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THE LUND FRAGMENTATIONOF A MULTIGLUON STRING STATE�B. AnderssonyDepartment of Theoretial Physis, University of LundSölvegatan 14A, 22362 Lund, Sweden(Reeived Otober 30, 2001)I will present a new fragmentation model for a multigluon string statethat will exatly ful�l the Area Law that is at the basis of the original(1+1)-dimensional Lund Model. This means that I will have to brie�ydisuss string motion, in partiular the desription of the general string.As the string surfae is a minimal surfae it is mathematially ompletelydetermined by its boundary urve and I will show how to use the symmetriesof string dynamis to devise a proess along this boundary urve. I willalso show that the new model is losely related to the T funtional andthe � measure that we have repeatedly used in investigations in the LundGroup.PACS numbers: 12.40.�y 1. IntrodutionIn this talk I will present a model that we have reently developed [1℄, forthe fragmentation of a multigluon string state into �nal state hadrons. Theoriginal Lund String Fragmentation Model was developed many years ago,[2, 3℄, and as implemented in the well-known Monte Carlo simulation pro-gram JETSET, [4℄, it has been very suessful in reproduing experimentaldata from all high energy multi-partile proesses. Our reason to ome bakto the model and to extend it is to be able to implement the Area Law ina more preise manner.The Lund Model Area Law stems from a few general assumptions: the�nal state partiles are produed in the breakup of a string-like fore �eldspanned between the olored onstituents, there is ausality and Lorentz� Presented at the XLI Craow Shool of Theoretial Physis, Zakopane, Poland,June 2�11, 2001.y Work done in Lund together with my graduate students Sandipan Mohanty andFredrik Söderberg. (3993)



3994 B. Anderssoninvariane and the prodution of the partiles an be desribed in termsof a stohasti proess obeying a saturation assumption. The results of [2℄(f. also [5℄) are derived for events with a quark (q, olor-3) and an antiquark(�q, olor-�3) at the endpoints of the string and when there are no interior glu-oni (g, olor-8) exitations in the entre. The Area Law then desribes the(non-normalised) probability to produe an n-partile �nal state of hadronswith energy momenta fpjg and masses fmjg:dPn(fpjg;Ptot) = nYj=1Njd2pjÆ �p2j �m2j� Æ nXj=1 pj � Ptot! exp(�bA) : (1)Here A is the area spanned by the string �before� the breakup, Ptot the totalenergy momentum of the state and fNjg and b parameters related to thedensity of hadroni states and the breakup properties of the string �eld,respetively.Shortly after the original derivation of the Area Law [2℄, Sjöstrand [6℄,provided an implementation of the model appliable also for multi-gluonstates, i.e. when the string surfae is no longer �at but geometrially bentdue to the internal exitations. The method of Sjöstrand is to projet the po-sitions of the breakup points (the verties) from the (�at) (1+1)-dimensionalmodel as given by Eq. (1) onto the surfae of the bent string. The projetionis done so that the proper times of the verties and the energy-momentumin the string between them are the same. Unfortunately this method doesnot ful�l the Area Law on the bent surfae beause it is a geometrial fatthat the areas �below the verties� are not invariant under suh a projetionfrom a �at to a bent surfae. Although the Area Law is not ful�lled on anevent to event basis by the method in Ref. [6℄ it seems to be ful�lled in anaverage sense, i.e. the predited inlusive distributions are little a�eted bythe di�erenes as we show in [1℄.In the new model [1℄, we present another method for partile produtionin multi-gluon states whih does ful�l the Area Law at every single step inthe prodution proess. It is then neessary to fae a set of problems inthe de�nition of the states that we apply the proess to. We note that thestates de�ned by perturbation theory are resolved only to the sale of somevirtuality uto�. We found that our method provides a set of exitations onthe sale of the hadroni mass in the string �eld but time and spae will notallow me to go into the details. At the time of writing this report we knowa lot more about the properties of both the perturbative asades and ofthese �soft Coulomb gluons�, [7℄ but that will be reported at future meetings.The states of the massless relativisti string ful�ls a minimum priniple,i.e. the surfae spanned by the string during a period of motion is a mini-mal surfae. This means on the one hand that the states should be stable



