.g. [43,44]). Let us notice an important
feature of a model theoretical approach: the formal language becomes an
object which in turn is investigated. From mathematical point of view we
know that the object in question is special category which is called topos
[49]. That is why the appearances of topos structure in physical theories (in
essential way) give a strong hint toward ability of model theoretical analysis.
Also, our dealing with various non trivial (which are not Set) Categories, in
the context of physical considerations justifies Model Theoretical approach.
Category Theory [7] is a correct language to talk about toposes which in
turn allows model theory considerations [49].
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We shall return to this point in Section 6. In the next section we give
physical examples where Model Theory and Categories are essentially in-
volved.

5. Examples
5.1. QM and toposes

It has recently been proposed [1,2] how the structure of the toposes arises
in QM. It was achieved by restating the so called Kochen—Specker theorem
in QM [3] in terms of nonexistence of global elements in a special topos
SetW’ (of sheaves of dual Boole’an subalgebras of the lattice of projection
operators in Hilbert space H, dim(H)> 2).

Theorem 13 (Kochen—Specker 1965, 1967) Let © be a family of ob-
servables (self adjoint, linear operators) over Hilbert space H, dim(H)> 2
such that identity Id € © and let us consider functions (partial homomor-
phisms):

h: © = R such that

whenever A,B € © and [A,B] =0 and

h(AB) = h(A)h(B), h(AM + uB) = Ah(A) + ph(B), h(Id) =1

then there does not exist global homomorphism

h: ®& >R

compatible with partial ones.

Hence, no global assignment of real values to observables is possible in
dim(H)> 2. The Isham construction shows that nonexistence of compatible
extension for partial valuations over all observables from © is expressible
exactly as, so called functional condition for nonexistence of global element
in the topos Set™W :

Y, (0) = Yyw, (0),

where < is a global element and € is any operator from © and from the
common part of Wi and Ws as any subalgebras of ©. This result is a di-
rect indication for a deep relation between toposes — which are models of
higher order (intuitionistic) logic — and QM. Also in the context of Quan-
tum Gravity, Isham and Butterfield [1] have pointed out connections with
toposes.



Formal Languages and Model Theoretic Perspectives in Physics 3865

5.2. Models of ZFC and QM

We propose here a direct application of methods of Model Theory to
QM which could be, at least, applied to interpretational investigations of
QM. The work is in progress. Let us withhold the statement that Zermelo—
Fraenkel axiomatic Set Theory with the Axiom of Choice- ZFC -speaks di-
rectly about “reality”. It tells the truths about its models. Let us suppose
that ZFC is consistent, so, some model of ZFC does exist. We know from
Léwenheim—Skolem theorem and from collapsing Mostowski’s lemma [10]
that there exists Countable Transitive Model (standard) (CTM) — M.

The sentence ¢: “M is countable” is not provable in M (if it were it would
cause that every set in M was countable, but 2% is not countable in ZFC
and also in M). It means that the function f: N — M (‘1 to 1’) is not a set
in M. Of course, from the outside any {z € M|¥} is countable as being a
subset of N.

We claim that discreteness of measured spectra of some physical observ-
ables might be connected to countability of Models of ZFC where also reals
R are countable from the ‘outside’ (with respect to metatheory). Notice,
that all sentences expressing any first order property of ZFC are valid as well
in any countable model M. The set of all real numbers in M is also count-
able from the outside. So, measuring any real valued quantity in M gives us
countable spectra. This observation is basic in trials to explain Quantum
Mechanical phenomena via Model Theory. This is in total agreement with
our General Rule 1 from Section 4.

In a direct way we can (by the use of formal theory) speak about mod-
els of the theory (not about the so called reality); that is why there are
situations where our statements about what we actually measure are ‘fil-
tered’ through the models of the theory. In the case of ZFC where almost
all classical mathematics can be expressed [36] we have a very fundamen-
tal phenomenon comparable to generating Everettian worlds. Any output
of the measurement is primarily connected (if it is about its set theoretical
properties) to some model of ZFC (not necessarily to Standard one which is
not formally distinguished but only intended).

