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Most models of Bose-Einstein correlations in multiple particle produc-
tion processes can be ascribed to one of the following three broad classes:
models based on the original idea of the Goldhabers, Lee and Pais, hydro-
dynamic models and string models. We present for discussion some basic
questions concerning each of these classes of models.

PACS numbers: 13.65.+1

1. Introduction

Since the pioneering work of Goldhaber, Goldhaber, Lee and Pais, pub-
lished over forty years ago [1] and known as the GGLP model, Bose—Einstein
correlations in multiple particle production processes have been studied in
hundreds of papers. Many references can be found in the recent review ar-
ticles [2] and [3]. These correlations have been popular in particular for two
reasons. They give impressive bumps in two-particle and many particle dis-
tributions and, if the regime of Einstein’s condensation can be reached, there
are even more spectacular phenomena waiting to be discovered [4-7]. What
is more, Bose—Einstein correlations are believed to yield important informa-
tion, which seems hard, if not impossible, to obtain by other means. They
have been used to find the sizes and shapes of the regions where hadrons are
produced, as well as to obtain detailed information about the evolution in
time of the hadron production processes (see the reviews [2,3]).
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There is little, doubt, however, that the problem is hard. As an example
of a sceptical opinion let me quote one of the creators of this field of research,
G. Goldhaber, who said at the Marburg conference in 1990: “What is clear
is that we have been working on this effect for thirty years. What is not
as clear is that we have come much closer to a precise understanding of the
effect”. Everybody agrees that the GGLP paper was very important and
various extensions of the model proposed there are still being used. There
are, however, other approaches. The GGLP model contains static sources
of particles. In the more recent “hydrodynamic” models the flow of the
sources is of great importance. Another very promising approach are string
models, where the random phase assumption used in previous models is not
necessary and the description looks closer to QCD.

In the present paper we will characterize the GGLP models, the hy-
drodynamic models and the string models, stressing in each case open and
potentially important problems.

2. GGLP models

Let us consider two identical bosons, e.g. two 7™ mesons, created: one

at point 7 and the other at point 7. If the two bosons were distinguishable,
a crude approximation for the probability amplitude of observing both of
them at point 7 could be

Ap = i1 +ip1-(T—T1) Gig1+ipa-(T—T2) (1)

Here the interaction between the two bosons is neglected, so that the two-
particle amplitude is a product of single particle amplitudes. Only the phase
factors are kept and each phase is the sum of the phase obtained by the boson
at birth and of the phase acquired while propagating with given momentum
from the birth point to point 7.

For identical bosons, however, this amplitude has not the right symmetry
with respect to the exchange of the two bosons and the least one must do is to
symmetrize it. Thus for identical bosons the corresponding approximation is

A= L ei(¢1+¢2)+i(ﬁ1+ﬁ2)'F (e*i(ﬁl'Fﬁﬁé'fﬁ) + e*i(ﬁ2'771+ﬁ1-772)) ) (2)

V2

The probability distribution for momenta is proportional to

|A]> =1+ cos ((py — p2) - (71 — 7)) - (3)
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In order to make use of this expression it is necessary to average it over
the non measured production points 71, 75. In the GGLP paper the averag-
ing was over the space distribution of sources p(7; R)p(72; R), where R is
a parameter with dimension length, which was interpreted as the radius of
the production region. Various generalizations, modifications and extensions
followed, but let us use this simple variant to make some general remarks.

In the GGLP model the distribution for pairs of particle momenta de-
pends only on the momentum difference ¢ = p; — p>. This is in violent
contradiction with the data, but GGLP found a clever way out. The distri-
bution for the unsymmetrized amplitude is flat. Therefore, the result can
be just as well interpreted as a prediction for the ratio of the actual momen-
tum distribution to the distribution for distinguishable bosons. Further we
denote this ratio by R(p1, p2)

A7)
A1, 7o)

Now the momentum distribution is not assumed to be independent of the
sum of the momenta. It is enough to make the much weaker and more
reasonable assumption that the dependence on this sum can be factored
out and cancels in the ratio. A well known difficulty with this approach is
that the distribution for distinguishable 7*-s, say, cannot be obtained from
experimental data without further assumptions. GGLP assumed that the
distribution for w7~ pairs can be used instead. There have been many
other proposals (cf. e.g. [8] and references contained there), but none is fully
satisfactory.