The Lund Fragmentation of a Multigluon . . . 3995against small-sale variations and on the other hand that the surfae is fullydetermined by the boundary urve. In this ase the boundary urve orre-sponds to the orbit of one of the endpoints, onventionally the q-endpoint.Therefore the proess we are going to de�ne is a proess along this urve, tobe alled the diretrix urve, A�.The diretrix urve is ompletely de�ned by the multigluon state andan be obtained by laying out the energy momentum vetors of the partonsin olor order, i.e. k1; k2 : : : kn with index 1 the original q and index n the �qvetors. In this talk I will treat the partons as massless partiles (implyingthat the diretrix urve has an everywhere light-like tangent) although boththe proess and the diretrix urve an be de�ned for a general ase withmassive quarks.The results of the new fragmentation proess an be desribed by meansof a hadroni urve, the X-urve, made up by laying out the hadroni energymomentum vetors p1; p2 : : : pN in rank order (rank is de�ned in suh a waythat the �rst rank partile ontains the original q and a �q from the �rstprodution plae, the seond rank from the q from the �rst and a �q from theseond prodution plae, et.).The relationship between the diretrix urve A and the hadroni urve Xan in an intuitive way be desribed as the building of four-sided plaquettesin between the urves. Suh a plaquette will be bordered by one hadronvetor pj from the X-urve, one �original� and one ��nal� vertex vetor,xj�1 and xj, strething from the beginning and the end of the pj to thediretrix urve and one piee ÆAj from the diretrix in suh a way that:xj�1 + ÆAj = pj + xj : (2)The interpretation is that the hadron obtains its energy momentum pj froma �new� part of the diretrix, ÆAj and from the original vertex vetor xj�1that ontains �the memory� of the earlier diretrix parts and then the �new�remainder is brought forward through the �nal vertex vetor xj to the nextplaquette, et.The sum of the areas of the plaquettes orresponds to the area A in theArea Law, Eq. (1) and the plaquette building proess per se an be made ina one-to-one orrespondene to the fatorisation into the transfer operatorsas it is presented in [5℄. The prodution proess of a partile pj in betweenthe two vertex vetors xj�1 and xj an, in the same way, be desribed interms of harmoni osillator wave funtions.The Area Law in Eq. (1) is derived by means of semi-lassial onsidera-tions but the result is nevertheless similar to the one expeted for a quantummehanial transition probability, i.e. it is the �nal state phase spae mul-tiplied by a possible squared matrix element, in this ase the negative areaexponential. I have presented reasons for suh a transition matrix in earlier



3996 B. Anderssontalks here in Zakopane and also shown that the parameters obtained in themodel an be derived from an assumption of gauge invariane and the orre-sponding Wilson loop integrals, f. [3℄. The above-mentioned diagonalisationproess in Ref. [5℄ of the transfer operators would in a quantum mehaniallanguage orrespond to a desription in terms of density operators.One property that an be derived from the Area Law in Eq. (1) is thatthe average deay region is bordered by a typial hyperbola. The �nal statehadrons in our proess will on the average be produed in the same wayalbeit this time along a set of onneted hyperbolas. In Ref. [8℄ we havede�ned suh an average urve and I will all it the X -urve. Just as a sim-ple hyperbola has a length proportional to the hyperbolial angle that itspans (in pratial terms this orresponds to the available rapidity range ina two-jet of hadrons stemming from the simple (1+1)-dimensional (q�q)-jetsdisussed in Setion 2) the X -urve has a length orresponding to a gener-alised rapidity variable, usually alled �, [3, 8℄. The X -urve is de�ned interms of di�erential equations and I will show the lose relationship betweenthe X -urve and the new fragmentation proess, in this ase de�ned in thelimit of a vanishing mass.There are several reasons to build the new fragmentation model. Oneis to ompare the preise implementation of the Area Law to the approx-imate proess in Ref. [6℄ and this we did in [1℄ and will also do in futurepubliations.Another reason is to get a handle on the general struture of fragmen-tation, in partiular to be able to treat also the multigluon fragmentationstates by the analytial methods introdued in Ref. [5℄. This is of partiularinterest for the transition region, i.e. the region in between where we expetperturbation theory to work and where we know that the nonperturbativefragmentation sets in. Results of this kind is on the way to publiation, [7℄.A �nal reason is to investigate the stability of the states in QCD underfragmentation, i.e. given a multigluon state de�ned aording to the rulesof perturbation theory (with virtuality uto�s as mentioned above) to �ndout to what extent it an be modi�ed so that the observable results afterfragmentation still are in agreement with the experiments. In the Lundinterpretation of fragmentation where the partiles stem from the energy ofthe fore �eld it is evident that modi�ations of the perturbative state belowand up to the sale of the hadroni masses should have no e�ets.I will be satis�ed to disuss e+e�-annihilation events with a onneted�nal state string (i.e. the gluon splitting proess is negleted into (q�q) states)and only onsider a single kind of hadron with the massm. I will also negletthe transverse momentum �utuations stemming from the tunnelling of the(q�q) states in the fore �eld.