To be more precise we need the method of so called forcing which was
originally invented by Cohen [38] as a way to prove independence of Axiom
of Choice and Continuum Hypothesis from the axioms of ZF.

From our perspective forcing is a passage from one model M of ZF(C)
to another model N just by adding some set (or sets) not originally included
in M. Such a set is called generic. If the Generic Set is just a subset of the
set of natural numbers we call it generic real and this is what Cohen forcing
adds to M (we call it also Cohen real). For countable models of ZF(C) the
generic set Q always exists [10]. The procedure of forcing is a beautiful and
nontrivial subject in itself and since 1963 it has been developed in various
directions:
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. Boole’an Valued Models [29]

A
B. Model theoretic Forcing (finite and infinite) (Robinson in seventies [36]).
C. Categorical (topos theoretic Forcing) [30].

D

. Forcing in so called Descriptive Set Theory [47].

In the context of our approach to QM we formulate the following rule
showing the role of forcing;

General Rule 2 Every output of the experiment (which is a real number)
is given by a forcing which adds this real (reals) into some model (models)
of ZF(C).

This supposition does not mean we have a good knowledge of Models
of ZF(C) under consideration. By the above supposition we can treat real
numbers as being bounded by the forcing procedure, so, they are model
dependent rather then reals which stay the same no matter what is the
context in which they appear. All this requires more detailed analysis. The
work on this approach is carried out by the author.

5.8. Non-Standard Analysis and Physics

Deep connections of QM and Model Theory were exhibited in the con-
text of the so called Non-Standard Analysis (NA) [40]. NA was created and
developed by Abraham Robinson in sixties [18]. Robinson had made a huge
contribution to many branches of Model Theory [36]. NA is a direct appli-
cation of nonstandard models (in the sense of first order predicate logic) of
the theory of real numbers into mathematical analysis. This enables one, for
the first time, to speak consistently about infinitely big and small quantities.
The work of Farrukh shows usefulness and naturality of nonstandard notions
(for example Nonstandard Hilbert Space) in the context of QM and its use
of so called rigged Hilbert spaces and notorious use of d-functions in QM.
Much work on NA and QM was also done by Kobayashi [15,16]. He had
approached the problem of measurement by means of model theoretical con-
structions. Robinson also wrote some papers on physics and NA [17]. NA is
about reals, so it obviously can be formally adopted into many branches of
physics and mathematics, but usually (in the context of physics or analysis)
it gives equivalent description and sometimes simplifies formal proofs [18].
The appearance of NA and its applications to physics are big clue toward
correctness of the use of Model Theoretic methods in physics.
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5.4. GR and toposes

There exists categorical approach to the analysis of infinitesimals so
called Synthetic Differential Geometry [5]. The work of Moerdijk and Reyes
[6] deals with models of infinitesimal analysis in toposes which are naturally
generated in this context. The attempts to apply these ideas to physics were
made in several papers [12-14]|. They have tried to place General Relativity
in the context of intuitionistic logic showing that the language of Synthetic
Differential Geometry and toposes enables us to see various space-time solu-
tions of the Einstein’s Equations as just single varying object (in the sense
of Lawvere [27]). Isham [1] also suggests the usefulness of Synthetic Differ-
ential Geometry in some approach to QG — so called Consistent Histories
formulation.

5.5. The program of categorification

Explicitly, the program of categorification has been proposed by Baez
[28]. In the eighties Abbhay Ashtekar [50| have introduced his new coordi-
nates into GR. Since then it was possible to develop background independent
nonperturbative quantum theory of gravity via so called loop QG [48]. This
theory for the first time was able to produce explicitly solutions of quantum
Wheeler-de Witt equations. Witten then conjectured [28| close connection
of this solution to Jones invariant of links.

