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THE LUND FRAGMENTATIONOF A MULTIGLUON STRING STATE�B. AnderssonyDepartment of Theoreti
al Physi
s, University of LundSölvegatan 14A, 22362 Lund, Sweden(Re
eived O
tober 30, 2001)I will present a new fragmentation model for a multigluon string statethat will exa
tly ful�l the Area Law that is at the basis of the original(1+1)-dimensional Lund Model. This means that I will have to brie�ydis
uss string motion, in parti
ular the des
ription of the general string.As the string surfa
e is a minimal surfa
e it is mathemati
ally 
ompletelydetermined by its boundary 
urve and I will show how to use the symmetriesof string dynami
s to devise a pro
ess along this boundary 
urve. I willalso show that the new model is 
losely related to the T fun
tional andthe � measure that we have repeatedly used in investigations in the LundGroup.PACS numbers: 12.40.�y 1. Introdu
tionIn this talk I will present a model that we have re
ently developed [1℄, forthe fragmentation of a multigluon string state into �nal state hadrons. Theoriginal Lund String Fragmentation Model was developed many years ago,[2, 3℄, and as implemented in the well-known Monte Carlo simulation pro-gram JETSET, [4℄, it has been very su

essful in reprodu
ing experimentaldata from all high energy multi-parti
le pro
esses. Our reason to 
ome ba
kto the model and to extend it is to be able to implement the Area Law ina more pre
ise manner.The Lund Model Area Law stems from a few general assumptions: the�nal state parti
les are produ
ed in the breakup of a string-like for
e �eldspanned between the 
olored 
onstituents, there is 
ausality and Lorentz� Presented at the XLI Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,June 2�11, 2001.y Work done in Lund together with my graduate students Sandipan Mohanty andFredrik Söderberg. (3993)



3994 B. Anderssoninvarian
e and the produ
tion of the parti
les 
an be des
ribed in termsof a sto
hasti
 pro
ess obeying a saturation assumption. The results of [2℄(
f. also [5℄) are derived for events with a quark (q, 
olor-3) and an antiquark(�q, 
olor-�3) at the endpoints of the string and when there are no interior glu-oni
 (g, 
olor-8) ex
itations in the 
entre. The Area Law then des
ribes the(non-normalised) probability to produ
e an n-parti
le �nal state of hadronswith energy momenta fpjg and masses fmjg:dPn(fpjg;Ptot) = nYj=1Njd2pjÆ �p2j �m2j� Æ nXj=1 pj � Ptot! exp(�bA) : (1)Here A is the area spanned by the string �before� the breakup, Ptot the totalenergy momentum of the state and fNjg and b parameters related to thedensity of hadroni
 states and the breakup properties of the string �eld,respe
tively.Shortly after the original derivation of the Area Law [2℄, Sjöstrand [6℄,provided an implementation of the model appli
able also for multi-gluonstates, i.e. when the string surfa
e is no longer �at but geometri
ally bentdue to the internal ex
itations. The method of Sjöstrand is to proje
t the po-sitions of the breakup points (the verti
es) from the (�at) (1+1)-dimensionalmodel as given by Eq. (1) onto the surfa
e of the bent string. The proje
tionis done so that the proper times of the verti
es and the energy-momentumin the string between them are the same. Unfortunately this method doesnot ful�l the Area Law on the bent surfa
e be
ause it is a geometri
al fa
tthat the areas �below the verti
es� are not invariant under su
h a proje
tionfrom a �at to a bent surfa
e. Although the Area Law is not ful�lled on anevent to event basis by the method in Ref. [6℄ it seems to be ful�lled in anaverage sense, i.e. the predi
ted in
lusive distributions are little a�e
ted bythe di�eren
es as we show in [1℄.In the new model [1℄, we present another method for parti
le produ
tionin multi-gluon states whi
h does ful�l the Area Law at every single step inthe produ
tion pro
ess. It is then ne
essary to fa
e a set of problems inthe de�nition of the states that we apply the pro
ess to. We note that thestates de�ned by perturbation theory are resolved only to the s
ale of somevirtuality 
uto�. We found that our method provides a set of ex
itations onthe s
ale of the hadroni
 mass in the string �eld but time and spa
e will notallow me to go into the details. At the time of writing this report we knowa lot more about the properties of both the perturbative 
as
ades and ofthese �soft Coulomb gluons�, [7℄ but that will be reported at future meetings.The states of the massless relativisti
 string ful�ls a minimum prin
iple,i.e. the surfa
e spanned by the string during a period of motion is a mini-mal surfa
e. This means on the one hand that the states should be stable
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ale variations and on the other hand that the surfa
e is fullydetermined by the boundary 
urve. In this 
ase the boundary 
urve 
orre-sponds to the orbit of one of the endpoints, 
onventionally the q-endpoint.Therefore the pro
ess we are going to de�ne is a pro
ess along this 
urve, tobe 
alled the dire
trix 
urve, A�.The dire
trix 
urve is 
ompletely de�ned by the multigluon state and
an be obtained by laying out the energy momentum ve
tors of the partonsin 
olor order, i.e. k1; k2 : : : kn with index 1 the original q and index n the �qve
tors. In this talk I will treat the partons as massless parti
les (implyingthat the dire
trix 
urve has an everywhere light-like tangent) although boththe pro
ess and the dire
trix 
urve 
an be de�ned for a general 
ase withmassive quarks.The results of the new fragmentation pro
ess 
an be des
ribed by meansof a hadroni
 
