DYNAMICALLY GENERATING THE QUARK-LEVEL SU(2) LINEAR SIGMA MODEL*

M.D. SCADRON

Physics Department, University of Arizona Tucson, AZ, 85721 USA

(Received August 27, 2001)

First we study Nambu-type gap equations, $\delta f_{\pi} = f_{\pi}$ and $\delta m_q = m_q$. Then we exploit the dimensional regularization lemma, subtracting quadratic from log-divergent integrals. The nonperturbative quark loop L σ M solution recovers the original Gell-Mann-Levy (tree level) equations along with $m_{\sigma} = 2m_q$ and meson-quark coupling $g = 2\pi/\sqrt{N_c}$. Next we use the Ben Lee null tadpole condition to reconfirm that $N_c = 3$ even through loop order. Lastly we show that this loop order L σ M (a) reproduces the (remarkably successful) Vector Meson Dominance (VMD) scheme in tree order, and (b) could be suggested as the infrared limit of low energy QCD.

PACS numbers: 12.40.Aa, 13.20.Jf, 13.20.-v

1. Introduction

To begin, we give the original [1] tree-level chiral-broken SU(2) interacting L σ M Lagrangian density, but after the Spontaneous Symmetry Breaking (SSB) shift

$$\mathcal{L}_{\mathrm{L}\sigma\mathrm{M}}^{\mathrm{int}} = g\bar{\Psi}(\sigma' + i\gamma_5\boldsymbol{\tau}\cdot\boldsymbol{\pi})\Psi + g'\sigma'(\sigma'^2 + \boldsymbol{\pi}^2) - \frac{\lambda\left(\sigma'^2 + \boldsymbol{\pi}^2\right)^2}{4}.$$
 (1.1)

In Refs. [1] the couplings g, g', λ in (1.1) satisfy the quark-level Goldberger– Treiman Relation (GTR) for $f_{\pi} \approx 93$ MeV and $f_{\pi} \sim 90$ MeV in the Chiral Limit (CL):

$$g = \frac{m_q}{f_\pi}, \qquad g' = \frac{m_\sigma^2}{2f_\pi} = \lambda f_\pi.$$
(1.2)

^{*} Presented at the XLI Cracow School of Theoretical Physics, Zakopane, Poland, June 2–11, 2001.

We work in loop order and dynamically generate mass terms in (1.1) via nonperturbative Nambu-type gap equations $\delta f_{\pi} = f_{\pi}$, $\delta m_q = m_q$. The CL $m_{\pi} = 0$, corresponds to $\langle 0|\partial A|\pi\rangle = 0$ for $\langle 0|A_{\mu}^3|\pi^0\rangle = if_{\pi}q_{\mu}$. The latter requires the GTR $m_q = f_{\pi}g$ to be valid in tree and loop order, fixing g, g', λ in loop order.

In Sections 2 and 3 this quark-level $L\sigma M$ is nonperturbatively solved via loop-order gap equations. In Sec. 4 the Nambu–Goldstone Theorem (NGT) is expressed in $L\sigma M$ language with charge radius $r_{\pi} = 1/m_q$ characterizing quark fusion for the tightly bound $q\bar{q}$ pion. In Sec. 5 the Lee null tadpole sum is shown to require $N_c = 3$ for the true vacuum. Sec. 6 discusses *s*-wave chiral cancellations in the $L\sigma M$. Sec. 7 shows that VMD follows directly from the $L\sigma M$. Finally, Sec. 8 suggests that this $L\sigma M$ is the infrared limit of nonperturbative QCD. We give our conclusions in Sec. 9.

