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I will present a new fragmentation model for a multigluon string state
that will exactly fulfil the Area Law that is at the basis of the original
(141)-dimensional Lund Model. This means that I will have to briefly
discuss string motion, in particular the description of the general string.
As the string surface is a minimal surface it is mathematically completely
determined by its boundary curve and I will show how to use the symmetries
of string dynamics to devise a process along this boundary curve. I will
also show that the new model is closely related to the T functional and
the A measure that we have repeatedly used in investigations in the Lund
Group.

PACS numbers: 12.40.—y

1. Introduction

In this talk I will present a model that we have recently developed [1], for
the fragmentation of a multigluon string state into final state hadrons. The
original Lund String Fragmentation Model was developed many years ago,
[2,3], and as implemented in the well-known Monte Carlo simulation pro-
gram JETSET, [4], it has been very successful in reproducing experimental
data from all high energy multi-particle processes. Our reason to come back
to the model and to extend it is to be able to implement the Area Law in
a more precise manner.

The Lund Model Area Law stems from a few general assumptions: the
final state particles are produced in the breakup of a string-like force field
spanned between the colored constituents, there is causality and Lorentz
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invariance and the production of the particles can be described in terms
of a stochastic process obeying a saturation assumption. The results of [2]
(cf. also [5]) are derived for events with a quark (g, color-3) and an antiquark
(@, color-3) at the endpoints of the string and when there are no interior glu-
onic (g, color-8) excitations in the centre. The Area Law then describes the
(non-normalised) probability to produce an n-particle final state of hadrons
with energy momenta {p;} and masses {m;}:

AP, ({p;}; Prot) = [ [ Njd®pso (p5 — m3) 6 ( > pj- Ptot) exp(=bA). (1)
j=1

=1

Here A is the area spanned by the string “before” the breakup, Pyt the total
energy momentum of the state and {N;} and b parameters related to the
density of hadronic states and the breakup properties of the string field,
respectively.

Shortly after the original derivation of the Area Law [2], Sjostrand [6],
provided an implementation of the model applicable also for multi-gluon
states, 4.e. when the string surface is no longer flat but geometrically bent
due to the internal excitations. The method of Sjdstrand is to project the po-
sitions of the breakup points (the vertices) from the (flat) (1+1)-dimensional
model as given by Eq. (1) onto the surface of the bent string. The projection
is done so that the proper times of the vertices and the energy-momentum
in the string between them are the same. Unfortunately this method does
not fulfil the Area Law on the bent surface because it is a geometrical fact
that the areas “below the vertices” are not invariant under such a projection
from a flat to a bent surface. Although the Area Law is not fulfilled on an
event to event basis by the method in Ref. [6] it seems to be fulfilled in an
average sense, i.e. the predicted inclusive distributions are little affected by
the differences as we show in [1].

In the new model [1]|, we present another method for particle production
in multi-gluon states which does fulfil the Area Law at every single step in
the production process. It is then necessary to face a set of problems in
the definition of the states that we apply the process to. We note that the
states defined by perturbation theory are resolved only to the scale of some
virtuality cutoff. We found that our method provides a set of excitations on
the scale of the hadronic mass in the string field but time and space will not
allow me to go into the details. At the time of writing this report we know
a lot more about the properties of both the perturbative cascades and of
these “soft Coulomb gluons”, [7] but that will be reported at future meetings.

The states of the massless relativistic string fulfils a minimum principle,
i.e. the surface spanned by the string during a period of motion is a mini-
mal surface. This means on the one hand that the states should be stable
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against small-scale variations and on the other hand that the surface is fully
determined by the boundary curve. In this case the boundary curve corre-
sponds to the orbit of one of the endpoints, conventionally the g-endpoint.
Therefore the process we are going to define is a process along this curve, to
be called the directrix curve, A,,.

The directrix curve is completely defined by the multigluon state and
can be obtained by laying out the energy momentum vectors of the partons
in color order, i.e. k1, ks ...k, with index 1 the original ¢ and index n the ¢
vectors. In this talk T will treat the partons as massless particles (implying
that the directrix curve has an everywhere light-like tangent) although both
the process and the directrix curve can be defined for a general case with
massive quarks.

The results of the new fragmentation process can be described by means
of a hadronic curve, the X-curve, made up by laying out the hadronic energy
momentum vectors pi,ps ...pyN in rank order (rank is defined in such a way
that the first rank particle contains the original ¢ and a ¢ from the first
production place, the second rank from the ¢ from the first and a ¢ from the
second production place, etc.).

