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DYNAMICALLY GENERATINGTHE QUARK-LEVEL SU(2) LINEAR SIGMA MODEL�M.D. SadronPhysis Department, University of ArizonaTuson, AZ, 85721 USA(Reeived August 27, 2001)First we study Nambu-type gap equations, Æf� = f� and Æmq = mq.Then we exploit the dimensional regularization lemma, subtrating quadra-ti from log-divergent integrals. The nonperturbative quark loop L�Msolution reovers the original Gell�Mann�Levy (tree level) equations alongwith m� = 2mq and meson-quark oupling g = 2�=pN. Next we usethe Ben Lee null tadpole ondition to reon�rm that N = 3 even throughloop order. Lastly we show that this loop order L�M (a) reprodues the(remarkably suessful) Vetor Meson Dominane (VMD) sheme in treeorder, and (b) ould be suggested as the infrared limit of low energy QCD.PACS numbers: 12.40.Aa, 13.20.Jf, 13.20.�v1. IntrodutionTo begin, we give the original [1℄ tree-level hiral-broken SU(2) interat-ing L�M Lagrangian density, but after the Spontaneous Symmetry Breaking(SSB) shiftLintL�M = g �	(�0 + i5� � �)	 + g0�0(�02 + �2)� � ��02 + �2�24 : (1.1)In Refs. [1℄ the ouplings g, g0, � in (1.1) satisfy the quark-level Goldberger�Treiman Relation (GTR) for f� � 93MeV and f� � 90MeV in the ChiralLimit (CL): g = mqf� ; g0 = m2�2f� = �f� : (1.2)� Presented at the XLI Craow Shool of Theoretial Physis, Zakopane, Poland,June 2�11, 2001. (4093)



4094 M.D. SadronWe work in loop order and dynamially generate mass terms in (1.1) vianonperturbative Nambu-type gap equations Æf� = f�, Æmq = mq. The CLm� = 0, orresponds to h0j�Aj�i = 0 for h0jA3�j�0i = if�q�. The latterrequires the GTR mq=f�g to be valid in tree and loop order, �xing g, g0, �in loop order.In Setions 2 and 3 this quark-level L�M is nonperturbatively solved vialoop-order gap equations. In Se. 4 the Nambu�Goldstone Theorem (NGT)is expressed in L�M language with harge radius r� = 1=mq haraterizingquark fusion for the tightly bound q�q pion. In Se. 5 the Lee null tadpolesum is shown to require N = 3 for the true vauum. Se. 6 disusses s-wavehiral anellations in the L�M. Se. 7 shows that VMD follows diretlyfrom the L�M. Finally, Se. 8 suggests that this L�M is the infrared limitof nonperturbative QCD. We give our onlusions in Se. 9.2. Quark loop gap equationsFirst we ompute Æf� = f� in the CL via the u and d quark loopsshown in Fig. 1(a). Replaing f� by mq=g and taking the quark trae,giving 4mqq�, the fators mqq� anel, requiring the CL Log-Divergent GapEquation (LDGE) [2,3℄, �d4p = d4p=(2�)4 we obtain:1 = �4iN g2 Z �p2 �m2q��2�d 4p : (2.1)Antiipating g � 320 MeV/90MeV �3.6 from the CL GTR, this LDGE(2.1) suggests an UV uto� � �750 MeV. Suh a 750 MeV uto� separatesL�M elementary partile �(600) < � from bound states �(770), !(780),a1(1260) > �. This is a Z = 0 ompositeness ondition [4℄, requiringg = 2�=pN. We later derive this from our Dynamial Symmetry Breaking(DSB) loop order L�M.Next we study Æmq = mq in the CL, with zero urrent quark mass; mq isthe nonstrange onstituent quark mass. The needed mass gap is formed viathe quadratially divergent quark tadpole loop of Fig. 1(b); additional quark
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Aµ σFig. 1. Quark loop for f� (a) and quark tadpole loop for mq (b).