The Lund Fragmentation of a Multigluon . . . 3997In the next setion I will brie�y reall some neessary formulas and ex-hibit the fatorisation properties obtained in [5℄. After that I will (aftera brief introdution to string motion) show the plaquette building proessin more detail. In [1℄ we introdued the �the orner rossing proess� thatorresponds to the introdution of the loal deviations that I alled Coulombgluons above but I will not have time to over this proess. I will, however,show the relationship between the hadroni X-urve and the X -urve men-tioned above and then I will show that it is possible to �nd the diretrixurve A from a knowledge of the hadroni X-urve (this is a realisation ofthe Hadron�Parton Duality introdued by the Leningrad Group). I will endwith a few omments on future and ongoing work. I apologise for not pro-viding any pitures in this desription of the talk but I have instead providedmany referenes where you an �nd extensive pitorial desriptions of whatI have said.2. The (1+1)-dimensional Lund Model and how to diagonalise itThe Lund Model ontains a non-trivial interpretation of the QCD fore-�eld in terms of the massless relativisti string with the quarks (q) andantiquarks (�q) at the endpoints and the gluons (g) as internal exitationson the string �eld. It is assumed that the fore �eld an break up intosmaller parts in the fragmentation proess by the prodution of new (q�q)-states (i.e. new endpoints). A q from one suh breakup point (�vertex�) antogether with a �q from an adjaent vertex along the string �eld form a hadronomposed of the pair and the �eld in between (all hadrons are in the modeltaken to be on the mass-shell).For the simple ase when there are no gluons the string �eld only orre-sponds to a onstant fore �eld (with a phenomenologial size � ' 1GeV/fm)spanned between the original q�q-pair. In a semi-lassial piture energy-momentum onservation allows that a new massless pair may be produedin a vertex-point along the �eld. The pair will then go apart along oppositelightones, thereby using up the energy in the �eld in between (in this waythe on�ned �elds always will end on the harges). In order that the hadronprodued between two adjaent verties should have a positive mass it isneessary that the verties are plaed in a spaelike manner with respetto eah other. Time-ordering will onsequently be a frame-dependent state-ment (a little thought tells us that in any Lorentz frame the slowest partileswill be the �rst to be produed, thereby ful�lling the neessary requirementsin a Landau�Pomeranhuk formation time senarium). It is possible to or-der the prodution proess instead along the lightones and introdue thenotion of rank in the way I disussed it above. It is, of ourse, possible tointrodue a rank-ordering also from the end ontaining the original �q.



3998 B. AnderssonOne obtains, [2,3,5℄, the unique proess desribed by Eq. (1) from theseobservations and an assumption that the breakup proess obeys a satura-tion assumption, i.e. that after very many steps, when we are far from theendpoints, the proper times of the verties will be distributed aording toan energy-independent distribution.A partiular feature is that if a partile with energy momentum p =(p+; p�) and with squared mass m2 = p2 = p+p� is produed in betweenthe two verties with x = (x+; x�) and x0 = (x0+; x0�) then we havep+ = �(x+ � x0+) � q+ � q0+ ;p� = �(x0� � x�) � q� � q0� : (3)Thus we �nd that on a �at string surfae the di�erene between the vertexpoints will ful�l (x� x0)2 = �m2=�2 : (4)Eq. (3) implies that the (1+1)-dimensional Lund Fragmentation Model mayalso be desribed by means of a multiperipheral hain diagram with thepartiles emitted along the hain with propagators arrying the momentumtransfers.This is used in [5℄ (where there are also some useful pitures) in or-der to subdivide the Area Law proess into steps in between the verties.The energy momentum onserving Æ-distribution in Eq. (1) an be �solved�by introduing the momentum transfers fqjg instead of the hadron momentafpjg. Then the mass-shell onditions means that the hyperboli angle be-tween the verties is �xed by the squared sizes q2 = �� , (q0)2 = �� 0 and(q � q0)2 = m2. The result is that Eq. (1) an be rewritten as a produtof steps between the f�jg (where the area A in the exponent in every stepis subdivided into triangular �slits� between the origin and the relevant twoverties): dPn (fpjg; Ptot) = YK ��j; �j�1;m2� d�j ;K ��; � 0;m2� = N exp�b=2p� (�; � 0;�m2)p� (�; � 0;�m2) ;�(a; b; ) = a2 + b2 + 2 � 2ab� 2a� 2b : (5)It is remarkable fat that the transfer operators K an be diagonalised interms of the eigenfuntions of the harmoni osillator (those that are boost-invariant in a (1+1)-dimensional spae-like Minkowski spae, in a two-dimensional eulidian spae they orrespond to a vanishing angular mo-mentum) gn(� ) with the eigenvalues solely determined by the squared massof the hadrons produed in between