urve, the X-
urve, made up by laying out the hadroni
 energymomentum ve
tors p1; p2 : : : pN in rank order (rank is de�ned in su
h a waythat the �rst rank parti
le 
ontains the original q and a �q from the �rstprodu
tion pla
e, the se
ond rank from the q from the �rst and a �q from these
ond produ
tion pla
e, et
.).The relationship between the dire
trix 
urve A and the hadroni
 
urve X
an in an intuitive way be des
ribed as the building of four-sided plaquettesin between the 
urves. Su
h a plaquette will be bordered by one hadronve
tor pj from the X-
urve, one �original� and one ��nal� vertex ve
tor,xj�1 and xj, stret
hing from the beginning and the end of the pj to thedire
trix 
urve and one pie
e ÆAj from the dire
trix in su
h a way that:xj�1 + ÆAj = pj + xj : (2)The interpretation is that the hadron obtains its energy momentum pj froma �new� part of the dire
trix, ÆAj and from the original vertex ve
tor xj�1that 
ontains �the memory� of the earlier dire
trix parts and then the �new�remainder is brought forward through the �nal vertex ve
tor xj to the nextplaquette, et
.The sum of the areas of the plaquettes 
orresponds to the area A in theArea Law, Eq. (1) and the plaquette building pro
ess per se 
an be made ina one-to-one 
orresponden
e to the fa
torisation into the transfer operatorsas it is presented in [5℄. The produ
tion pro
ess of a parti
le pj in betweenthe two vertex ve
tors xj�1 and xj 
an, in the same way, be des
ribed interms of harmoni
 os
illator wave fun
tions.The Area Law in Eq. (1) is derived by means of semi-
lassi
al 
onsidera-tions but the result is nevertheless similar to the one expe
ted for a quantumme
hani
al transition probability, i.e. it is the �nal state phase spa
e mul-tiplied by a possible squared matrix element, in this 
ase the negative areaexponential. I have presented reasons for su
h a transition matrix in earlier



3996 B. Anderssontalks here in Zakopane and also shown that the parameters obtained in themodel 
an be derived from an assumption of gauge invarian
e and the 
orre-sponding Wilson loop integrals, 
f. [3℄. The above-mentioned diagonalisationpro
ess in Ref. [5℄ of the transfer operators would in a quantum me
hani
allanguage 
orrespond to a des
ription in terms of density operators.One property that 
an be derived from the Area Law in Eq. (1) is thatthe average de
ay region is bordered by a typi
al hyperbola. The �nal statehadrons in our pro
ess will on the average be produ
ed in the same wayalbeit this time along a set of 
onne
ted hyperbolas. In Ref. [8℄ we havede�ned su
h an average 
urve and I will 
all it the X -
urve. Just as a sim-ple hyperbola has a length proportional to the hyperboli
al angle that itspans (in pra
ti
al terms this 
orresponds to the available rapidity range ina two-jet of hadrons stemming from the simple (1+1)-dimensional (q�q)-jetsdis
ussed in Se
tion 2) the X -
urve has a length 
orresponding to a gener-alised rapidity variable, usually 
alled �, [3, 8℄. The X -
urve is de�ned interms of di�erential equations and I will show the 
lose relationship betweenthe X -
urve and the new fragmentation pro
ess, in this 
ase de�ned in thelimit of a vanishing mass.There are several reasons to build the new fragmentation model. Oneis to 
ompare the pre
ise implementation of the Area Law to the approx-imate pro
ess in Ref. [6℄ and this we did in [1℄ and will also do in futurepubli
ations.Another reason is to get a handle on the general stru
ture of fragmen-tation, in parti
ular to be able to treat also the multigluon fragmentationstates by the analyti
al methods introdu
ed in Ref. [5℄. This is of parti
ularinterest for the transition region, i.e. the region in between where we expe
tperturbation theory to work and where we know that the nonperturbativefragmentation sets in. Results of this kind is on the way to publi
ation, [7℄.A �nal reason is to investigate the stability of the states in QCD underfragmentation, i.e. given a multigluon state de�ned a