2. Quark loop gap equations

First we compute $\delta f_{\pi} = f_{\pi}$ in the CL via the *u* and *d* quark loops shown in Fig. 1(a). Replacing f_{π} by m_q/g and taking the quark trace, giving $4m_q q_{\mu}$, the factors $m_q q_{\mu}$ cancel, requiring the CL Log-Divergent Gap Equation (LDGE) [2,3], $\bar{d}^4 p = d^4 p/(2\pi)^4$ we obtain:

$$1 = -4iN_{\rm c} g^2 \int \left(p^2 - m_q^2\right)^{-2} \bar{\boldsymbol{d}}^4 p \,. \tag{2.1}$$

Anticipating $g \sim 320$ MeV/90MeV ~3.6 from the CL GTR, this LDGE (2.1) suggests an UV cutoff $\Lambda \sim 750$ MeV. Such a 750 MeV cutoff separates $L\sigma M$ elementary particle $\sigma(600) < \Lambda$ from bound states $\rho(770)$, $\omega(780)$, $a_1(1260) > \Lambda$. This is a Z = 0 compositeness condition [4], requiring $g = 2\pi/\sqrt{N_c}$. We later derive this from our Dynamical Symmetry Breaking (DSB) loop order $L\sigma M$.

Next we study $\delta m_q = m_q$ in the CL, with zero current quark mass; m_q is the nonstrange constituent quark mass. The needed mass gap is formed via the quadratically divergent quark tadpole loop of Fig. 1(b); additional quark

Fig. 1. Quark loop for f_{π} (a) and quark tadpole loop for m_q (b).

 π - and σ -mediated self-energy graphs then cancel [3], giving the quadratic divergent mass gap

$$1 = \frac{8iN_{\rm c}\,g^2}{(-m_{\sigma}^2)} \int \left(p^2 - m_q^2\right)^{-1} \bar{\boldsymbol{d}}\,^4 p\,.$$
(2.2)

Here the $q^2 = 0$ tadpole σ propagator $(0 - m_{\sigma}^2)^{-1}$ means that the right-hand side of the integral in Eq. (2.2) acts as a counterterm quadratic divergent NJL [5] mass gap.

References [3] first subtract the quadratic — from the log — divergent integrals of Eqs. (2.1), (2.2) to form the dimensional regularization (dim. reg.) lemma for 2l = 4

$$\int \bar{\boldsymbol{d}}^4 p \left[\frac{m_q^2}{\left(p^2 - m_q^2\right)^2} - \frac{1}{p^2 - m_q^2} \right]$$
$$= \lim_{l \to 2} \frac{i m_q^{2l-2}}{(4\pi)^l} \left[\Gamma(2-l) + \Gamma(1-l) \right] = \frac{-i m_q^2}{(4\pi)^2}.$$
(2.3)

This dim. reg. lemma (2.3) follows because $\Gamma(2-l)+\Gamma(1-l) \rightarrow -1$ as $l \rightarrow 2$ due to the gamma function defining identity $\Gamma(z+1) = z\Gamma(z)$. This lemma in Eq. (2.3) is more general than dimensional regularization;

(i) use partial fractions to write

$$\frac{m^2}{(p^2 - m^2)^2} - \frac{1}{p^2 - m^2} = \frac{1}{p^2} \left[\frac{m^4}{(p^2 - m^2)^2} - 1 \right], \qquad (2.4)$$

- (*ii*) integrate Eq. (2.4) via $\bar{\boldsymbol{d}}^4 p$ and neglect the latter massless tadpole $\int \bar{\boldsymbol{d}}^4 p/p^2 = 0$ (as is also done in dimensional regularization, analytic, zeta function and Pauli–Villars regularization [3]),
- (*iii*) Wick rotate $d^4p = i\pi^2 p_{\rm E}^2 dp_{\rm E}^2$ in the integral over Eq. (2.4) to find

$$\int \bar{\boldsymbol{d}}^{4} p \left[\frac{m^{2}}{(p^{2} - m^{2})^{2}} - \frac{1}{p^{2} - m^{2}} \right]$$
$$= -\frac{im^{4}}{(4\pi)^{2}} \int_{0}^{\infty} \frac{dp_{\rm E}^{2}}{(p_{\rm E}^{2} + m^{2})^{2}} = \frac{-im^{2}}{(4\pi)^{2}}.$$
(2.5)

So (2.5) gives the dimensional regularization lemma (2.3); both are regularization scheme independent.