The Lund Fragmentation of a Multigluon . . . 3999
K(�; � 0;m2) = 1Xn=0 gn(� )�n(m2)gn(� 0) : (6)The eigenvalues �n are analyti ontinuation of the harmoni osillator eigen-funtions to time-like values of the argument [5℄. A useful representation ofK and the eigenvalues �n areK ��; � 0;m2� = 1Z0 dzz exp� b2 �z� + m2z � Æ � 0�(1�z)�� + m2z �! ;�n �m2� = N exp�bm22 � 1Z0 dzz (1� z)n exp��bm2z � : (7)We have then introdued the positive lightone fration of the produedhadron z by (x+ � x0+) = zx+. It is straightforward algebra to prove thatthe area slit between the verties is given by the exponent (z� +m2=z)=2in the representation of the kernel K. There is also a simple relationshipbetween the two adjaent values of � in the representation of K� 0 = (1� z)�� + m2z � : (8)Eq. (8) is a partiular onsequene of the fat that it is impossible to use upall the lightone energy-momentum in a typial entral step of the proess.Suh a requirement also omes out of the following argument. Supposethat we would integrate dPn in Eq. (1) over all possible energy-momentaand then sum over all multipliities. Due to the Lorentz invariane we willobtain a funtion R(s) that only an depend upon the total squared energy-momentum s = P 2tot. If we pik out the dependene on the �rst partile andsum and integrate over all the rest we obtain an integral equation for thefuntion R R(s) = (BT) + 1Z0 N dzz exp��bm2z �R(s0) ;s0 = (1� z)�s� m2z � ; (9)where (BT) stands for �boundary ondition term� and where the variable s0is equal to the squared mass of all the remaining partiles if the �rst hadrontakes the lightone fration z (we note the similarity to the Eq. (8) and also



4000 B. Anderssonthe di�erene between the ourrene of the spaelike momentum transfervariables � and the timelike mass variables s). The integral equation Eq. (9)will have an asymptoti solution R / sa (with the parameter a a funtionof N and bm2, f. [3, 7℄) with the requirement1Z0 N dzz (1� z)a exp��bm2z � = 1 : (10)Consequently while the exlusive formula for the prodution of a partiularhadron with the lightone fration z is given by the Area Law, the inlusiveprobability to produe this hadron (irrespetively of what omes after it in theproess) must be weighted with g(s0)=g(s) ' (1 � z)a. Therefore, the well-known Lund fragmentation formula is given by the integrand in Eq. (10) andthere is a power suppression for large values of the fragmentation variable.The formulas presented above orrespond to an ordering along the pos-itive lightone. It is, of ourse, possible to rede�ne everything in terms ofan ordering along the negative lightone, i.e. to introdue the orrespondingnegative lightone omponent � by (x0� � x�) = �x0�. It is straightforwardto prove that � = m2m2 + z� and z = m2m2 + �� 0 ; (11)and from this we �nd that the integrand in the representation for the ker-nel K an be reformulated from (z; � ) ! (�; � 0) to exhibit the symmetrybetween the positive and the negative lightone diretionsdzz Æ�� 0 � (1� z)�� + m2z �� exp� b2 �z� + m2z �! d�� Æ�� � (1� �)�� 0 + m2� �� exp� b2 ��� 0 + m2� � : (12)3. The desription of a multi-gluon string stateThe dynamis of the massless relativisti string is based upon the re-quirement that the surfae spanned by the string during one period of motionshould be a minimal surfae. This means (as always in mathematis) thatthe surfae is ompletely determined by its boundary. In the Lund Model thestring is used as a model for the on�ned olor fore �eld in QCD and theabove property then has the further important impliation that the dynam-is will be infrared stable, i.e. all preditable features from the deay of thefore �eld should be stable against minor deformations.



The Lund Fragmentation of a Multigluon . . . 4001For an open string there is a single wave moving to and through arossthe spae-time surfae and it is bouning at the endpoints. The wave motionis determined by a (four-)vetor-valued shape funtion, that we will all thediretrix, A. Thus a point on the string, parametrised by the amount ofenergy, �, between the point and (for de�niteness) the q-endpoint is at thetime t at the positionx(�; t) = A �t+ ���+A �t� ���2 : (13)We will from now on put the string onstant � equal to unity in order tosimplify the formulas and we note that any point on the string surfae inthis way an be desribed as the average of two points on the diretrix.While the tension ~T = �~x=�� is direted along the string, the veloity~v = �~x=�t is direted transversely so that ~T �~v = 0. The de�nition of � alsoimplies that ~T 2+~v2 = 1 (all the three-vetor relations are valid in the loalrestframe). Together this means that the diretrix funtion everywhere musthave a lightlike tangent  d ~Ad� !2 = 1 : (14)The tension must vanish at the endpoints (� = 0 and � = Etot) and thisimplies that the diretrix must be a periodi funtion with the property thatA(� + 2Etot) = A(�) + 2Ptot ; (15)where Ptot (Etot) is the total energy momentum (energy) of the state. Whilethe diretrix A(t) aording to Eq. (13) desribes the motion of the q-endit is from Eq. (15) evident thatA�q(t) = A(t+Etot)� Ptot ; (16)will desribe the motion of the �q-end. Finally, if the string starts out froma point (at the time t = 0) then due to symmetry we must haveA(�) = �A(��) : (17)Using the Lund interpretation of the gluons as internal exitations on thestring it is easy to onstrut the �rst half period of the diretrix: it will startwith the quark energy momentum k1 and then the gluon energy momentafkjg are laid out in olor order and it ends with the �q. In this way the q-endpoint will be ated upon by the olor-ordered exitations as they arrivein turn.