ording to the rulesof perturbation theory (with virtuality 
uto�s as mentioned above) to �ndout to what extent it 
an be modi�ed so that the observable results afterfragmentation still are in agreement with the experiments. In the Lundinterpretation of fragmentation where the parti
les stem from the energy ofthe for
e �eld it is evident that modi�
ations of the perturbative state belowand up to the s
ale of the hadroni
 masses should have no e�e
ts.I will be satis�ed to dis
uss e+e�-annihilation events with a 
onne
ted�nal state string (i.e. the gluon splitting pro
ess is negle
ted into (q�q) states)and only 
onsider a single kind of hadron with the massm. I will also negle
tthe transverse momentum �u
tuations stemming from the tunnelling of the(q�q) states in the for
e �eld.
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tion I will brie�y re
all some ne
essary formulas and ex-hibit the fa
torisation properties obtained in [5℄. After that I will (aftera brief introdu
tion to string motion) show the plaquette building pro
essin more detail. In [1℄ we introdu
ed the �the 
orner 
rossing pro
ess� that
orresponds to the introdu
tion of the lo
al deviations that I 
alled Coulombgluons above but I will not have time to 
over this pro
ess. I will, however,show the relationship between the hadroni
 X-
urve and the X -
urve men-tioned above and then I will show that it is possible to �nd the dire
trix
urve A from a knowledge of the hadroni
 X-
urve (this is a realisation ofthe Hadron�Parton Duality introdu
ed by the Leningrad Group). I will endwith a few 
omments on future and ongoing work. I apologise for not pro-viding any pi
tures in this des
ription of the talk but I have instead providedmany referen
es where you 
an �nd extensive pi
torial des
riptions of whatI have said.2. The (1+1)-dimensional Lund Model and how to diagonalise itThe Lund Model 
ontains a non-trivial interpretation of the QCD for
e-�eld in terms of the massless relativisti
 string with the quarks (q) andantiquarks (�q) at the endpoints and the gluons (g) as internal ex
itationson the string �eld. It is assumed that the for
e �eld 
an break up intosmaller parts in the fragmentation pro
ess by the produ
tion of new (q�q)-states (i.e. new endpoints). A q from one su
h breakup point (�vertex�) 
antogether with a �q from an adja
ent vertex along the string �eld form a hadron
omposed of the pair and the �eld in between (all hadrons are in the modeltaken to be on the mass-shell).For the simple 
ase when there are no gluons the string �eld only 
orre-sponds to a 
onstant for
e �eld (with a phenomenologi
al size � ' 1GeV/fm)spanned between the original q�q-pair. In a semi-
lassi
al pi
ture energy-momentum 
onservation allows that a new massless pair may be produ
edin a vertex-point along the �eld. The pair will then go apart along oppositelight
ones, thereby using up the energy in the �eld in between (in this waythe 
on�ned �elds always will end on the 
harges). In order that the hadronprodu
ed between two adja
ent verti
es should have a positive mass it isne
essary that the verti
es are pla
ed in a spa
elike manner with respe
tto ea
h other. Time-ordering will 
onsequently be a frame-dependent state-ment (a little thought tells us that in any Lorentz frame the slowest parti
leswill be the �rst to be produ
ed, thereby ful�lling the ne
essary requirementsin a Landau�Pomeran
huk formation time s
enarium). It is possible to or-der the produ
tion pro
ess instead along the light
ones and introdu
e thenotion of rank in the way I dis
ussed it above. It is, of 
ourse, possible tointrodu
e a rank-ordering also from the end 
ontaining the original �q.



3998 B. AnderssonOne obtains, [2,3,5℄, the unique pro
ess des
ribed by Eq. (1) from theseobservations and an assumption that the breakup pro
ess obeys a satura-tion assumption, i.e. that after very many steps, when we are far from theendpoints, the proper times of the verti
es will be distributed a

ording toan energy-independent distribution.A parti
ular feature is that if a parti
le with energy momentum p =(p+; p�) and with squared mass m2 = p2 = p+p� is produ
ed in betweenthe two verti
es with x = (x+; x�) and x0 = (x0+; x0�) then we havep+ = �(x+ � x0+) � q+ � q0+ ;p� = �(x0� � x�) � q� � q0� : (3)Thus we �nd that on a �at string surfa
e the di�eren
e between the vertexpoints will ful�l (x� x0)2 = �m2=�2 : (4)Eq. (3) implies that the (1+1)-dimensional Lund Fragmentation Model mayalso be des
ribed by means of a multiperipheral 
hain diagram with theparti
les emitted along the 
hain with propagators 
arrying the momentumtransfers.This is used in [5℄ (where there are also some useful pi
tures) in or-der to subdivide the Area Law pro
ess into steps in between the verti
es.The energy momentum 
onserving Æ-distribution in Eq. (1) 
an be �solved�by introdu
ing the momentum transfers fqjg instead of the hadron momentafpjg. Then the mass-shell 
onditions means that the hyperboli
 angle be-tween the verti
es is �xed by the squared sizes q2 = �� , (q0)2 = �� 0 and(q � q0)2 = m2. The result is that Eq. (1) 
an be rewritten as a produ
tof steps between the f�jg (where the area A in the exponent in every stepis subdivided into triangular �slits� between the origin and the relevant twoverti
es): dPn (fpjg; Ptot) = YK ��j; �j�1;m2� d�j ;K ��; � 0;m2� = N exp�b=2p� (�; � 0;�m2)p� (�; � 0;�m2) ;�(a; b; 
) = a2 + b2 + 
2 � 2ab� 2a
� 2b
 : (5)It is remarkable fa
t that the transfer operators K 
an be diagonalised interms of the eigenfun
tions of the harmoni
 os
illator (those that are boost-invariant in a (1+1)-dimensional spa
e-like Minkowski spa
e, in a two-dimensional eu
lidian spa
e they 
orrespond to a vanishing angular mo-mentum) gn(� ) with the eigenvalues solely determined by the squared massof the hadrons produ
ed in between
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K(�; � 0;m2) = 1Xn=0 gn(� )�n(m2)gn(� 0) : (6)The eigenvalues �n are analyti
 