Following Ref. [3] we combine Eqs. (2.3) or (2.5) with the LDGE (2.1) to solve the quadratically divergent mass gap integral (2.2) as

$$m_{\sigma}^{2} = 2m_{q}^{2} \left(1 + \frac{g^{2}N_{c}}{4\pi^{2}} \right) \,. \tag{2.6}$$

Also the Fig. 2 quark bubble plus tadpole graphs dynamically generate the σ mass [3]:

$$m_{\sigma}^{2} = 16iN_{c}g^{2}\int \bar{\boldsymbol{d}}^{4}p \left[\frac{m_{q}^{2}}{\left(p^{2}-m_{q}^{2}\right)^{2}} - \frac{1}{p^{2}-m_{q}^{2}}\right] = \frac{N_{c}g^{2}m_{q}^{2}}{\pi^{2}}, \quad (2.7)$$

where we have deduced the rhs of Eq. (2.7) by using (2.3) or (2.5). Finally, solving the two equations (2.6) and (2.7) for the two unknowns m_{σ}^2/m_q^2 and $g^2 N_c$, one finds [3]

$$m_{\sigma} = 2m_q, \qquad g = \frac{2\pi}{\sqrt{N_c}}.$$
(2.8)

Not surprisingly, the lhs equation in (2.8) is the famous NJL four quark result [5], earlier anticipated for the $L\sigma M$ in Refs. [6]. The rhs equation in (2.8) is also the consequence of the Z = 0 compositeness condition [4], as noted earlier.

Fig. 2. Quark bubble plus quark tadpole loop for m_{σ}^2 .

Finally, we compute m_{π}^2 from the analog pion bubble plus tadpole graphs of Fig. 3. Since both quark loops (ql) are quadratic divergent in the CL, one finds [2,3]

$$m_{\pi,\,\mathrm{ql}}^{2} = 4iN_{\mathrm{c}} \left[2g^{2} - 4gg' \frac{m_{q}}{m_{\sigma}^{2}} \right] \int \left(p^{2} - m_{q}^{2} \right)^{-1} \bar{\boldsymbol{d}}^{4} p = 0,$$

$$g' = \frac{m_{\sigma}^{2}}{2f_{\pi}},$$
 (2.9)

using the GTR. Not suprisingly, Eq. (2.9) is the dynamical version of the SSB (1.2).

Fig. 3. Quark bubble plus quark tadpole loop for m_{π}^2 .

3. Loop order three- and four-point functions

Having studied all two-point functions in Sec. 2, we now look at threeand four-point functions. In the CL the u and d quark loops of Fig. 4 generate $g_{\sigma\pi\pi}$ [2,3] as

$$g_{\sigma\pi\pi} = -8ig^3 N_{\rm c} m_q \int \left(p^2 - m_q^2\right)^{-2} \bar{\boldsymbol{d}}^4 p = 2gm_q \,, \qquad (3.1)$$

by virtue of the LDGE (2.1). Using the GTR and $m_{\sigma} = 2m_q$, Eq. (3.1) reduces to

$$g_{\sigma\pi\pi} = 2gm_q = \frac{m_{\sigma}^2}{2f_{\pi}} = g'$$
. (3.2)

In effect, the $g_{\sigma\pi\pi}$ loop of Fig. 4 "shrinks" to the L σ M cubic meson coupling g' in the tree-level Lagrangian Eq. (1.1), but only when $m_{\sigma} = 2m_q$ and $g/m_q = 1/f_{\pi}$.

Fig. 4. Quark triangle shrinks to point for $m_{\sigma} \to \pi \pi$.

Next we study the four-point $\pi\pi$ quark box of Fig. 5, giving a CL log divergence [3]:

$$\lambda_{\rm box} = -8iN_{\rm c}g^4 \int \left(p^2 - m_q^2\right)^{-2} \bar{\boldsymbol{d}}^4 p = 2g^2 = \frac{g'}{f_\pi} = \lambda_{\rm tree}, \qquad (3.3)$$

Fig. 5. Quark box shrinks to point contact for $\pi\pi \to \pi\pi$.

employing the LDGE (2.1) to reduce (3.3) to $2g^2$. Eq. (3.3) shrinks to λ_{tree} , by virtue of Eq. (1.2). Substituting (2.8) into (3.3), we find $\lambda = 8\pi^2/N_c$.