4002 B. AnderssonFrom Eqs. (15) and (17) it follows that we obtain the diretrix of theseond half period by reversing the order, starting with the �q and endingwith the q energy momentum (besides the translation this is the way the�q-endpoint will move aording to Eq. (16)).With respet to the energy momentum ontent in the string we obtainthat in between the point � and the q-end it is given by�Z0 d�0 �x�t = A(t+ �)�A(t� �)2 : (18)4. The Lund Fragmentation as a proess along the diretrixIn this setion I will go diretly to the proess we have devised in [1℄.I will skip the onsiderations that we presented in that paper on the pos-sibility to devise a more general method for string fragmentation (partlybeause they did not lead to a onsistent and viable proess). In order toexhibit the ideas that leads to a onsistent proess I will start with the(1+1)-dimensional model desribed above and rewrite it in a useful way andafter that extend the method to the general ase. I will also desribe theX -urve and the � measure in order to introdue a simple and intuitive wayto see the multi-dimensional proess that we are disussing.4.1. The diretrix proess for the (1+1)-dimensional aseI will start to show how we an use the symmetries of the string dynamisto rewrite the proess from a proess �aross� the string surfae to a proessalong the diretrix.In the (1+1)-dimensional ase the diretrix only ontains two diretions,given by the �q energy momentum vetor (to be alled A+) and the q energymomentum (A�). A vertex point xj , obtained after the prodution of jhadrons from the q-side, p1; : : : ; pj is then desribed (with respet to theorigin) by two points on the diretrix (f. Eq. (13))xj = (A+j +A�j)2 : (19)We an also dedue from Eq. (18) thatjX1 p` = (A+j �A�j)2 : (20)Using the symmetry of a diretrix passing through a single point (Eq. (17))we may �nd another point on the diretrix with the property thatA�j � A�(�j) = �A�(��j) � �B�j : (21)



The Lund Fragmentation of a Multigluon . . . 4003We will from now on drop the indies � on A+ and B� but we note thatthey do desribe points on the same diretrix. While A� goes �bakward�for inreasing j-values, B follows the q-diretion.We may now onsider the hadron energy momenta to de�ne a urve fromthe origin �along the diretrix� suh that the urve after j steps has reahedthe point, f. Eq. (20) Xj = (Aj + Bj)2 ; (22)while the di�erene between the point Aj on the diretrix and Xj is givenby xj in Eq. (19). The prodution of a new partile pj+1 then orrespondsto hoosing two new points Xj+1 and (along the diretrix) Aj+1 suh thatXj+1 �Xj = pj+1 and Aj+1 �Aj � kj+1 : (23)We also obtain a new �vertex� vetor xj+1 by the evident identity:pj+1 + xj+1 = xj + kj+1 : (24)In this way the vertex vetor ful�ls xj+1 = Aj+1�Xj+1 just as xj = Aj�Xj.We have then arranged it so that the hadrons are produed along a urve,the X-urve, from the origin and the vertex vetors are the onnetors forthis urve going from from the produed partile to the diretrix. Beforewe onsider the Area Law in this situation we note the symmetry betweena reversed proess and the proess desribed above, i.e. when we go from Xjto Xj+1 thereby produing pj+1 by the use of a part kj+1 of the diretrixalong A.To see the reverse proess we note that the vetor xj an just as well bereahed by taking the di�erene between the point Xj on the hadron urve,Eq. (22), and �the bakward point� on the diretrix Bjxj = (Aj � Bj)2 = Aj �Xj = Xj � Bj : (25)Using this we ould evidently onsider the prodution of the partile pj+1as a step from Bj to Bj+1 = Bj + `j (f. Eq. (23)) suh that we have inorrespondene to Eq. (24)pj+1 + xj = xj+1 + `j+1 : (26)In order to formalise the determination of the partile energy momentum p,we may then in �the k-proess� (along A) assume that we know the startingvertex vetor x, onneted to the point AP . We may then hose a piee