The relationship between the directrix curve A and the hadronic curve X
can in an intuitive way be described as the building of four-sided plaquettes
in between the curves. Such a plaquette will be bordered by one hadron
vector p; from the X-curve, one “original” and one “final” vertex vector,
zj—1 and z;, stretching from the beginning and the end of the p; to the
directrix curve and one piece . A; from the directrix in such a way that:

Tj—1 +(5.Aj =Dy +£Ej. (2)

The interpretation is that the hadron obtains its energy momentum p; from
a “new” part of the directrix, 0.A; and from the original vertex vector z;_;
that contains “the memory” of the earlier directrix parts and then the “new”
remainder is brought forward through the final vertex vector z; to the next
plaquette, etc.

The sum of the areas of the plaquettes corresponds to the area A in the
Area Law, Eq. (1) and the plaquette building process per se can be made in
a one-to-one correspondence to the factorisation into the transfer operators
as it is presented in [5]. The production process of a particle p; in between
the two vertex vectors x; 1 and z; can, in the same way, be described in
terms of harmonic oscillator wave functions.

The Area Law in Eq. (1) is derived by means of semi-classical considera-
tions but the result is nevertheless similar to the one expected for a quantum
mechanical transition probability, 4.e. it is the final state phase space mul-
tiplied by a possible squared matrix element, in this case the negative area
exponential. I have presented reasons for such a transition matrix in earlier
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talks here in Zakopane and also shown that the parameters obtained in the
model can be derived from an assumption of gauge invariance and the corre-
sponding Wilson loop integrals, cf. [3]. The above-mentioned diagonalisation
process in Ref. [5] of the transfer operators would in a quantum mechanical
language correspond to a description in terms of density operators.

One property that can be derived from the Area Law in Eq. (1) is that
the average decay region is bordered by a typical hyperbola. The final state
hadrons in our process will on the average be produced in the same way
albeit this time along a set of connected hyperbolas. In Ref. [8] we have
defined such an average curve and I will call it the X'-curve. Just as a sim-
ple hyperbola has a length proportional to the hyperbolical angle that it
spans (in practical terms this corresponds to the available rapidity range in
a two-jet of hadrons stemming from the simple (1-+1)-dimensional (gq)-jets
discussed in Section 2) the X-curve has a length corresponding to a gener-
alised rapidity variable, usually called A, [3,8]. The X-curve is defined in
terms of differential equations and I will show the close relationship between
the X-curve and the new fragmentation process, in this case defined in the
limit of a vanishing mass.

There are several reasons to build the new fragmentation model. One
is to compare the precise implementation of the Area Law to the approx-
imate process in Ref. [6] and this we did in [1] and will also do in future
publications.

Another reason is to get a handle on the general structure of fragmen-
tation, in particular to be able to treat also the multigluon fragmentation
states by the analytical methods introduced in Ref. [5]. This is of particular
interest for the transition region, i.e. the region in between where we expect
perturbation theory to work and where we know that the nonperturbative
fragmentation sets in. Results of this kind is on the way to publication, [7].

A final reason is to investigate the stability of the states in QCD under
fragmentation, i.e. given a multigluon state defined according to the rules
of perturbation theory (with virtuality cutoffs as mentioned above) to find
out to what extent it can be modified so that the observable results after
fragmentation still are in agreement with the experiments. In the Lund
interpretation of fragmentation where the particles stem from the energy of
the force field it is evident that modifications of the perturbative state below
and up to the scale of the hadronic masses should have no effects.

I will be satisfied to discuss eTe -annihilation events with a connected
final state string (i.e. the gluon splitting process is neglected into (¢q) states)
and only consider a single kind of hadron with the mass m. I will also neglect
the transverse momentum fluctuations stemming from the tunnelling of the
(qq) states in the force field.



The Lund Fragmentation of a Multigluon . .. 3997

In the next section I will briefly recall some necessary formulas and ex-
hibit the factorisation properties obtained in [5]. After that I will (after
a brief introduction to string motion) show the plaquette building process
in more detail. In [1] we introduced the “the corner crossing process” that
corresponds to the introduction of the local deviations that I called Coulomb
gluons above but I will not have time to cover this process. I will, however,
show the relationship between the hadronic X-curve and the X-curve men-
tioned above and then I will show that it is possible to find the directrix
curve A from a knowledge of the hadronic X-curve (this is a realisation of
the Hadron—Parton Duality introduced by the Leningrad Group). I will end
with a few comments on future and ongoing work. I apologise for not pro-
viding any pictures in this description of the talk but I have instead provided
many references where you can find extensive pictorial descriptions of what
I have said.