We have dynamically generated the entire L σ M Lagrangian (1.1), but using the DSB true vacuum, satisfying specific values of g, g', λ in Eq. (1.1).

4. Nambu–Goldstone Theorem in $L\sigma M$ loop order

Having dynamically generated the chiral pion and σ as elementary, we must add to Fig. 3 the five meson loops of Fig. 6. The first bubble graph in Fig. 6 is log divergent, while the latter four quartic and tadpole graphs are quadratic divergent.

Fig. 6. Meson bubble (a), meson quartic (b), meson tadpole (c) graphs for m_{π}^2 .

To proceed, first one uses a partial fraction identity to rewrite the logdivergent bubble graph as the difference of π and σ quadratic divergent integrals [2, 7]. Then the six meson loops (ml) of Fig. 6 can be separated into three quadratic divergent π and three quadratic divergent σ integrals [7]:

$$m_{\pi,\mathrm{ml}}^{2} = (-2\lambda + 5\lambda - 3\lambda)i \int \left(p^{2} - m_{\pi}^{2}\right)^{-1} \bar{\boldsymbol{d}}^{4} p + (2\lambda + \lambda - 3\lambda)i \int \left(p^{2} - m_{\sigma}^{2}\right)^{-1} \bar{\boldsymbol{d}}^{4} p.$$
(4.1)

Adding Eq. (4.1) to Eq. (2.9), the total m_{π}^2 in the CL is in loop order

$$m_{\pi}^{2} = m_{\pi, ql}^{2} + m_{\pi, \pi l}^{2} + m_{\pi, \sigma l}^{2} = 0 + 0 + 0 = 0.$$
(4.2)

Moreover, Eq. (4.2) is chirally regularized and renormalized because the tadpole graphs of Figs. 3 and 6(c) are already counterterm masses acting as subtraction constants.

A second aspect of the chiral pion concerns the pion charge radius r_{π} in the CL. First one computes the pion form factor $F_{\pi, ql}(q^2)$ due to quark loops (ql) and then differentiates it with respect to q^2 at $q^2 = 0$ to find $r_{\pi, ql}^2$ as

$$r_{\pi,\,\mathrm{ql}}^{2} = \left. \frac{6dF_{\pi,\,\mathrm{ql}}\left(q^{2}\right)}{dq^{2}} \right|_{q^{2}=0} = 8iN_{\mathrm{c}}g^{2}\int_{0}^{1}dx 6x(1-x)\int\left(p^{2}-m_{q}^{2}\right)^{-3}\bar{\boldsymbol{d}}^{4}p$$
$$= 8iN_{\mathrm{c}}\left(\frac{4\pi^{2}}{N_{\mathrm{c}}}\right)\left(\frac{-i\pi^{2}}{2m_{q}^{2}16\pi^{4}}\right) = \frac{1}{m_{q}^{2}}.$$
(4.3)

Although r_{π} was originally expressed as $\sqrt{N_c}/2\pi f_{\pi}$ [7,8], we prefer the result (4.3) or $r_{\pi} = 1/m_q$, as it requires the tightly bound $q\bar{q}$ pion to have the two quarks *fused* in the CL. Later we will show that $N_c = 3$, $m_q \approx 325$ MeV in the CL gives $r_{\pi} = 1/m_q \approx 0.6$ fm. The observed r_{π} is [9] (0.63\pm0.01) fm. The alternative ChPT requires $r_{\pi} \propto L_9$, a Low Energy Constant (LEC)! However, VMD successfully predicts

$$r_{\pi}^{\rm VMD} = \frac{\sqrt{6}}{m_{\rho}} \approx 0.63 \text{ fm}, \qquad (4.4)$$

not only accurate but r_{π}^{VMD} and $r_{\pi}^{\text{L}\sigma\text{M}}$ in (4.3) and (4.4) are clearly related [7].