Many authors have produced invariants of 3-dim and 4-dim compact
manifolds [21-23,25]. It was along growing evidence for necessity to use
abstract categories in this context (for example Hopf or Braided Monoidal
categories). These invariants are widely used in connection with modelling
of quantities (as transition amplitudes) of QG: from the one side we have
triangulations of manifolds and colouring technique associating to it repre-
sentations of groups and vertex operators resulting in calculations of invari-
ants as traces in the so called tensor categories, but from the other side the
invariant is a real topological invariant (it does not depend on triangula-
tion used). For some reasons representations of groups should be replaced
by Categories (Category of Representations of Hopf algebra) entering the
higher order categories [23].

Very accurate language for considering QG in this context is the one
coming from the so called Topological Quantum Field Theories where general
cobordisms of the manifolds correspond to state transitions in QG. It was
firstly formulated in axiomatic way by Atiyah in 1988 and developed in [28].

Categorification as an indispensable technique in QG was conjectured
from the very beginning and then developed in a very promising direction
by Crane [19,20].
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The necessity to use categories in this kind of considerations relies also
on the peculiar fact (which is deeply Model Theoretic) that some consistent
theories do not possess models in Set Category [42].

6. Conclusions and perspectives

6.1. First order categorical logic

The idea that language can be a kind of object which should be equally
taken under consideration as any other object is not new but in the con-
text of formal languages was realized not very long ago. It was originally
done by Lawvere [26] who introduced categorical formulation of algebraic
theories. Incidently Lawvere was one of the creators of topos theory and
its wide applications [27]. To treat the language as any other object, seems
to be strange (openness of the every day language) but on formal level this
is crucial — we do not have simply mathematical structures described in a
transparent language; the structure is effected by the language used. Clearly
the equivalence of the so called coherent theory T (which is somewhat re-
stricted version of the first order theory) with special category Rr (built of
some formulas of the theory T) was done in [31]. So, to speak about models
of T in a category (topos) Q we can equivalently speak about some functors
M: Rt — Q. Such a picture enables one to replace logic by categories. Also
for special first order theories we can associate naturally toposes which are
‘to classify’ theories (Classifying toposes); they fully recognise the category
of models (in toposes) of the theory. This approach enables one to develop
investigation of models of theories and theories itself as the same kind of
objects in unified way [4].

6.2. Higher order categorical logic

We have seen close connections of some physical theories with toposes
which are special categories. From the perspective of the Model Theory,
the toposes arose as natural objects whose internal language is the higher
order intuitionistic one [49]. Henkin [35] proved completeness of higher order
logic with respect to so called Nonstandard Models (the theory has enough
nonstandard models to ensure that its theorems are semantically valid).
Later it was realized that correct description of this phenomenon is just by
models in toposes; moreover any (higher order) language generates topos
T(L) whose internal language L(7'(L)) naturally interprets the language
L [49]. So, the objectivisation of the languages (first or higher order) by
means of Model Theory gives us toposes as objects to be considered in this
context. That is why toposes which arose in the context of physical theories
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are hints for deep internal entanglement of Model Theory tools with some
physical theories.

There is a big difference between intended domain which we want the
formal theory to describe and true domain it deals with and at least in some
cases it has to be taken into account also by physicists. Especially it could
be done (in principle) in the context of:

e Anti-deSitter — Conformal Field Theory correspondence,
e M-theory, Dualities in Superstrings, Holography,

e Interpretations of QM,

e QG.

Detailed studies of the cases are in preparation. We can conclude by saying
that some analysis in physics that neglect Model Theory perspectives are at
best approximate.

The author would like to thank W. Derechowski for much help and dis-
cussion, Z. Krol for discussion and bibliographical help and to J. Stadkowski
for creating the opportunity to present this paper and his help during the
preparation. Special thanks go to M. Biesiada.
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