2. The (1+1)-dimensional Lund Model and how to diagonalise it

The Lund Model contains a non-trivial interpretation of the QCD force-
field in terms of the massless relativistic string with the quarks (¢q) and
antiquarks (¢) at the endpoints and the gluons (g) as internal excitations
on the string field. It is assumed that the force field can break up into
smaller parts in the fragmentation process by the production of new (¢q)
-states (i.e. new endpoints). A ¢ from one such breakup point (“vertex”) can
together with a g from an adjacent vertex along the string field form a hadron
composed of the pair and the field in between (all hadrons are in the model
taken to be on the mass-shell).

For the simple case when there are no gluons the string field only corre-
sponds to a constant force field (with a phenomenological size k ~ 1 GeV /fm)
spanned between the original gg-pair. In a semi-classical picture energy-
momentum conservation allows that a new massless pair may be produced
in a vertex-point along the field. The pair will then go apart along opposite
lightcones, thereby using up the energy in the field in between (in this way
the confined fields always will end on the charges). In order that the hadron
produced between two adjacent vertices should have a positive mass it is
necessary that the vertices are placed in a spacelike manner with respect
to each other. Time-ordering will consequently be a frame-dependent state-
ment (a little thought tells us that in any Lorentz frame the slowest particles
will be the first to be produced, thereby fulfilling the necessary requirements
in a Landau-Pomeranchuk formation time scenarium). It is possible to or-
der the production process instead along the lightcones and introduce the
notion of rank in the way I discussed it above. It is, of course, possible to
introduce a rank-ordering also from the end containing the original .



3998 B. ANDERSSON

One obtains, [2,3,5], the unique process described by Eq. (1) from these
observations and an assumption that the breakup process obeys a satura-
tion assumption, i.e. that after very many steps, when we are far from the
endpoints, the proper times of the vertices will be distributed according to
an energy-independent distribution.

A vparticular feature is that if a particle with energy momentum p =
(p+,p—) and with squared mass m? = p? = p,p_ is produced in between
the two vertices with z = (z4,z_) and 2’ = (2!, 2’_) then we have

pr = klzy —2l) =q4 — ),
p— = Kzl —z_)=q-—q_. (3)
Thus we find that on a flat string surface the difference between the vertex
points will fulfil
(z — ') = —m?/K2. (4)

Eq. (3) implies that the (1-+1)-dimensional Lund Fragmentation Model may
also be described by means of a multiperipheral chain diagram with the
particles emitted along the chain with propagators carrying the momentum
transfers.

This is used in [5] (where there are also some useful pictures) in or-
der to subdivide the Area Law process into steps in between the vertices.
The energy momentum conserving d-distribution in Eq. (1) can be “solved”
by introducing the momentum transfers {g;} instead of the hadron momenta
{p;}. Then the mass-shell conditions means that the hyperbolic angle be-
tween the vertices is fixed by the squared sizes ¢> = —T', (¢')? = —I"" and
(¢ — ¢')> = m?. The result is that Eq. (1) can be rewritten as a product
of steps between the {I’;} (where the area A in the exponent in every step
is subdivided into triangular “slits” between the origin and the relevant two
vertices):

AP, ({pj}, Prot) = [[ K (I}, -1, m*) dIy,

—b/2\/X(I[, I, —m?2
K(F,F’,mg) — Nexp / ( ’ ’ m)

AT, T, —m?)

3

Aa,b,¢) = a® +b* + ¢ — 2ab — 2ac — 2bc. (5)

It is remarkable fact that the transfer operators K can be diagonalised in
terms of the eigenfunctions of the harmonic oscillator (those that are boost-
invariant in a (1-+1)-dimensional space-like Minkowski space, in a two-
dimensional euclidian space they correspond to a vanishing angular mo-
mentum) g, (I") with the eigenvalues solely determined by the squared mass
of the hadrons produced in between
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K(Fafla Zgn gn(F)' (6)

The eigenvalues A\, are analytic continuation of the harmonic oscillator eigen-
functions to time-like values of the argument [5]. A useful representation of
K and the eigenvalues A, are

1
2 2
K (I,T",m?) = /@exp—é <zF+m—) 5<F'—(1—z) <F+m—>>,
z 2 z z
0

2
An (mg) = Nexp <b%>

We have then introduced the positive lightcone fraction of the produced
hadron z by (z4 — #!,) = zz,. It is straightforward algebra to prove that
the area slit between the vertices is given by the exponent (2I" +m?/z)/2
in the representation of the kernel K. There is also a simple relationship
between the two adjacent values of I" in the representation of K

m

I'=(1-2) <r+;). 8)

Eq. (8) is a particular consequence of the fact that it is impossible to use up
all the lightcone energy-momentum in a typical central step of the process.