Dynamially Generating the Quark-Level : : : 4095�- and �-mediated self-energy graphs then anel [3℄, giving the quadratidivergent mass gap 1 = 8iN g2(�m2�) Z �p2 �m2q��1 �d 4p : (2.2)Here the q2 = 0 tadpole � propagator (0�m2�)�1 means that the right-handside of the integral in Eq. (2.2) ats as a ounterterm quadrati divergentNJL [5℄ mass gap.Referenes [3℄ �rst subtrat the quadrati � from the log � divergentintegrals of Eqs. (2.1), (2.2) to form the dimensional regularization (dim.reg.) lemma for 2l = 4Z �d 4p" m2q�p2 �m2q�2 � 1p2 �m2q #= liml!2 im2l�2q(4�)l h� (2� l) + � (1� l)i=�im2q(4�)2 : (2.3)This dim. reg. lemma (2.3) follows beause � (2�l)+� (1�l)!�1 as l! 2due to the gamma funtion de�ning identity � (z+1) = z� (z). This lemmain Eq. (2.3) is more general than dimensional regularization;(i) use partial frations to writem2(p2 �m2)2 � 1p2 �m2 = 1p2 � m4(p2 �m2)2 � 1� ; (2.4)(ii) integrate Eq. (2.4) via �d 4p and neglet the latter massless tadpoleR �d 4p=p2 = 0 (as is also done in dimensional regularization, analyti,zeta funtion and Pauli�Villars regularization [3℄),(iii) Wik rotate d4p = i�2p2Edp2E in the integral over Eq. (2.4) to �ndZ �d 4p � m2(p2 �m2)2 � 1p2 �m2 �= � im4(4�)2 1Z0 dp2E(p2E +m2)2 = �im2(4�)2 : (2.5)So (2.5) gives the dimensional regularization lemma (2.3); both areregularization sheme independent.



4096 M.D. SadronFollowing Ref. [3℄ we ombine Eqs. (2.3) or (2.5) with the LDGE (2.1)to solve the quadratially divergent mass gap integral (2.2) asm2� = 2m2q �1 + g2N4�2 � : (2.6)Also the Fig. 2 quark bubble plus tadpole graphs dynamially generatethe � mass [3℄:m2� = 16iNg2 Z �d 4p264 m2q�p2 �m2q�2 � 1p2 �m2q375 = Ng2m2q�2 ; (2.7)where we have dedued the rhs of Eq. (2.7) by using (2.3) or (2.5). Finally,solving the two equations (2.6) and (2.7) for the two unknowns m2�=m2q andg2N, one �nds [3℄ m� = 2mq; g = 2�pN : (2.8)Not surprisingly, the lhs equation in (2.8) is the famous NJL four quarkresult [5℄, earlier antiipated for the L�M in Refs. [6℄. The rhs equation in(2.8) is also the onsequene of the Z = 0 ompositeness ondition [4℄, asnoted earlier.
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σFig. 2. Quark bubble plus quark tadpole loop for m2� .Finally, we ompute m2� from the analog pion bubble plus tadpole graphsof Fig. 3. Sine both quark loops (ql) are quadrati divergent in the CL, one�nds [2, 3℄m2�;ql = 4iN"2g2 � 4gg0mqm2� #Z �p2 �m2q��1�d 4p = 0 ;g0 = m2�2f� ; (2.9)using the GTR. Not suprisingly, Eq. (2.9) is the dynamial version of theSSB (1.2).



Dynamially Generating the Quark-Level : : : 4097
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σFig. 3. Quark bubble plus quark tadpole loop for m2�.3. Loop order three- and four-point funtionsHaving studied all two-point funtions in Se. 2, we now look at three-and four-point funtions. In the CL the u and d quark loops of Fig. 4generate g��� [2, 3℄ asg��� = �8ig3Nmq Z �p2 �m2q��2�d 4p = 2gmq ; (3.1)by virtue of the LDGE (2.1). Using the GTR and m� = 2mq, Eq. (3.1)redues to g��� = 2gmq = m2�2f� = g0 : (3.2)In e�et, the g��� loop of Fig. 4 �shrinks� to the L�M ubi meson ouplingg0 in the tree-level Lagrangian Eq. (1.1), but only when m� = 2mq andg=mq = 1=f�.
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u,dFig. 4. Quark triangle shrinks to point for m� ! ��.Next we study the four-point �� quark box of Fig. 5, giving a CL logdivergene [3℄:�box = �8iNg4 Z �p2 �m2q��2�d 4p = 2g2 = g0f� = �tree ; (3.3)
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4098 M.D. Sadronemploying the LDGE (2.1) to redue (3.3) to 2g2. Eq. (3.3) shrinks to �tree,by virtue of Eq. (1.2). Substituting (2.8) into (3.3), we �nd � = 8�2=N.We have dynamially generated the entire L�M Lagrangian (1.1), butusing the DSB true vauum, satisfying spei� values of g, g0, � in Eq. (1.1).4. Nambu�Goldstone Theorem in L�M loop orderHaving dynamially generated the hiral pion and � as elementary, wemust add to Fig. 3 the �ve meson loops of Fig. 6. The �rst bubble graph inFig. 6 is log divergent, while the latter four quarti and tadpole graphs arequadrati divergent.
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(c)(b)(a)Fig. 6. Meson bubble (a), meson quarti (b), meson tadpole () graphs for m2�.To proeed, �rst one uses a partial fration identity to rewrite the log-divergent bubble graph as the di�erene of � and � quadrati divergentintegrals [2, 7℄. Then the six meson loops (ml) of Fig. 6 an be separatedinto three quadrati divergent � and three quadrati divergent � integrals [7℄:m2�;ml = (�2�+ 5�� 3�)iZ �p2 �m2���1�d 4p+(2�+ �� 3�)iZ �p2 �m2���1�d 4p : (4.1)Adding Eq. (4.1) to Eq. (2.9), the total m2� in the CL is in loop orderm2� = m2�;ql +m2�;�l +m2�;�l = 0 + 0 + 0 = 0 : (4.2)Moreover, Eq. (4.2) is hirally regularized and renormalized beause thetadpole graphs of Figs. 3 and 6() are already ounterterm masses ating assubtration onstants.