5. Lee null tadpole sum in SU(2) L σ M finding $N_{\rm c}=3$

To characterize the true DSB (not the false SSB) vacuum, Lee [10] requires the sum of loop-order tadpoles to vanish (see Fig. 7). This tadpole sum is [3]

$$\langle \sigma' \rangle = 0 = -i8N_{c}g m_{q} \int \left(p^{2} - m_{q}^{2}\right)^{-1} \bar{\boldsymbol{d}}^{4}p + 3ig' \int \left(p^{2} - m_{\sigma}^{2}\right)^{-1} \bar{\boldsymbol{d}}^{4}p.$$
(5.1)

Fig. 7. Null tadpole sum for $SU(2) L\sigma M$.

Replacing g by m_q/f_{π} , g' by $m_{\sigma}^2/2f_{\pi}$ and scaling the quadratic divergent $q(\text{or }\sigma)$ loop integrals by m_q^2 (or m_{σ}^2), Eq. (5.1) requires [3] (neglecting the pion tadpole)

$$N_{\rm c}(2m_q)^4 = 3m_\sigma^4 \,. \tag{5.2}$$

But we know from Eq. (2.8) that $2m_q = m_\sigma$, so the loop-order SU(2) L σ M result (5.2) in turn *predicts* $N_c = 3$, a satisfying result. Then the dynamically generated SU(2) loop-order L σ M in Sec. 3 also predicts in the CL [3] $m_q \approx 325$ MeV, $m_\sigma \approx 650$ MeV and $g = 2\pi/\sqrt{3} = 3.6276$, $g' = 2gm_q \approx 2.36$ GeV, $\lambda = 8\pi^2/3 \approx 26.3$.

6. Chiral s-wave cancellations in $L\sigma M$

Away from the CL, the tree-order $L\sigma M$ requires the cubic meson coupling to be

$$g_{\sigma\pi\pi} = \frac{\left(m_{\sigma}^2 - m_{\pi}^2\right)}{2f_{\pi}} = \lambda f_{\pi} \,. \tag{6.1}$$

But at threshold $s = m_{\pi}^2$, so the net $\pi\pi$ amplitude then vanishes using (6.1)

$$M_{\pi\pi} = M_{\pi\pi}^{\text{contact}} + M_{\pi\pi}^{\sigma\text{pole}} \to \lambda + 2g_{\sigma\pi\pi}^2 \left(m_{\pi}^2 - m_{\sigma}^2\right)^{-1} = 0.$$
(6.2)

In effect, the contact λ "chirally eats" the σ pole at the $\pi\pi$ threshold at tree level. Then σ poles from the cross channels predict a L σ M Weinberg PCAC form [11,12]

$$M_{\pi\pi}^{abcd} = A\delta^{ab}\delta^{cd} + B\delta^{ac}\delta^{bd} + C\delta^{ad}\delta^{bc},$$

$$A^{L\sigma M} = -2\lambda \left[1 - \frac{2\lambda f_{\pi}^2}{m_{\sigma}^2 - s}\right] = \left(\frac{m_{\sigma}^2 - m_{\pi}^2}{m_{\sigma}^2 - s}\right) \left(\frac{s - m_{\pi}^2}{f_{\pi}^2}\right). \quad (6.3)$$

So the I = 0 s-channel amplitude 3A + B + C at threshold predicts a 23% enhancement of the Weinberg s-wave I = 0 scattering length at $s = 4m_{\pi}^2$, t = u = 0 for $m_{\sigma} \approx 650$ MeV with $\varepsilon = m_{\pi}^2/m_{\sigma}^2 \approx 0.045$ and [12] (using only Eq. (6.3))

$$a_{\pi\pi}^{(0)}|_{\mathrm{L}\sigma\mathrm{M}} = \left(\frac{7+\varepsilon}{1-4\varepsilon}\right) \frac{m_{\pi}}{32\pi f_{\pi}^2} \approx (1.23) \frac{7m_{\pi}}{32\pi f_{\pi}^2} \approx 0.20 m_{\pi}^{-1}.$$
 (6.4)