Such a requirement also comes out of the following argument. Suppose
that we would integrate dP, in Eq. (1) over all possible energy-momenta
and then sum over all multiplicities. Due to the Lorentz invariance we will
obtain a function R(s) that only can depend upon the total squared energy-
momentum s = P2, . If we pick out the dependence on the first particle and
sum and integrate over all the rest we obtain an integral equation for the
function R

R(s) = (BT) + /1 N%exp (‘bzm2) R(s),
0

sf:(l_z)<s_m_2), )

z

where (BT) stands for “boundary condition term” and where the variable s’
is equal to the squared mass of all the remaining particles if the first hadron
takes the lightcone fraction z (we note the similarity to the Eq. (8) and also
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the difference between the occurrence of the spacelike momentum transfer
variables I and the timelike mass variables s). The integral equation Eq. (9)
will have an asymptotic solution R oc s* (with the parameter ¢ a function
of N and bm?, cf. [3,7]) with the requirement

1
b2
/Nd—zl—z exp< bm): . (10)
z z
0

Consequently while the ezclusive formula for the production of a particular
hadron with the lightcone fraction z is given by the Area Law, the inclusive
probability to produce this hadron (irrespectively of what comes after it in the
process) must be weighted with g(s')/g(s) =~ (1 — z)®. Therefore, the well-
known Lund fragmentation formula is given by the integrand in Eq. (10) and
there is a power suppression for large values of the fragmentation variable.

The formulas presented above correspond to an ordering along the pos-
itive lightcone. It is, of course, possible to redefine everything in terms of
an ordering along the negative lightcone, ¢.e. to introduce the corresponding
negative lightcone component ¢ by (2’ —z_) = (z’ . Tt is straightforward
to prove that

m? m?

L d = 11

¢ m2+ 2 0 ? m2+ (I (11)

and from this we find that the integrand in the representation for the ker-

nel K can be reformulated from (z,I") — ({,I") to exhibit the symmetry
between the positive and the negative lightcone directions

dza( —(1-2) <F+m72>)exp—g <zF+m72)

— %5 <F -(1-9 <F’ + m;)) exp—g <<F’+ m;) - (12)

3. The description of a multi-gluon string state

The dynamics of the massless relativistic string is based upon the re-
quirement that the surface spanned by the string during one period of motion
should be a minimal surface. This means (as always in mathematics) that
the surface is completely determined by its boundary. In the Lund Model the
string is used as a model for the confined color force field in QCD and the
above property then has the further important implication that the dynam-
ics will be infrared stable, i.e. all predictable features from the decay of the
force field should be stable against minor deformations.
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For an open string there is a single wave moving to and through across
the space-time surface and it is bouncing at the endpoints. The wave motion
is determined by a (four-)vector-valued shape function, that we will call the
directrix, A. Thus a point on the string, parametrised by the amount of
energy, o, between the point and (for definiteness) the g-endpoint is at the
time ¢ at the position

A +7)+A(E-F)

z(o,t) = 5

(13)
We will from now on put the string constant x equal to unity in order to
simplify the formulas and we note that any point on the string surface in
this way can be described as the average of two points on the directriz.
While the tension T' = 9%/0do is directed along the string, the velocity
# = 0/0t is directed transversely so that T -# = 0. The definition of o also
implies that T2 + 2 = 1 (all the three-vector relations are valid in the local
restframe). Together this means that the directriz function everywhere must

have a lightlike tangent
A\’
— | =1. 14
(%) (14

The tension must vanish at the endpoints (¢ = 0 and o = F}o) and this
implies that the directrix must be a periodic function with the property that

A(€ + 2E01) = A(§) + 2Pt (15)

where Piot (Ejot) is the total energy momentum (energy) of the state. While
the directrix A(#) according to Eq. (13) describes the motion of the g-end
it is from Eq. (15) evident that

Ag(t) = At + Etot) — Prot (16)

will describe the motion of the g-end. Finally, if the string starts out from
a point (at the time £ = 0) then due to symmetry we must have

A() = —A(=). (17)

Using the Lund interpretation of the gluons as internal excitations on the
string it is easy to construct the first half period of the directrix: it will start
with the quark energy momentum k; and then the gluon energy momenta
{k;} are laid out in color order and it ends with the g. In this way the g¢-
endpoint will be acted upon by the color-ordered excitations as they arrive
in turn.
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From Egs. (15) and (17) it follows that we obtain the directrix of the
second half period by reversing the order, starting with the ¢ and ending
with the ¢ energy momentum (besides the translation this is the way the
g-endpoint will move according to Eq. (16)).