4004 B. Anderssonk from AP along A (of a size to be determined) and then de�ne the otherlightone diretion in the plane determined by (x; k) by^̀= x� k x22xk : (27)The vetor p will be desribed in terms of (k; ^̀) asp = z ^̀+ k2 = zq + k2 �1� zx2xk � (28)with the requirement that the partile should be on the mass-shellp2 = m2 = zkx ; i.e. kx = m2z : (29)From Eq. (24) we obtain the new vertex vetor x0 byx0 = (1� z)x+ k2 �1 + zx2xk � ;(x0)2 = (1� z) �x2 + xk� ; (30)and we reognise the results orresponding to the Lund Model formulasgiven in Setion 2. The area �slit� that was de�ned in onnetion with thede�nition of the transition operators (f. Eqs. (5) and (6)) is now plaedin the region in between the hadroni vetor p, the diretrix vetor k andbordered from below by the �original� vertex vetor x and from above bythe �new� vertex vetor x0. This orresponds to the plaquette building thatI mentioned in the Introdution.It is also obvious that we may de�ne an `-proess similar to the k-proesswe have disussed above. We just write z ^̀= `=2 and introdue the variable �suh that k=2 = �k̂ with � hosen suh that m2=� = `x0. Atually we obtainthe same proess (although �in the opposite order�) under the assumptionthat we start at x0 and hose ` along the B-part of the diretrix with thevariable � in aordane with Eq. (11). In this way the �bakward� variable� evidently obeys the same distribution as the �forward� variable z and theArea Law is ful�lled.In onlusion in the proess along the diretrix a partile prodution stepstarts from a knowledge of a vetor x onneted to a lightone-diretion.Then we hose a lightone vetor k suh that Eq. (29) is ful�lled witha z-value stohastially hosen from the fragmentation funtion in Eq. (10).After that we onstrut the partile energy momentum and a new vetorx0 aording to Eqs. (28) and (30). We may start out hoosing the ��rst�x-vetor equal to the q (lightone) energy momentum. The proess anevidently be generalised to an arbitrary diretrix (although there is a needto disuss how to pass around a gluon �orner�, f. [1℄).



The Lund Fragmentation of a Multigluon . . . 40054.2. The X -urve and its propertiesThe Area Law distribution in Eq. (1) ontains two terms, the phase spaeand the exponential area suppression. In order to obtain a large probabilityit is neessary for a given total energy-momentum on the one hand, to makemany partiles on the other hand, to make them in suh a way that thearea is small. The obvious ompromise is that the deay region is arounda typial hyperbola with an average squared distane to the origin h� i � �0.The length of the hyperbola is proportional to the available rapidity rangefor the �nal state partiles, i.e. �y = log(s=�0).For a string with a single gluon exitation there will be two parts of thestring, one spanned between the q and the g and one between the g andthe �q. Eah of them should break up in a similar way as the single stringregion desribed by Eq. (1) and then there will be one or a few partilesprodued in the onneted region around the gluon �tip�. If the energy-momenta of the partons is kj , j = 1; 2; 3 there will then be two hyperboliangular ranges; (�y)12 and (�y)23. The total region will be� = (�y)12 + (�y)23 = log �s122 �0�+ log �s232 �0�= log� s�0�+ log�s12s234�0s � : (31)Here sj` = (kj + k`)2 and s = s12 + s23 + s13 and the fator 2 is introduedbeause only half of the gluon energy-momentum goes into eah string re-gion.The quantity k2? � s12 s23=s is a onvenient (and Lorentz invariant)approximation for the transverse momentum of the emitted gluon. Weonlude that the phase spae after the emission of a single gluon is in-reased from the single hyperbola result above by an amount orrespondingto a �stiking-out tip� of logarithmi length given by the emitted transversemomentum. In onventional notions this is known as the �anomalous dimen-sions� of QCD, i.e. the emission of a gluon inreases the region of olor �owinside whih one an emit further gluons and, �nally, hadronise. The wholesenarium is easily visualised and used in the Lund Dipole asade modelwith the orresponding Monte Carlo simulation program ARIADNE [9℄.It is straightforward to see that if there are many gluons then there isa orresponding quantity, a generalised rapidity � ' log(Q sjj+1) stemmingfrom the hyperbolas spanned between the olor-onneted gluons. We notethat this is not an infrared stable de�nition. We will now provide a onve-nient generalisation.