ontinuation of the harmoni
 os
illator eigen-fun
tions to time-like values of the argument [5℄. A useful representation ofK and the eigenvalues �n areK ��; � 0;m2� = 1Z0 dzz exp� b2 �z� + m2z � Æ � 0�(1�z)�� + m2z �! ;�n �m2� = N exp�bm22 � 1Z0 dzz (1� z)n exp��bm2z � : (7)We have then introdu
ed the positive light
one fra
tion of the produ
edhadron z by (x+ � x0+) = zx+. It is straightforward algebra to prove thatthe area slit between the verti
es is given by the exponent (z� +m2=z)=2in the representation of the kernel K. There is also a simple relationshipbetween the two adja
ent values of � in the representation of K� 0 = (1� z)�� + m2z � : (8)Eq. (8) is a parti
ular 
onsequen
e of the fa
t that it is impossible to use upall the light
one energy-momentum in a typi
al 
entral step of the pro
ess.Su
h a requirement also 
omes out of the following argument. Supposethat we would integrate dPn in Eq. (1) over all possible energy-momentaand then sum over all multipli
ities. Due to the Lorentz invarian
e we willobtain a fun
tion R(s) that only 
an depend upon the total squared energy-momentum s = P 2tot. If we pi
k out the dependen
e on the �rst parti
le andsum and integrate over all the rest we obtain an integral equation for thefun
tion R R(s) = (BT) + 1Z0 N dzz exp��bm2z �R(s0) ;s0 = (1� z)�s� m2z � ; (9)where (BT) stands for �boundary 
ondition term� and where the variable s0is equal to the squared mass of all the remaining parti
les if the �rst hadrontakes the light
one fra
tion z (we note the similarity to the Eq. (8) and also



4000 B. Anderssonthe di�eren
e between the o

urren
e of the spa
elike momentum transfervariables � and the timelike mass variables s). The integral equation Eq. (9)will have an asymptoti
 solution R / sa (with the parameter a a fun
tionof N and bm2, 
f. [3, 7℄) with the requirement1Z0 N dzz (1� z)a exp��bm2z � = 1 : (10)Consequently while the ex
lusive formula for the produ
tion of a parti
ularhadron with the light
one fra
tion z is given by the Area Law, the in
lusiveprobability to produ
e this hadron (irrespe
tively of what 
omes after it in thepro
ess) must be weighted with g(s0)=g(s) ' (1 � z)a. Therefore, the well-known Lund fragmentation formula is given by the integrand in Eq. (10) andthere is a power suppression for large values of the fragmentation variable.The formulas presented above 
orrespond to an ordering along the pos-itive light
one. It is, of 
ourse, possible to rede�ne everything in terms ofan ordering along the negative light
one, i.e. to introdu
e the 
orrespondingnegative light
one 
omponent � by (x0� � x�) = �x0�. It is straightforwardto prove that � = m2m2 + z� and z = m2m2 + �� 0 ; (11)and from this we �nd that the integrand in the representation for the ker-nel K 
an be reformulated from (z; � ) ! (�; � 0) to exhibit the symmetrybetween the positive and the negative light
one dire
tionsdzz Æ�� 0 � (1� z)�� + m2z �� exp� b2 �z� + m2z �! d�� Æ�� � (1� �)�� 0 + m2� �� exp� b2 ��� 0 + m2� � : (12)3. The des
ription of a multi-gluon string stateThe dynami
s of the massless relativisti
 string is based upon the re-quirement that the surfa
e spanned by the string during one period of motionshould be a minimal surfa
e. This means (as always in mathemati
s) thatthe surfa
e is 
ompletely determined by its boundary. In the Lund Model thestring is used as a model for the 
on�ned 
olor for
e �eld in QCD and theabove property then has the further important impli
ation that the dynam-i
s will be infrared stable, i.e. all predi
table features from the de
ay of thefor
e �eld should be stable against minor deformations.



The Lund Fragmentation of a Multigluon . . . 4001For an open string there is a single wave moving to and through a
rossthe spa
e-time surfa
e and it is boun
ing at the endpoints. The wave motionis determined by a (four-)ve
tor-valued shape fun
tion, that we will 
all thedire
trix, A. Thus a point on the string, parametrised by the amount ofenergy, �, between the point and (for de�niteness) the q-endpoint is at thetime t at the positionx(�; t) = A �t+ ���+A �t� ���2 : (13)We will from now on put the string 
onstant � equal to unity in order tosimplify the formulas and we note that any point on the string surfa
e inthis way 
an be des
ribed as the average of two points on the dire
trix.While the tension ~T = �~x=�� is dire
ted along the string, the velo
ity~v = �~x=�t is dire
ted transversely so that ~T �~v = 0. The de�nition of � alsoimplies that ~T 2+~v2 = 1 (all the three-ve
tor relations are valid in the lo
alrestframe). Together this means that the dire
trix fun
tion everywhere musthave a lightlike tangent  d ~Ad� !2 = 1 : (14)The tension must vanish at the endpoints (� = 0 and � = Etot) and thisimplies that the dire
trix must be a periodi
 fun
tion with the property thatA(� + 2Etot) = A(�) + 2Ptot ; (15)where Ptot (Etot) is the total energy momentum (energy) of the state. Whilethe dire
trix A(t) a

ording to Eq. (13) des
ribes the motion of the q-endit is from Eq. (15) evident thatA�q(t) = A(t+Etot)� Ptot ; (16)will des
ribe the motion of the �q-end. Finally, if the string starts out froma point (at the time t = 0) then due to symmetry we must haveA(�) = �A(��) : (17)Using the Lund interpretation of the gluons as internal ex
itations on thestring it is easy to 
onstru
t the �rst half period of the dire
trix: it will startwith the quark energy momentum k1 and then the gluon energy momentafkjg are laid out in 
olor order and it ends with the �q. In this way the q-endpoint will be a
ted upon by the 
olor-ordered ex
itations as they arrivein turn.