With respect to the energy momentum content in the string we obtain
that in between the point o and the g-end it is given by

a

/ Bx_.A(t—i-o)—.A(t—a)‘

do’' =

ot 2 (18)

0

4. The Lund Fragmentation as a process along the directrix

In this section I will go directly to the process we have devised in [1].
I will skip the considerations that we presented in that paper on the pos-
sibility to devise a more general method for string fragmentation (partly
because they did not lead to a consistent and viable process). In order to
exhibit the ideas that leads to a consistent process I will start with the
(1+1)-dimensional model described above and rewrite it in a useful way and
after that extend the method to the general case. I will also describe the
X-curve and the X measure in order to introduce a simple and intuitive way
to see the multi-dimensional process that we are discussing.

4.1. The directriz process for the (1+1)-dimensional case

I will start to show how we can use the symmetries of the string dynamics
to rewrite the process from a process “across” the string surface to a process
along the directrix.

In the (1+1)-dimensional case the directrix only contains two directions,
given by the § energy momentum vector (to be called A, ) and the g energy
momentum (A_). A vertex point z;, obtained after the production of j
hadrons from the g-side, pi,...,p; is then described (with respect to the
origin) by two points on the directrix (¢f. Eq. (13))

;= (‘AJFJQ;‘AJ) (19)
We can also deduce from Eq. (18) that
J
A — A
ZW:( +]2 J)‘ (20)
1

Using the symmetry of a directrix passing through a single point (Eq. (17))
we may find another point on the directrix with the property that

Aoy = A(§) = —A-(=¢) = -B-;. (21)
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We will from now on drop the indices £+ on A, and B_ but we note that
they do describe points on the same directrix. While A_ goes “backward”
for increasing j-values, B follows the g-direction.

We may now consider the hadron energy momenta to define a curve from
the origin “along the directrix” such that the curve after j steps has reached
the point, c¢f. Eq. (20)

(A + B))

Xj ==,

(22)
while the difference between the point A; on the directrix and X is given
by z; in Eq. (19). The production of a new particle p; 4 then corresponds
to choosing two new points X;;; and (along the directrix) A, such that

Xjr1—Xj=pjs1 and  Aj —Aj =kjy. (23)
We also obtain a new “vertex” vector xj;q by the evident identity:
Pj+1 + Zjr1 =5 + kj_|_1 . (24)

In this way the vertex vector fulfils ;1 = A1 — X1 justas z; = A;— X;.
We have then arranged it so that the hadrons are produced along a curve,
the X-curve, from the origin and the vertex vectors are the connectors for
this curve going from from the produced particle to the directrix. Before
we consider the Area Law in this situation we note the symmetry between
a reversed process and the process described above, i.e. when we go from X
to X41 thereby producing p;i1 by the use of a part kjy; of the directrix
along A.

To see the reverse process we note that the vector x; can just as well be
reached by taking the difference between the point X; on the hadron curve,
Eq. (22), and “the backward point” on the directrix B;

_ (A = Bj)

L= A - X; = X, - B;. (25)

Using this we could evidently consider the production of the particle pjiq
as a step from B; to Bjy1 = Bj +¢; (¢f Eq. (23)) such that we have in
correspondence to Eq. (24)

Pjt1+ ;= Tjp1 + Ly (26)

In order to formalise the determination of the particle energy momentum p,
we may then in “the k-process” (along A) assume that we know the starting
vertex vector z, connected to the point Ap. We may then chose a piece
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k from Ap along A (of a size to be determined) and then define the other
lightcone direction in the plane determined by (z, k) by

2

. x
b=x—k—. 2
v 2zk (27)
The vector p will be described in terms of (k,¢) as
.k k 22
with the requirement that the particle should be on the mass-shell
2
p? =m? =zkx, i.e. ko = 2 (29)
z
From Eq. (24) we obtain the new vertex vector z' by
k 212
! = 1— by 1 -
x (1-2)z+ 5 < + 5 ) ;
(z')? = (1-2z) (2* + zk) , (30)

and we recognise the results corresponding to the Lund Model formulas
given in Section 2. The area “slit” that was defined in connection with the
definition of the transition operators (cf. Egs. (5) and (6)) is now placed
in the region in between the hadronic vector p, the directrix vector k£ and
bordered from below by the “original” vertex vector z and from above by
the “new” vertex vector x’. This corresponds to the plaquette building that
I mentioned in the Introduction.