4006 B. AnderssonA loser examination of the region around the tip of a gluon tells usthat there is a orretion orresponding to a onneted hyperbola in theregion (k1; k3) between the �endpoint� of the hyperbola in the region spannedbetween (k1; k2=2) and the one spanned between (k2=2; k3). In formulas weobtain for the average hyperbolas��1k1 + �1k22 �2 = �0 and (3k3 + �3k2)2 = �0 ;��2k1 + 2k3 + k22 �2 = �0 ; (32)with the ranges 1 � �1 � 2�0=s12, 2�0=s12 � �2 � 0, 2�0=s12 � �1 � 1 andsimilarly for the other variables. The length of the two hyperbolas in thesegments (k1; k2=2) and (k2=2; k3) are then given by Eq. (31) but the thirdhyperbola provides an extra ontribution (in the appropriate limit s13 ' s)equal to log(1 + 4�0s=s12s23). Then the total (generalised) rapidity lengthbeomes �123 = log� s�0 + s12 s23(2�0)2� : (33)This is evidently a nie interpolation between the situations with and with-out a gluon on the string and it is also an infrared stable de�nition of thenotion of rapidity. Eq. (33) is noted in Ref. [8℄ and led us to introduea funtional de�ned on a multigluon string diretrix.We may �rstly de�ne the set of onneted integralsIn = Z ds01ds12 � � � dsnE ; (34)with the easily understood notation (f. Eq. (18)) sjj+1=(A(�j)�A(�j+1))2,i.e. it is proportional to the squared mass between the points �j and �j+1along the diretrix. It is then obvious that the argument in the logarithmin Eq. (33) is given by the sum I1=�0+ I2=2� 20 and that we may in generalde�ne the funtional T byT = 1 + 1Xn=1 In�2m20�n ; (35)as a suitable generalisation for any string state. For a �nite number ofpartons N the terms with n > N will all vanish and we also note that thehighest degree term will always have the generi form2 s124m20 s234m20 � � � sN�1N4m20 : (36)



The Lund Fragmentation of a Multigluon . . . 4007We also note that for a �nite total energy E the ontributions romr the largedegree polynomial terms will beome smaller and smaller ompared to thesale m0.In order to study the funtional T it is suitable to introdue a vary-ing value � instead of the total energy E in the onneted integrals. Theorresponding funtional T (�) will ful�l the integral equationT (�) = 1 + �Z0 ds(�; �0)2m20 T (�0) : (37)We will also introdue the vetor-valued funtion qT (�) together with T sothat we have qT�(�) = �R0 dA�(�0)T (�0)T (�) ;T (�) = 1 + �Z0 qT (�0)dA(�0)m20 T (�0) : (38)By di�erentiation and integration we obtain the resultsT = exp0� �Z0 qT (�0)dA(�0)m20 1A � exp(�(�)) ;q2T (�) = m20 �1� T�2(�)� ; (39)whih implie that the funtional T is the exponential of an area (note that dAis everywhere lightlike and, therefore, the area spanned between the vetorqT and dA is q(qTdA)2 � q2TdA2 = qTdA) saled by m20. This quantity isequal to the generalised rapidity � for the simple ase desribed above andit provides an infrared stable de�nition for any multigluon state. Further,the vetor qT is time-like and will quikly approah the �nite length m0.The interpretation (as it is worked out in Ref. [8℄, f. also [3℄) is that thereis a vetor valued funtion X�(�) onveniently labelled by � suh thatX + qT = A ;dXd� = qT ;dqTd� = �qT + dAd� ; (40)



4008 B. Anderssoni.e. the vetor qT is the tangent to the urve de�ned by X suh that it reahesto the diretrix. We will need two further properties of the X -urve, on theone hand the hange of qT and X for a �nite parton energy-momentum kjon the other hand an interpretation of the di�erential equation for qT inEq. (40).By diret integration we �nd that if we have the vetor qTj then �after�appliation of the parton energy momentum kj we obtain the vetor qTj+1and will take a step along the X -urve equal to ÆXjqTj+1 = jqTj + (1 + j)kj2 ;ÆXj = (qTj + kj2 )(1 � j) ;j = 11 + qTjkjm20 ; (41)(we also note that the produts of the j is equal to T�1). Further, if wede�ne the (1+4)-dimensional vetor (Q� � TqT�=m0; T ) (whih has a lengthin the (1+4)-dimensional Minkowski metri equal to Q2�T 2=�1) then thedi�erential equation for qT an be rewritten asdT = QdA and dQ = TdA ; (42)i.e. as a group of speial rotations in this spae (orresponding to a subgroupof SO(1,4)) that are de�ned by the inremental hanges along the diretrixurve.It is obvious that our partile fragmentation proess, de�ned in the earliersubsetion to produe the hadroni X-urve is similar to the prodution ofthe X -urve devised above. Atually there is a limiting ase where the frag-mentation proess and the di�erential equations disussed above oinide.I will brie�y onsider this ase before I go over to some further properties ofthe fragmentation proess.4.3. The relationship of the proess to the X -urveThere is a diret onnetion between a di�erential version of our hadroni-sation proess and the X -urve that was referred to in Setion 4.2. In orderto see that we onsider the limiting situation when the mass parameter isvanishing. Under those irumstanes the distribution funtion will developa pole for z ! 0. We will assume that the model is de�ned by the stepsize dz with the ratio m ! m0dz. The orresponding inremental k vetor