4002 B. AnderssonFrom Eqs. (15) and (17) it follows that we obtain the dire
trix of these
ond half period by reversing the order, starting with the �q and endingwith the q energy momentum (besides the translation this is the way the�q-endpoint will move a

ording to Eq. (16)).With respe
t to the energy momentum 
ontent in the string we obtainthat in between the point � and the q-end it is given by�Z0 d�0 �x�t = A(t+ �)�A(t� �)2 : (18)4. The Lund Fragmentation as a pro
ess along the dire
trixIn this se
tion I will go dire
tly to the pro
ess we have devised in [1℄.I will skip the 
onsiderations that we presented in that paper on the pos-sibility to devise a more general method for string fragmentation (partlybe
ause they did not lead to a 
onsistent and viable pro
ess). In order toexhibit the ideas that leads to a 
onsistent pro
ess I will start with the(1+1)-dimensional model des
ribed above and rewrite it in a useful way andafter that extend the method to the general 
ase. I will also des
ribe theX -
urve and the � measure in order to introdu
e a simple and intuitive wayto see the multi-dimensional pro
ess that we are dis
ussing.4.1. The dire
trix pro
ess for the (1+1)-dimensional 
aseI will start to show how we 
an use the symmetries of the string dynami
sto rewrite the pro
ess from a pro
ess �a
ross� the string surfa
e to a pro
essalong the dire
trix.In the (1+1)-dimensional 
ase the dire
trix only 
ontains two dire
tions,given by the �q energy momentum ve
tor (to be 
alled A+) and the q energymomentum (A�). A vertex point xj , obtained after the produ
tion of jhadrons from the q-side, p1; : : : ; pj is then des
ribed (with respe
t to theorigin) by two points on the dire
trix (
f. Eq. (13))xj = (A+j +A�j)2 : (19)We 
an also dedu
e from Eq. (18) thatjX1 p` = (A+j �A�j)2 : (20)Using the symmetry of a dire
trix passing through a single point (Eq. (17))we may �nd another point on the dire
trix with the property thatA�j � A�(�j) = �A�(��j) � �B�j : (21)



The Lund Fragmentation of a Multigluon . . . 4003We will from now on drop the indi
es � on A+ and B� but we note thatthey do des
ribe points on the same dire
trix. While A� goes �ba
kward�for in
reasing j-values, B follows the q-dire
tion.We may now 
onsider the hadron energy momenta to de�ne a 
urve fromthe origin �along the dire
trix� su
h that the 
urve after j steps has rea
hedthe point, 
f. Eq. (20) Xj = (Aj + Bj)2 ; (22)while the di�eren
e between the point Aj on the dire
trix and Xj is givenby xj in Eq. (19). The produ
tion of a new parti
le pj+1 then 
orrespondsto 
hoosing two new points Xj+1 and (along the dire
trix) Aj+1 su
h thatXj+1 �Xj = pj+1 and Aj+1 �Aj � kj+1 : (23)We also obtain a new �vertex� ve
tor xj+1 by the evident identity:pj+1 + xj+1 = xj + kj+1 : (24)In this way the vertex ve
tor ful�ls xj+1 = Aj+1�Xj+1 just as xj = Aj�Xj.We have then arranged it so that the hadrons are produ
ed along a 
urve,the X-
urve, from the origin and the vertex ve
tors are the 
onne
tors forthis 
urve going from from the produ
ed parti
le to the dire
trix. Beforewe 
onsider the Area Law in this situation we note the symmetry betweena reversed pro
ess and the pro
ess des
ribed above, i.e. when we go from Xjto Xj+1 thereby produ
ing pj+1 by the use of a part kj+1 of the dire
trixalong A.To see the reverse pro
ess we note that the ve
tor xj 
an just as well berea
hed by taking the di�eren
e between the point Xj on the hadron 
urve,Eq. (22), and �the ba
kward point� on the dire
trix Bjxj = (Aj � Bj)2 = Aj �Xj = Xj � Bj : (25)Using this we 
ould evidently 
onsider the produ
tion of the parti
le pj+1as a step from Bj to Bj+1 = Bj + `j (
f. Eq. (23)) su
h that we have in
orresponden
e to Eq. (24)pj+1 + xj = xj+1 + `j+1 : (26)In order to formalise the determination of the parti
le energy momentum p,we may then in �the k-pro
ess� (along A) assume that we know the startingvertex ve
tor x, 
onne
ted to the point AP . We may then 
hose a pie
e