It is also obvious that we may define an /-process similar to the k-process
we have discussed above. We just write z¢ = £/2 and introduce the variable {
such that k/2 = ¢k with ¢ chosen such that m2/¢ = ¢2’. Actually we obtain
the same process (although “in the opposite order”) under the assumption
that we start at 2’ and chose £ along the B-part of the directrix with the
variable ¢ in accordance with Eq. (11). In this way the “backward” variable
¢ evidently obeys the same distribution as the “forward” variable z and the
Area Law is fulfilled.

In conclusion in the process along the directrix a particle production step
starts from a knowledge of a vector z connected to a lightcone-direction.
Then we chose a lightcone vector k such that Eq. (29) is fulfilled with
a z-value stochastically chosen from the fragmentation function in Eq. (10).
After that we construct the particle energy momentum and a new vector
2’ according to Egs. (28) and (30). We may start out choosing the “first”
z-vector equal to the ¢ (lightcone) energy momentum. The process can
evidently be generalised to an arbitrary directrix (although there is a need
to discuss how to pass around a gluon “corner”, cf. [1]).
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4.2. The X-curve and its properties

The Area Law distribution in Eq. (1) contains two terms, the phase space
and the exponential area suppression. In order to obtain a large probability
it is necessary for a given total energy-momentum on the one hand, to make
many particles on the other hand, to make them in such a way that the
area is small. The obvious compromise is that the decay region is around
a typical hyperbola with an average squared distance to the origin (I') = TI}.
The length of the hyperbola is proportional to the available rapidity range
for the final state particles, i.e. Ay = log(s/I).

For a string with a single gluon excitation there will be two parts of the
string, one spanned between the ¢ and the g and one between the g and
the g. Each of them should break up in a similar way as the single string
region described by Eq. (1) and then there will be one or a few particles
produced in the connected region around the gluon “tip”. If the energy-
momenta of the partons is k;, j = 1,2,3 there will then be two hyperbolic
angular ranges; (Ay)12 and (Ay)as. The total region will be

A= (Ay)12 + (Ay)es = log (%F()) + log (szﬁfo)

~tog (£) g (222).
Here sjp = (k; + k¢)? and s = s1o + 593 + 513 and the factor 2 is introduced
because only half of the gluon energy-momentum goes into each string re-
gion.

The quantity ki = $19893/s is a convenient (and Lorentz invariant)
approximation for the transverse momentum of the emitted gluon. We
conclude that the phase space after the emission of a single gluon is in-
creased from the single hyperbola result above by an amount corresponding
to a “sticking-out tip” of logarithmic length given by the emitted transverse
momentum. In conventional notions this is known as the “anomalous dimen-
sions” of QCD, 4.e. the emission of a gluon increases the region of color flow
inside which one can emit further gluons and, finally, hadronise. The whole
scenarium is easily visualised and used in the Lund Dipole cascade model
with the corresponding Monte Carlo simulation program ARIADNE [9].

It is straightforward to see that if there are many gluons then there is
a corresponding quantity, a generalised rapidity A ~ log([] s;j+1) stemming
from the hyperbolas spanned between the color-connected gluons. We note
that this is not an infrared stable definition. We will now provide a conve-
nient generalisation.
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A closer examination of the region around the tip of a gluon tells us
that there is a correction corresponding to a connected hyperbola in the
region (ki, k3) between the “endpoint” of the hyperbola in the region spanned
between (ki,ks/2) and the one spanned between (k2/2, k3). In formulas we
obtain for the average hyperbolas

k
<a1k1 + %) = Iy and (y3k3 + B3ka)? = Iy,

k 2
<a2k1 + voks + 52) = Iy, (32)

with the ranges 1 > a1 > 214/s12, 210/512 > a2 > 0, 2I/s12 < By < 1 and
similarly for the other variables. The length of the two hyperbolas in the
segments (ki, k2/2) and (k2/2, ks) are then given by Eq. (31) but the third
hyperbola provides an extra contribution (in the appropriate limit s13 ~ s)
equal to log(l + 4Igs/s12523). Then the total (generalised) rapidity length
becomes

S S$12 523
A123 = log <F0 + (21_,0)2> . (33)

This is evidently a nice interpolation between the situations with and with-
out a gluon on the string and it is also an infrared stable definition of the
notion of rapidity. Eq. (33) is noted in Ref. [8] and led us to introduce
a functional defined on a multigluon string directrix.