For any nonsingular averaging process the average cosine must be close
to one for |¢] &~ 0 and very small for large values of |g]. Therefore, the
ratio R(p1, p2) decreases, though not necessarily monotonically, from values
close to two for small values of |g] to values close to one for large values
of |g]. This gives the characteristic bump in R(p7,p») for small values of ¢2.
If R is the only dimensional parameter available, the width of this bump
must, for simple dimensional reasons, be proportional to R~2. Thus, the
main qualitative results of GGLP are much more general than their specific
choices of the weight functions p(7; R). Nevertheless, they are not quite
general.

It is well known from optics that, whether photons bunch or not, depends
on the type of source and not only on the fact that they are bosons. Pho-
tons can antibunch just as well. In order to illustrate this point within the
GGLP type models, let us assume that the amplitude A has an additional
factor, which equals one, if the product (7} — 73)(p1 — p2) > 0 and minus one

R(p1, p2) (4)
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otherwise. This factor changes sign, when the momenta of the two bosons
are exchanged. Therefore, the squared modulus of the properly symmetrized
production amplitude is

|A]? =1 = cos ((p1 — p2) - (71 — 7)), (5)

and we get a hole instead of the bump in the small ¢? region. Admittedly
this model is not realistic. Its purpose is only to indicate a possibility. This
may be interesting in view of the LEP results concerning Bose—FEinstein cor-
relations in e"e™ annihilations, where two W bosons are simultaneously pro-
duced. It seems that identical pions originating from the decay of a single W
exhibit the usual bump attributed to Bose—Einstein correlations, while these
correlations are absent, or very weak, for pairs of identical pions, when each
pion originates from a different W [9-11]|. In the GGLP model the bump
results from the assumptions that pion pairs produced in different pairs of
points add incoherently. Mild modifications of this assumption |2, 3] can
affect the size of the bump, but do not eliminate it. It would be interesting
to check, whether the GGLP assumptions could be modified so as to predict
the bump for some, but not for all pairs of identical mesons produced in
a multiple particle production event.

3. Hydrodynamic models

It is not possible to express the ratio R(p,p”) in terms of the single par-
ticle momentum distributions. In the hydrodynamic models, as well as in
GGLP models, one makes, however, an assumption, which makes it possible
to express this ratio in terms of the diagonal and off-diagonal terms of the
single particle density matrix in the momentum representation. It is con-
venient to formulate the hydrodynamic models in terms of source functions
S(X, K). The source function [12,13] is related to the single particle density
matrix in the momentum representation by the formula

p(7,5") = / X §(X, K) d'X . (6)

In this formula
K=%(p+p), q=p-7. (7)

Here K, q,p,p’ are four-vectors, but in order to calculate the density matrix,
we need only their values corresponding to the momenta p, p’ being on their
mass shells. X is an integration variable, which is associated with the po-
sition of the sources in space-time. The physical interpretation of X may
be helpful, when trying to find the source function. It is irrelevant for the
calculation of the density matrix, once the source function is known.
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There is an infinity of different source functions, which all give the same
density matrix and consequently the same predictions for the ratio R(p,p").
For instance, one could put

S(X,K)=W(X,K)§Xo), (8)

where W (X, K) is the well-know Wigner function satisfying the relation
o5 = [ TW (R R X 9

and .
X=3(F+7). (10)

This source function gives the correct density matrix by construction, but it
corresponds to a most unlikely scenario, where all the particles are created
simultaneously at Xy = 0. Since our aim is to find the correct density
matrix, this source function would be fine, in spite of the unlikely physical
picture attached to it. The problem is, however, that finding the Wigner
function is not any easier than finding the density matrix in the momentum
representation. The hope is that using a source function, which corresponds
to a plausible scenario for the production process, we will be able to use
more efficiently what we know about particle production in order to find the
source function.