4004 B. Anderssonk from AP along A (of a size to be determined) and then de�ne the otherlight
one dire
tion in the plane determined by (x; k) by^̀= x� k x22xk : (27)The ve
tor p will be des
ribed in terms of (k; ^̀) asp = z ^̀+ k2 = zq + k2 �1� zx2xk � (28)with the requirement that the parti
le should be on the mass-shellp2 = m2 = zkx ; i.e. kx = m2z : (29)From Eq. (24) we obtain the new vertex ve
tor x0 byx0 = (1� z)x+ k2 �1 + zx2xk � ;(x0)2 = (1� z) �x2 + xk� ; (30)and we re
ognise the results 
orresponding to the Lund Model formulasgiven in Se
tion 2. The area �slit� that was de�ned in 
onne
tion with thede�nition of the transition operators (
f. Eqs. (5) and (6)) is now pla
edin the region in between the hadroni
 ve
tor p, the dire
trix ve
tor k andbordered from below by the �original� vertex ve
tor x and from above bythe �new� vertex ve
tor x0. This 
orresponds to the plaquette building thatI mentioned in the Introdu
tion.It is also obvious that we may de�ne an `-pro
ess similar to the k-pro
esswe have dis
ussed above. We just write z ^̀= `=2 and introdu
e the variable �su
h that k=2 = �k̂ with � 
hosen su
h that m2=� = `x0. A
tually we obtainthe same pro
ess (although �in the opposite order�) under the assumptionthat we start at x0 and 
hose ` along the B-part of the dire
trix with thevariable � in a

ordan
e with Eq. (11). In this way the �ba
kward� variable� evidently obeys the same distribution as the �forward� variable z and theArea Law is ful�lled.In 
on
lusion in the pro
ess along the dire
trix a parti
le produ
tion stepstarts from a knowledge of a ve
tor x 
onne
ted to a light
one-dire
tion.Then we 
hose a light
one ve
tor k su
h that Eq. (29) is ful�lled witha z-value sto
hasti
ally 
hosen from the fragmentation fun
tion in Eq. (10).After that we 
onstru
t the parti
le energy momentum and a new ve
torx0 a