We may firstly define the set of connected integrals

In = /d801d812 e dSnE s (34)

with the easily understood notation (cf. Eq. (18)) sj;+1=(A(&) —A(&41))?,
i.e. it is proportional to the squared mass between the points &; and §; 11
along the directrix. It is then obvious that the argument in the logarithm
in Eq. (33) is given by the sum Iy /Ty + I/2I? and that we may in general
define the functional T by

_1+Z

as a suitable generalisation for any string state. For a finite number of
partons N the terms with n > N will all vanish and we also note that the
highest degree term will always have the generic form

2m0 (35)

S12 823 SN—1N
2 2 2
dmg 4mj 4dmg

(36)
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We also note that for a finite total energy E the contributions romr the large
degree polynomial terms will become smaller and smaller compared to the
scale my.

In order to study the functional T it is suitable to introduce a vary-
ing value ¢ instead of the total energy E in the connected integrals. The
corresponding functional T'(¢) will fulfil the integral equation

T(¢). (37)

We will also introduce the vector-valued function gr(§) together with T' so
that we have

I3
. (€yre)
QTu(f) = Wﬂ
3
76 = 1+ [ ar(E)AAE) 1y (38)
my
0

By differentiation and integration we obtain the results

£
e [ [ 2E)AAE) )

T = exp 0/ m%
gt(€) = mi (L-T%(9)) (39)

which implie that the functional T is the exponential of an area (note that d.A
is everywhere lightlike and, therefore, the area spanned between the vector
gr and dA is \/ (qgrdA)? — ¢2dA? = qrdA) scaled by m2. This quantity is
equal to the generalised rapidity A for the simple case described above and
it provides an infrared stable definition for any multigluon state. Further,
the vector gr is time-like and will quickly approach the finite length my.
The interpretation (as it is worked out in Ref. [8], ¢f. also [3]) is that there
is a vector valued function X),(\) conveniently labelled by X such that

X+QT = -Aa
ax
aN qr,
d dA
=L = —qr+ (40)

d\ a\’
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1.e. the vector g is the tangent to the curve defined by X such that it reaches
to the directrix. We will need two further properties of the X-curve, on the
one hand the change of g7 and & for a finite parton energy-momentum k;
on the other hand an interpretation of the differential equation for gr in
Eq. (40).

By direct integration we find that if we have the vector ¢r; then “after”
application of the parton energy momentum k; we obtain the vector grj41
and will take a step along the X-curve equal to dX;

1+ ;)k;
qri+1 = Y915 + %,

k.
0X; = (qrj + 7)1 =),
1

V= T (41)
L 1t
(we also note that the products of the v; is equal to T7'). Further, if we
define the (144)-dimensional vector (Q, = Tqr,/mo,T) (which has a length
in the (1+4)-dimensional Minkowski metric equal to Q?—T2=—1) then the

differential equation for gr can be rewritten as

dT = Qd A and dQ = TdA, (42)

i.e. as a group of special rotations in this space (corresponding to a subgroup
of SO(1,4)) that are defined by the incremental changes along the directrix
curve.

It is obvious that our particle fragmentation process, defined in the earlier
subsection to produce the hadronic X-curve is similar to the production of
the X-curve devised above. Actually there is a limiting case where the frag-
mentation process and the differential equations discussed above coincide.
I will briefly consider this case before I go over to some further properties of
the fragmentation process.

4.83. The relationship of the process to the X-curve

There is a direct connection between a differential version of our hadroni-
sation process and the X-curve that was referred to in Section 4.2. In order
to see that we consider the limiting situation when the mass parameter is
vanishing. Under those circumstances the distribution function will develop
a pole for z — 0. We will assume that the model is defined by the step
size dz with the ratio m — mopdz. The corresponding incremental k£ vector
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will be called dA and it will fulfil the mass-shell condition (we will use the
notation gp instead of x for the vertex vector)

dAgp = i dzmg . (43)

From the model formulas for the change in £ — ¢gp and the particle en-
ergy momentum p (Egs. (28) and (30)) we obtain the following differential
equations defining a curve to be called the P-curve

d 2
P = dqu+—“4< —q—PQ) ,
2 mg
dA §
dgp = —dzqp + — <1+q—2) . (44)
2 mg

The equations are similar but not identical to the defining differential equa-
tions for the X-curve (¢f. Eqs. (40)). We firstly note that from the sum and
differences of the Eqs. (44) we obtain

P+q = A,
P—-—q =L, (45)
and that the vector £ has a lightlike tangent just as the directrix A:
2
dL = 2dz qp — d.Aq—2 . (46)
my

In that way the P-curve goes in between two curves with everywhere lightlike
tangents and the vector ¢p connects to both of them.