Dynamially Generating the Quark-Level : : : 4099A seond aspet of the hiral pion onerns the pion harge radius r� inthe CL. First one omputes the pion form fator F�; ql(q2) due to quark loops(ql) and then di�erentiates it with respet to q2 at q2=0 to �nd r2�; ql asr2�;ql = 6dF�; ql �q2�dq2 �����q2=0 = 8iNg2 1Z0 dx6x(1 � x)Z �p2 �m2q��3�d 4p= 8iN �4�2N � � �i�22m2q16�4� = 1m2q : (4.3)Although r� was originally expressed as pN=2�f� [7, 8℄, we prefer theresult (4.3) or r� = 1=mq, as it requires the tightly bound q�q pion to have thetwo quarks fused in the CL. Later we will show that N = 3, mq � 325 MeVin the CL gives r�=1=mq � 0:6 fm. The observed r� is [9℄ (0.63�0.01) fm.The alternative ChPT requires r� / L9, a Low Energy Constant (LEC)!However, VMD suessfully preditsrVMD� = p6m� � 0:63 fm ; (4.4)not only aurate but rVMD� and rL�M� in (4.3) and (4.4) are learly related [7℄.5. Lee null tadpole sum in SU(2) L�M �nding N = 3To haraterize the true DSB (not the false SSB) vauum, Lee [10℄ re-quires the sum of loop-order tadpoles to vanish (see Fig. 7). This tadpolesum is [3℄ h�0i = 0 = � i8Ng mq Z �p2 �m2q��1�d 4p+3ig0 Z �p2 �m2���1�d 4p : (5.1)
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Fig. 7. Null tadpole sum for SU(2) L�M.



4100 M.D. SadronReplaing g by mq=f�, g0 by m2�=2f� and saling the quadrati divergentq(or �) loop integrals by m2q (or m2�), Eq. (5.1) requires [3℄ (negleting thepion tadpole) N(2mq)4 = 3m4� : (5.2)But we know from Eq. (2.8) that 2mq = m�, so the loop-order SU(2) L�Mresult (5.2) in turn predits N = 3, a satisfying result. Then the dynami-ally generated SU(2) loop-order L�M in Se. 3 also predits in the CL [3℄mq � 325MeV, m� � 650MeV and g = 2�=p3 = 3:6276, g0 = 2gmq� 2:36GeV, � = 8�2=3 � 26:3.6. Chiral s-wave anellations in L�MAway from the CL, the tree-order L�M requires the ubi meson ouplingto be g��� = �m2� �m2��2f� = �f� : (6.1)But at threshold s = m2� , so the net �� amplitude then vanishes using (6.1)M�� =M ontat�� +M�pole�� ! �+ 2g2��� �m2� �m2���1 = 0 : (6.2)In e�et, the ontat � �hirally eats� the � pole at the �� threshold at treelevel. Then � poles from the ross hannels predit a L�M Weinberg PCACform [11, 12℄Mabd�� = AÆabÆd +BÆaÆbd + CÆadÆb;AL�M = �2� �1� 2�f2�m2� � s� = �m2� �m2�m2� � s ��s�m2�f2� � : (6.3)So the I = 0 s-hannel amplitude 3A+ B + C at threshold predits a 23%enhanement of the Weinberg s-wave I = 0 sattering length at s = 4m2�,t = u = 0 for m� � 650MeV with " = m2�=m2� � 0:045 and [12℄ (using onlyEq. (6.3))a(0)�� jL�M = � 7 + "1� 4"� m�32�f2� � (1:23) 7m�32�f2� � 0:20m�1� : (6.4)For �(550) and " � 0:063 this L�M sattering length (6.4) inreases to0:22m�1� . Compare this simple L�M tree order result (6.4) with the analogueChPT 0:22m�1� sattering length requiring a two-loop alulation involving