The Lund Fragmentation of a Multigluon . . . 4009will be alled dA and it will ful�l the mass-shell ondition (we will use thenotation qP instead of x for the vertex vetor)dAqP = m2dz ! dzm20 : (43)From the model formulas for the hange in x ! qP and the partile en-ergy momentum p (Eqs. (28) and (30)) we obtain the following di�erentialequations de�ning a urve to be alled the P-urvedP = dz qP + dA2 �1� q2Pm20� ;dqP = �dz qP + dA2 �1 + q2m20� : (44)The equations are similar but not idential to the de�ning di�erential equa-tions for the X -urve (f. Eqs. (40)). We �rstly note that from the sum anddi�erenes of the Eqs. (44) we obtainP + q = A ;P � q = L ; (45)and that the vetor L has a lightlike tangent just as the diretrix A:dL = 2dz qP � dA q2m20 : (46)In that way the P-urve goes in between two urves with everywhere lightliketangents and the vetor qP onnets to both of them.Just as the vetor qT in Setion 4.2 the vetor qP is timelike and isquikly reahing the length m0:q2P = m20 �1� T�1P � with TP = exp�Z (qPdA)� ; (47)although we note the hange in power with respet to T�1. For a �nitelength k vetor it is easy to integrate the two equations in (44) and weobtain similarly to Eq. (41)q0P = qP + �1 + q2P m20 �2 k ;ÆP = (1� )qP + �1� q2P m20 �2 k ;ÆL � ` = 2(1� )qP � q2P m20 ; = 11 + qP km20 and (TP )�1 =Y j : (48)



4010 B. AnderssonI will end this short digression by showing that although there are smalldeviations between the di�erential version of our fragmentation proess andthe orresponding properties for the X -urve the two proesses are atuallyidentiaal when we onsider them in terms of the rotations in the (1 + 4)-dimensional spae disussed at the end of the last subsetion. We obtainfrom the Eqs. (44) and (47) thatd(qPTP ) = dA �TP � 12� and dTP = qPdATP ; (49)so that the (1 + 4)-dimensional vetor (2qPTP ; 2TP � 1) has both the samelength and ful�ls the same di�erential equations with respet to inrementalhanges along the diretrix as (Q;T ) do in Eqs. (42). The hanges aboveorrespond to di�erent boundary values for the rotational equations.We have � at the time when this is written � been able to show thatthe P-urve that is de�ned above orresponds to the average hadroni X-urve for the multigluon fragmentation proess in the same way as the hyper-bola orresponds to the average fragmentation region for the earlier (1+1)-dimensional model. In partiular the onsiderations for the behaviour of thesum and the integral over the original Area Law formulas in Eq. (1) thatlead to Eqs. (9) and (10) will be obtained in the general model but this timewith the funtional TP instead of the squared ms energy s.4.4. The reverse problem: how to �nd the diretrix from the hadroni urveI will very brie�y disuss the reverse problem to the hadronisation pro-ess, i.e. to what extent we an trae the diretrix from a knowledge of thehadroni urve, that we will all theX-urve in aordane with the notationintrodued in Setion 4.1.We will then assume that the X-urve is de�ned by the hadroni energymomenta fpjg, ordered and laid out aording to rank. We will onentrateon the hadron pj, produed in between the vertex vetors xj+1 and xj withthe diretrix vetor kj . Aording to Eq. (24) it is in order to onstrut kjsu�ient to know pj and the di�erene vetor(xj+1 � xj) = "j p̂j : (50)It is straightforward to solve for p̂j in terms of pj and xjp̂j = (xjpj)pj � p2jxjq(pjxj)2 � p2jx2j ; (51)



The Lund Fragmentation of a Multigluon . . . 4011and the sign "j should be positive or negative depending upon whetherm2=zj is larger or smaller than zjx2j (it is useful to note that 2(pjxj) =(m2=zj + zjx2j )). Therefore, if we presribe the �rst vertex vetor x1 (thisis always hosen in our proess as the original q energy momentum vetor)then the diretrix vetors as well as the verties are determined reursivelyup to a sign: kj = pj + "j p̂j ;xj+1 = xj + "j p̂j : (52)It is evident that the other sign will determine the orresponding `j .I would like to thank the organisers of the Zakopane for giving me yetanother opportunity to meet some of the best friends and the best ritisany man an have, i.e. the polish physis ommunity!REFERENCES[1℄ B. Andersson, S. Mohanty, F. Söderberg, Eur. Phys. J. C21, 631 (2001).[2℄ B. Andersson, G. Gustafson, B. Söderberg, Z. Phys. C20, 317 (1983).[3℄ B. Andersson, The Lund Model, Cambridge University Press, 1998.[4℄ T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).[5℄ B. Andersson, F. Söderberg, Eur. Phys. J. C16, 30 (2000).[6℄ T. Sjöstrand, Nul. Phys. B248, 469 (1984).[7℄ B. Andersson, S. Mohanty, F. Söderberg, to be published.[8℄ B. Andersson, G. Gustafson, B. Söderberg, Nul. Phys. B264, 29 (1986).[9℄ L. Lönnblad, ARIADNE v. 4.10 Comput. Phys. Commun. 71, 15 (1992).