Just as the vector gr in Section 4.2 the vector ¢p is timelike and is
quickly reaching the length my:

ap=mi(1-T5") with Tp = exp < / (quA)) , (47

although we note the change in power with respect to T!. For a finite
length k vector it is easy to integrate the two equations in (44) and we
obtain similarly to Eq. (41)

(%)
7 Yap + ——5—k

S
~
I

6P = (1—7)qp+%k,

2
2
- apy
0L = L=21—-7)gp — —-,
mg
1 -
v = T and (Tp) 1:H7j. (48)
2
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I will end this short digression by showing that although there are small
deviations between the differential version of our fragmentation process and
the corresponding properties for the X'-curve the two processes are actually
identiacal when we consider them in terms of the rotations in the (1 + 4)
-dimensional space discussed at the end of the last subsection. We obtain
from the Eqs. (44) and (47) that

d(qup) =dA (T - %) and dTP = qu.ATp, (49)

so that the (1 + 4)-dimensional vector (2¢pTp,2Tp — 1) has both the same
length and fulfils the same differential equations with respect to incremental
changes along the directrix as (Q,T) do in Egs. (42). The changes above
correspond to different boundary values for the rotational equations.

We have — at the time when this is written — been able to show that
the P-curve that is defined above corresponds to the average hadronic X -
curve for the multigluon fragmentation process in the same way as the hyper-
bola corresponds to the average fragmentation region for the earlier (1+1)-
dimensional model. In particular the considerations for the behaviour of the
sum and the integral over the original Area Law formulas in Eq. (1) that
lead to Eqgs. (9) and (10) will be obtained in the general model but this time
with the functional Tp instead of the squared cms energy s.

4.4. The reverse problem: how to find the directriz from the hadronic curve

I will very briefly discuss the reverse problem to the hadronisation pro-
cess, i.e. to what extent we can trace the directrix from a knowledge of the
hadronic curve, that we will call the X-curve in accordance with the notation
introduced in Section 4.1.

We will then assume that the X-curve is defined by the hadronic energy
momenta {p;}, ordered and laid out according to rank. We will concentrate
on the hadron p;, produced in between the vertex vectors ;11 and x; with
the directrix vector k;. According to Eq. (24) it is in order to construct k;
sufficient to know p; and the difference vector

(zj11 — x5) = €5p; - (50)

It is straightforward to solve for p; in terms of p; and z;

_ (zpj)pi — pij
Py = - 32 =, (51)
(pjz;) — DT
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and the sign ¢; should be positive or negative depending upon whether

m?/z; is larger or smaller than zjx? (it is useful to note that 2(p;z;) =
(m?/z; + z]xi)) Therefore, if we prescribe the first vertex vector z1 (this
is always chosen in our process as the original ¢ energy momentum vector)
then the directrix vectors as well as the vertices are determined recursively

up to a sign:

kj =pj+eip;,
Tjt1 = Tj +€5D; - (52)

It is evident that the other sign will determine the corresponding /;.

I would like to thank the organisers of the Zakopane for giving me yet
another opportunity to meet some of the best friends and the best critics
any man can have, i.e. the polish physics community!

REFERENCES

1]
2]
[3]
4]
[5]
[6]
7]
18]
[9]

. Andersson, S. Mohanty, F. S6derberg, Fur. Phys. J. C21, 631 (2001).
. Andersson, G. Gustafson, B. Soderberg, Z. Phys. C20, 317 (1983).

. Andersson, The Lund Model, Cambridge University Press, 1998.

. Sjostrand, Comput. Phys. Commun. 82, 74 (1994).

. Andersson, F. Séderberg, Eur. Phys. J. C16, 30 (2000).

. Sjostrand, Nucl. Phys. B248, 469 (1984).

. Andersson, S. Mohanty, F. Séderberg, to be published.

. Andersson, G. Gustafson, B. Séderberg, Nucl. Phys. B264, 29 (1986).
. Lonnblad, ARTADNE v. 4.10 Comput. Phys. Commun. 71, 15 (1992).

fodH T oW