ording to Eqs. (28) and (30). We may start out 
hoosing the ��rst�x-ve
tor equal to the q (light
one) energy momentum. The pro
ess 
anevidently be generalised to an arbitrary dire
trix (although there is a needto dis
uss how to pass around a gluon �
orner�, 
f. [1℄).
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urve and its propertiesThe Area Law distribution in Eq. (1) 
ontains two terms, the phase spa
eand the exponential area suppression. In order to obtain a large probabilityit is ne
essary for a given total energy-momentum on the one hand, to makemany parti
les on the other hand, to make them in su
h a way that thearea is small. The obvious 
ompromise is that the de
ay region is arounda typi
al hyperbola with an average squared distan
e to the origin h� i � �0.The length of the hyperbola is proportional to the available rapidity rangefor the �nal state parti
les, i.e. �y = log(s=�0).For a string with a single gluon ex
itation there will be two parts of thestring, one spanned between the q and the g and one between the g andthe �q. Ea
h of them should break up in a similar way as the single stringregion des
ribed by Eq. (1) and then there will be one or a few parti
lesprodu
ed in the 
onne
ted region around the gluon �tip�. If the energy-momenta of the partons is kj , j = 1; 2; 3 there will then be two hyperboli
angular ranges; (�y)12 and (�y)23. The total region will be� = (�y)12 + (�y)23 = log �s122 �0�+ log �s232 �0�= log� s�0�+ log�s12s234�0s � : (31)Here sj` = (kj + k`)2 and s = s12 + s23 + s13 and the fa
tor 2 is introdu
edbe
ause only half of the gluon energy-momentum goes into ea
h string re-gion.The quantity k2? � s12 s23=s is a 
onvenient (and Lorentz invariant)approximation for the transverse momentum of the emitted gluon. We
on
lude that the phase spa
e after the emission of a single gluon is in-
reased from the single hyperbola result above by an amount 
orrespondingto a �sti
king-out tip� of logarithmi
 length given by the emitted transversemomentum. In 
onventional notions this is known as the �anomalous dimen-sions� of QCD, i.e. the emission of a gluon in
reases the region of 
olor �owinside whi
h one 
an emit further gluons and, �nally, hadronise. The wholes
enarium is easily visualised and used in the Lund Dipole 
as
ade modelwith the 
orresponding Monte Carlo simulation program ARIADNE [9℄.It is straightforward to see that if there are many gluons then there isa 
orresponding quantity, a generalised rapidity � ' log(Q sjj+1) stemmingfrom the hyperbolas spanned between the 
olor-
onne
ted gluons. We notethat this is not an infrared stable de�nition. We will now provide a 
onve-nient generalisation.
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loser examination of the region around the tip of a gluon tells usthat there is a 
orre
tion 
orresponding to a 
onne
ted hyperbola in theregion (k1; k3) between the �endpoint� of the hyperbola in the region spannedbetween (k1; k2=2) and the one spanned between (k2=2; k3). In formulas weobtain for the average hyperbolas��1k1 + �1k22 �2 = �0 and (
3k3 + �3k2)2 = �0 ;��2k1 + 
2k3 + k22 �2 = �0 ; (32)with the ranges 1 � �1 � 2�0=s12, 2�0=s12 � �2 � 0, 2�0=s12 � �1 � 1 andsimilarly for the other variables. The length of the two hyperbolas in thesegments (k1; k2=2) and (k2=2; k3) are then given by Eq. (31) but the thirdhyperbola provides an extra 
ontribution (in the appropriate limit s13 ' s)equal to log(1 + 4�0s=s12s23). Then the total (generalised) rapidity lengthbe
omes �123 = log� s�0 + s12 s23(2�0)2� : (33)This is evidently a ni
e interpolation between the situations with and with-out a gluon on the string and it is also an infrared stable de�nition of thenotion of rapidity. Eq. (33) is noted in Ref. [8℄ and led us to introdu
ea fun
tional de�ned on a multigluon string dire
trix.We may �rstly de�ne the set of 
onne
ted integralsIn = Z ds01ds12 � � � dsnE ; (34)with the easily understood notation (
f. Eq. (18)) sjj+1=(A(�j)�A(�j+1))2,i.e. it is proportional to the squared mass between the points �j and �j+1along the dire
trix. It is then obvious that the argument in the logarithmin Eq. (33) is given by the sum I1=�0+ I2=2� 20 and that we may in generalde�ne the fun
tional T byT = 1 + 1Xn=1 In�2m20�n ; (35)as a suitable generalisation for any string state. For a �nite number ofpartons N the terms with n > N will all vanish and we also note that thehighest degree term will always have the generi
 form2 s124m20 s234m20 � � � sN�1N4m20 : (36)
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ontributions romr the largedegree polynomial terms will be
ome smaller and smaller 
ompared to thes
ale m0.In order to study the fun
tional T it is suitable to introdu
e a vary-ing value � instead of the total energy E in the 
onne
ted integrals. The
orresponding fun
tional T (�) will ful�l the integral equationT (�) = 1 + �Z0 ds(�; �0)2m20 T (�0) : (37)We will also introdu
e the ve
tor-valued fun
tion qT (�) together with T sothat we have qT�(�) = �R0 dA�(�0)T (�0)T (�) ;T (�) = 1 + �Z0 qT (�0)dA(�0)m20 T (�0) : (38)By di�erentiation and integration we obtain the resultsT = exp0� �Z0 qT (�0)dA(�0)m20 1A � exp(�(�)) ;q2T (�) = m20 �1� T�2(�)� ; (39)whi
h implie that the fun
tional T is the exponential of an area (note that dAis everywhere lightlike and, therefore, the area spanned between the ve
torqT and dA is q(qTdA)2 � q2TdA2 = qTdA) s
aled by m20. This quantity isequal to the generalised rapidity � for the simple 
ase des
ribed above andit provides an infrared stable de�nition for any multigluon state. Further,the ve
tor qT is time-like and will qui
kly approa
h the �nite length m0.The interpretation (as it is worked out in Ref. [8℄, 
f. also [3℄) is that thereis a ve
tor valued fun
tion X�(�) 
onveniently labelled by � su
h thatX + qT = A ;dXd� = qT ;dqTd� = �qT + dAd� ; (40)
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tor qT is the tangent to the 
urve de�ned by X su
h that it rea
hesto the dire
trix. We will need two further properties of the X -
urve, on theone hand the 
hange of qT and X for a �nite parton energy-momentum kjon the other hand an interpretation of the di�erential equation for qT inEq. (40).By dire
t integration we �nd that if we have the ve
tor qTj then �after�appli
ation of the parton energy momentum kj we obtain the ve
tor qTj+1and will take a step along the X -
urve equal to ÆXjqTj+1 = 
jqTj + (1 + 
j)kj2 ;ÆXj = (qTj + kj2 )(1 � 
j) ;
j = 11 + qTjkjm20 ; (41)(we also note that the produ
ts of the 
j is equal to T�1). Further, if wede�ne the (1+4)-dimensional ve
tor (Q� � TqT�=m0; T ) (whi
h has a lengthin the (1+4)-dimensional Minkowski metri
 equal to Q2�T 2=�1) then thedi�erential equation for qT 
an be rewritten asdT = QdA and dQ = TdA ; (42)i.e. as a group of spe
ial rotations in this spa
e (
orresponding to a subgroupof SO(1,4)) that are de�ned by the in
remental 
hanges along the dire
trix
urve.It is obvious that our parti
le fragmentation pro
ess, de�ned in the earliersubse
tion to produ
e the hadroni
 X-
urve is similar to the produ
tion ofthe X -
urve devised above. A
tually there is a limiting 
ase where the frag-mentation pro
ess and the di�erential equations dis
ussed above 
oin
ide.I will brie�y 
onsider this 
ase before I go over to some further properties ofthe fragmentation pro
ess.4.3. The relationship of the pro
ess to the X -
urveThere is a dire
t 
onne
tion between a di�erential version of our hadroni-sation pro
ess and the X -
urve that was referred to in Se
tion 4.2. In orderto see that we 
onsider the limiting situation when the mass parameter isvanishing. Under those 
ir
umstan
es the distribution fun
tion will developa pole for z ! 0. We will assume that the model is de�ned by the stepsize dz with the ratio m ! m0dz. The 
orresponding in
remental k ve
tor
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alled dA and it will ful�l the mass-shell 
ondition (we will use thenotation qP instead of x for the vertex ve
tor)dAqP = m2dz ! dzm20 : (43)From the model formulas for the 
hange in x ! qP and the parti
le en-ergy momentum p (Eqs. (28) and (30)) we obtain the following di�erentialequations de�ning a 
urve to be 
alled the P-
urvedP = dz qP + dA2 �1� q2Pm20� ;dqP = �dz qP + dA2 �1 + q2m20� : (44)The equations are similar but not identi
al to the de�ning di�erential equa-tions for the X -
urve (
f. Eqs. (40)). We �rstly note that from the sum anddi�eren
es of the Eqs. (44) we obtainP + q = A ;P � q = L ; (45)and that the ve
tor L has a lightlike tangent just as the dire
trix A:dL = 2dz qP � dA q2m20 : (46)In that way the P-
urve goes in between two 
urves with everywhere lightliketangents and the ve
tor qP 
onne
ts to both of them.Just as the ve
tor qT in Se
tion 4.2 the ve
tor qP is timelike and isqui
kly rea
hing the length m0:q2P = m20 �1� T�1P � with TP = exp�Z (qPdA)� ; (47)although we note the 
hange in power with respe
t to T�1. For a �nitelength k ve
tor it is easy to integrate the two equations in (44) and weobtain similarly to Eq. (41)q0P = 
qP + �1 + q2P 
m20 �2 k ;ÆP = (1� 
)qP + �1� q2P 
m20 �2 k ;ÆL � ` = 2(1� 
)qP � q2P 
m20 ;
 = 11 + qP km20 and (TP )�1 =Y 
j : (48)