As an example of this approach let us consider the model reviewed in [2].
The source function is postulated in the form

mqp coshy coshn, — r;lmKT sinh 7

S(z,K) = CmTcosh(y—n)exp[

T
2 2 2
7 Ul (1 —70)
— — — . 11
<o |5~ 5 S| (1)
In this formula
1 t+z rT
n 2 0og PR Mt n¢ R’ T Z7,

m2T:m2+I_('%, r%:f%, (12)

z is parallel to z)| and Z is parallel to K. The source function depends on six
free parameters (R,T,ns, An, 19, A7) and, moreover, contains the normal-
ization constant C, but each piece of the source function has a clear physical
interpretation. Therefore, fixing these parameters from the data yields di-
rectly interesting physical information. We will illustrate this important
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point using a fit to the NA49 data on Pb—Pb scattering at 158 GeV /c per
nucleon [2]. The parameter R is the transverse radius of the tube, from
which the final hadrons are emitted. The result R &~ 7fm is about twice the
radius resulting from from the known radii of the lead nuclei. This is evi-
dence for a significant transverse expansion, before most of the hadrons are
produced. The parameter n; governs the transverse rapidity of the sources.
The value obtained 7y ~ 0.35 corresponds to transverse velocities reaching
the velocity of sound in the plasma (1/3), which looks very reasonable. The
parameter T occurs as the temperature in a Boltzmann type factor. Its fit-
ted value T = 130 fm is significantly lower than the temperatures obtained,
when fitting the chemical composition of the final state hadrons, which in-
dicates that during the expansion the stuff cools down. Another interesting
comparison is that of the fitted values 79 =~ 9fm and A7 ~ 1.5fm. The
parameter 7g is the typical time between the moment of collision and the
moment, when a hadron is produced. The parameter A7 is the duration of
the time, when hadrons are produced. The fact that 79 > A7 means that
all the hadrons are produced in a short time interval after a relatively long
incubation time. Unfortunately, as stated by the authors [2], the parameter
Ar is poorly constrained by the data, so that this conclusion is not as solid
as the others.

As seen from this example, given a model one can obtain from the data
much important information. An open problem is, however, how stable are
these conclusions when models change. As seen from the expression of the
source function in terms of the Wigner function, one can fit perfectly the
data assuming that all the particles are produced exactly simultaneously.
It is just as easy to get a perfect fit assuming that the particles are pro-
duced only on the surface of a sphere, or only on the surface of a cube.
These alternative models are so implausible physically that there is little
doubt they should be discarded. The question is, however, how many phys-
ically plausible models can fit the data, while giving completely different
descriptions of the hadronization process?

4. String picture

The string model for Bose-Einstein correlations [14-16| has not yet been
developed to the point, where it could be compared quantitatively with the
data. It is, however, much more ambitious than the models described above.
Instead of phenomenological assumptions about sources and incoherence, it
gives a well defined amplitude for the production of particles with momenta
P1,---,Pn- This amplitude is a plausible approximation to QCD. We will
consider only the 1+1 dimensional version of the string model, which seems
to contain all the main ingredients of this approach, while it is much simpler
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than the 3+1 dimensional version. In fact the 141 dimensional model has
been recently analytically diagonalized [17], though in the version without
the Bose—Einstein correlations.

Let us consider a final state consisting of hadrons with momenta p1,. .. p,.
To this final state the model ascribes a polygon in the (z,t) plane. The sides
of this polygon are the trajectories of the various partons existing between
the moment of eTe~ annihilation and the moments, when the hadrons are
formed. The partons are considered massless and moving with the velocity
of light, therefore the sides of the the polygon form angles +45° with the
t and z axes. Let us put the eTe™ annihilation point at the origin of the
coordinate system. At this point two partons, a quark and an antiquark,
are formed flying along the z axis, away from each other. Their trajectories
form the first two sides of the polygon, both starting at the origin, one going
to the right and upwards, the other going to the left and upwards. The
partons are end points of a colour-string. Thus the string sweeps the surface
of the polygon. The energy of the string F is connected to its length L by
the formula F = kL, where k is a constant known as the string tension.
Thus, while the quark and the antiquark fly away from each other and the
string expands, there is a force reducing the energy of the two partons and
finally the directions of their motions get reversed starting another pair of
the sides of the polygon. In the meantime the string at any point between
the endpoints can break producing a quark and an antiquark, which form
another pair of sides of the polygon. Since any segment of the string has
a quark at one end and an antiquark at the other, it is easily checked that,
except for the original two partons, all the quarks fly in one direction and all
the antiquarks in the other. From time to time a quark meets and antiquark.
Then the two form a hadron with two-momentum equal to the sum of the
two-momenta of the two meeting partons. Thus the polygon contains the
following elements: the vertex at the origin, two turning points of the original
partons, n vertices, where the n hadrons were formed and n — 1 vertices,
where the string broke. One finds that the two-momentum of a hadron is
determined by and determines the lengths of the two sides of the polygon
adjacent to the vertex where the hadron was formed.