Dynamially Generating the Quark-Level : : : 4101about 100 LECs ! These �� sattering length problems should be sorted outsoon by Kami«ski, et al. [13℄.In L�M loop order the analog anellation is due to a Dira matrixidentity [14℄( p�m)�12m5( p�m)�1 = �5( p�m)�1� ( p�m)�15 : (6.5)At a soft pion momentum, Eq. (6.5) requires a � meson to be �eaten� viaa quark box-quark triangle anellation for a1 ! �(��) s wave,  ! 2�0,��p ! ��n as suggested in eah ase by low energy data [14, 15℄. Alsoa soft pion salar kappa �(800�900) is �eaten� in K�p! K��+n peripheralsattering [15℄. 7. VMD and the L�MGiven the impliit LDGE (2.1) UV uto� � � 750MeV, the �(770) anbe taken as an external �eld (bound state �qq vetor meson). Aordinglythe quark loop graphs of Fig. 8 generate the loop order ��� oupling [2, 3℄g��� = g� ��i4Ng2 Z �p2 �m2q��2�d 4p� = g� ; (7.1)via the LDGE (2.1). While the individual udu and dud quark graphsof Fig. 8 are both linearly divergent, when added together with vertiesg�0uu = �g�0dd the net g��� loop in Fig. 8 is log divergent. Equation (7.1)is Sakurai's VMD universality ondition. Also a �+��+ meson loop addedto the quark loops in Fig. 8 gives [7℄g��� = g� + g���6 or g���g� = 65 : (7.2)If one �rst gauges the L�M Lagrangian, the inverted squared gauge ou-pling is related to the q2 = 0 polarization amplitude as [3℄g�2� = � �0;m2q� = �8iN6 Z �p2 �m2q��2�d 4p = �3g2��1 ; (7.3)
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4102 M.D. Sadronby virtue of the LDGE(2.1). But sine we know g = 2�=p3, Eq. (7.3)requires g� = p3g = 2�, reasonably near the observed values g��� � 6.05and g� � 5.03.The hiral KSRF relation for the � mass [18℄ m2� = 2g���g�f2� oupledwith this L�M implies m2� = 2(2�)2f2�5=6 � (754MeV)2, lose to the ob-served � mass. Also, the dynamially generated L�M for SU(3) is given bythe authors of Ref. [3℄.8. L�M as infrared limit of nonperturbative QCDWe suggest �ve links between the L�M and the infrared limit of QCD.(i) Quark mass: the L�M has mq = f� 2�=p3 � 325MeV, while QCDhas [19℄ mdyn = (4��s=3 h� �		i1GeV)1=3 � 320MeV at 1GeV near-infrared uto�.(ii) Quark ondensate: the L�M ondensate is at infrared uto� mq [20℄h� �		imq = i4Nmq Z �d 4pp2 �m2q = 3m3q4�2 " �2m2q � ln��2m2q + 1�#� (209MeV)3 ;while the ondensate in QCD is h� �		imq = 3m3dyn=�2 � (215MeV)3:(iii) Frozen oupling strength: the L�M oupling is for g = 2�=p3 or�L�M = g2=4� = �=3 ; while in QCD �s = �=4 at infrared freezeout[21℄ leads to �e�s = (4=3)�s = �=3.(iv) � mass: the L�M requires m� = 2mq, while the QCD ondensate gives[22℄ mdyn = �g�qq=m2�� h� �		im� for �s(m�) � �=4, or m2�=m2dyn =�=�s(m2�) � 4:(v) Chiral restoration temperature T: the L�M requires [23℄ T = 2f�� 180 MeV, while QCD omputer lattie simulations �nd [24℄T =(173�8) MeV. 9. ConlusionsIn Ses. 2, 3 the SU(2) L�M Lagrangian was dynamially generated in all(hiral) regularization shemes, via loop gap equations, prediting the NJL� mass m� = 2mq along with meson�quark oupling g = 2�=pN. Thenthe three-and four-point quark loops were shown to �shrink� to tree graphs,giving the meson ubi and quarti ouplings g0 = m2�=2f�, � = 8�2=N.
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