4010 B. AnderssonI will end this short digression by showing that although there are smalldeviations between the di�erential version of our fragmentation pro
ess andthe 
orresponding properties for the X -
urve the two pro
esses are a
tuallyidentia
al when we 
onsider them in terms of the rotations in the (1 + 4)-dimensional spa
e dis
ussed at the end of the last subse
tion. We obtainfrom the Eqs. (44) and (47) thatd(qPTP ) = dA �TP � 12� and dTP = qPdATP ; (49)so that the (1 + 4)-dimensional ve
tor (2qPTP ; 2TP � 1) has both the samelength and ful�ls the same di�erential equations with respe
t to in
remental
hanges along the dire
trix as (Q;T ) do in Eqs. (42). The 
hanges above
orrespond to di�erent boundary values for the rotational equations.We have � at the time when this is written � been able to show thatthe P-
urve that is de�ned above 
orresponds to the average hadroni
 X-
urve for the multigluon fragmentation pro
ess in the same way as the hyper-bola 
orresponds to the average fragmentation region for the earlier (1+1)-dimensional model. In parti
ular the 
onsiderations for the behaviour of thesum and the integral over the original Area Law formulas in Eq. (1) thatlead to Eqs. (9) and (10) will be obtained in the general model but this timewith the fun
tional TP instead of the squared 
ms energy s.4.4. The reverse problem: how to �nd the dire
trix from the hadroni
 
urveI will very brie�y dis
uss the reverse problem to the hadronisation pro-
ess, i.e. to what extent we 
an tra
e the dire
trix from a knowledge of thehadroni
 
urve, that we will 
all theX-
urve in a

ordan
e with the notationintrodu
ed in Se
tion 4.1.We will then assume that the X-
urve is de�ned by the hadroni
 energymomenta fpjg, ordered and laid out a

ording to rank. We will 
on
entrateon the hadron pj, produ
ed in between the vertex ve
tors xj+1 and xj withthe dire
trix ve
tor kj . A

ording to Eq. (24) it is in order to 
onstru
t kjsu�
ient to know pj and the di�eren
e ve
tor(xj+1 � xj) = "j p̂j : (50)It is straightforward to solve for p̂j in terms of pj and xjp̂j = (xjpj)pj � p2jxjq(pjxj)2 � p2jx2j ; (51)



The Lund Fragmentation of a Multigluon . . . 4011and the sign "j should be positive or negative depending upon whetherm2=zj is larger or smaller than zjx2j (it is useful to note that 2(pjxj) =(m2=zj + zjx2j )). Therefore, if we pres
ribe the �rst vertex ve
tor x1 (thisis always 
hosen in our pro
ess as the original q energy momentum ve
tor)then the dire
trix ve
tors as well as the verti
es are determined re
ursivelyup to a sign: kj = pj + "j p̂j ;xj+1 = xj + "j p̂j : (52)It is evident that the other sign will determine the 
orresponding `j .I would like to thank the organisers of the Zakopane for giving me yetanother opportunity to meet some of the best friends and the best 
riti
sany man 
an have, i.e. the polish physi
s 
ommunity!REFERENCES[1℄ B. Andersson, S. Mohanty, F. Söderberg, Eur. Phys. J. C21, 631 (2001).[2℄ B. Andersson, G. Gustafson, B. Söderberg, Z. Phys. C20, 317 (1983).[3℄ B. Andersson, The Lund Model, Cambridge University Press, 1998.[4℄ T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).[5℄ B. Andersson, F. Söderberg, Eur. Phys. J. C16, 30 (2000).[6℄ T. Sjöstrand, Nu
l. Phys. B248, 469 (1984).[7℄ B. Andersson, S. Mohanty, F. Söderberg, to be published.[8℄ B. Andersson, G. Gustafson, B. Söderberg, Nu
l. Phys. B264, 29 (1986).[9℄ L. Lönnblad, ARIADNE v. 4.10 Comput. Phys. Commun. 71, 15 (1992).