The probability amplitude for producing the state (p1,...,p,) depends
on the area A of the polygon

M(pl,---,pn) ~ eifA_ (13)

The imaginary part of &, ib, gives the probability distribution well-known
from the LUND model

|M(p1,...,pn)|* ~e 4. (14)
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The imaginary part, believed to be close to the string tension &, is important
for the description of the Bose—Einstein correlations. In order to describe
these Bose-Einstein correlations the amplitude (13) is symmetrized very
much like in the GGLP approach and a qualitatively satisfactory descrip-
tion of the correlations is obtained. Since, however, the amplitude being
symmetrized is not the GGLP one, there are some significant new points.

Symmetrization means summing over all the permutations of identical
hadrons. Let us concentrate on an exchange of two m* mesons. Each of
them is produced at some hadronization vertex of the polygon. In order to
perform the exchange, one has to cut off the two pionic vertices together with
their adjacent sides of the polygon and to glue them back, pion one in the
position of pion two and pion two in the position of pion one, so as to obtain
again a closed polygon. The new polygon has in general a different area
A’ # A. If the new area is much larger than the area before the exchange, the
contribution from the interference with the permuted amplitude is negligible.
One reason, familiar from the GGLP model, is that the relative phase is
a rapidly varying function of momentum. The new fact is, however, that the
modulus of the permuted amplitude is additionally suppressed by the factor
e(t/2) (A=A") "1 order to obtain small changes of the area, it is advantageous
to exchange pions, which are close to each other counting along the perimeter
of the polygon, or equivalently, which have similar momenta. This is the
reason for the familiar bump for p; = ps.

Let us quote two interesting qualitative predictions of this model. There
should be a difference between the Bose—Einstein correlations for pairs of
charged pions, say 77T, and corresponding correlations for pairs of neutral
pions. The reason is that two 7%-s can be formed at two adjacent hadroni-
sation vertices of the polygon, while two m*-s cannot. There should also be
a difference between the Bose-FEinstein correlations for pairs of mesons orig-
inating from the same string and pairs of mesons originating from different
strings. For the latter situation the present model is clearly not applicable.
It has been suggested ( [18] and references quoted there) that perhaps there
are no correlations between mesons from different strings, which would ex-
plain the observations of Bose—Einstein correlations for pions from decays of
pairs of W bosons.

An interesting question raised by Bowler is the relation of the string
model to the GGLP model. Bowler proposed [19] a model closely related
to the GGLP model, which looks very similar to the string model and, ac-
cording to Bowler, gives also very similar predictions. The model used by
Bowler contains a distribution of sources, which depends not only on space-
time points, as in the GGLP paper, but also on the momenta of the pro-
duced particles. Such models have become popular after the work Yano and
Koonin [20] and are sometimes called Yano Koonin models. It is not clear,



Some Questions Concerning Bose—Finstein . .. 3991

however, what constraints must be imposed on the distributions, in order
to make them consistent with quantum mechanics. Therefore, occasionally
this approach gives inconsistent results [21]. Bowler’s model deviates in two
ways from the string model. It yields the probability amplitude as an ex-
ponential in the area, but this is a modified area, where certain regions are
counted more than once. Moreover, in both models, in order to get the in-
clusive k-particle distribution it is necessary to integrate out the momenta
of the remaining particles, but in Bowler’s model the integration region is
different from that used in the string model. According to some unpublished
numerical calculations by Bowler the two deviations nearly cancel.
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