For $\sigma(550)$ and $\varepsilon \approx 0.063$ this L σ M scattering length (6.4) increases to $0.22 m_{\pi}^{-1}$. Compare this simple L σ M tree order result (6.4) with the analogue ChPT $0.22 m_{\pi}^{-1}$ scattering length requiring a two-loop calculation involving

about 100 LECs ! These $\pi\pi$ scattering length problems should be sorted out soon by Kamiński, *et al.* [13].

In L σ M loop order the analog cancellation is due to a Dirac matrix *identity* [14]

$$(\gamma p - m)^{-1} 2m\gamma_5(\gamma p - m)^{-1} = -\gamma_5(\gamma p - m)^{-1} - (\gamma p - m)^{-1}\gamma_5.$$
(6.5)

At a soft pion momentum, Eq. (6.5) requires a σ meson to be "eaten" via a quark box-quark triangle cancellation for $a_1 \to \pi(\pi\pi)$ s wave, $\gamma\gamma \to 2\pi^0$, $\pi^-p \to \pi\pi n$ as suggested in each case by low energy data [14, 15]. Also a soft pion scalar kappa $\kappa(800-900)$ is "eaten" in $K^-p \to K^-\pi^+ n$ peripheral scattering [15].

7. VMD and the $L\sigma M$

Given the implicit LDGE (2.1) UV cutoff $\Lambda \approx 750$ MeV, the $\rho(770)$ can be taken as an external field (bound state $\bar{q}q$ vector meson). Accordingly the quark loop graphs of Fig. 8 generate the loop order $\rho\pi\pi$ coupling [2,3]

$$g_{\rho\pi\pi} = g_{\rho} \left[-i4N_{\rm c}g^2 \int \left(p^2 - m_q^2 \right)^{-2} \bar{\boldsymbol{d}}^4 p \right] = g_{\rho} \,, \tag{7.1}$$

via the LDGE (2.1). While the individual *udu* and *dud* quark graphs of Fig. 8 are both linearly divergent, when added together with vertices $g_{\rho^0 uu} = -g_{\rho^0 dd}$ the net $g_{\rho\pi\pi}$ loop in Fig. 8 is log divergent. Equation (7.1) is Sakurai's VMD universality condition. Also a $\pi^+ \sigma \pi^+$ meson loop added to the quark loops in Fig. 8 gives [7]

$$g_{\rho\pi\pi} = g_{\rho} + \frac{g_{\rho\pi\pi}}{6}$$
 or $\frac{g_{\rho\pi\pi}}{g_{\rho}} = \frac{6}{5}$. (7.2)

If one first gauges the L σ M Lagrangian, the inverted squared gauge coupling is related to the $q^2 = 0$ polarization amplitude as [3]

$$g_{\rho}^{-2} = \pi \left(0, m_q^2\right) = \frac{-8iN_c}{6} \int \left(p^2 - m_q^2\right)^{-2} \bar{\boldsymbol{d}}^4 p = \left(3g^2\right)^{-1}, \qquad (7.3)$$

Fig. 8. Quark triangle graphs contributing to $\rho^0 \to \pi\pi$.

by virtue of the LDGE(2.1). But since we know $g = 2\pi/\sqrt{3}$, Eq. (7.3) requires $g_{\rho} = \sqrt{3}g = 2\pi$, reasonably near the observed values $g_{\rho\pi\pi} \approx 6.05$ and $g_{\rho} \approx 5.03$.

The chiral KSRF relation for the ρ mass [18] $m_{\rho}^2 = 2g_{\rho\pi\pi}g_{\rho}f_{\pi}^2$ coupled with this L σ M implies $m_{\rho}^2 = 2(2\pi)^2 f_{\pi}^2 5/6 \approx (754 \,\mathrm{MeV})^2$, close to the observed ρ mass. Also, the dynamically generated L σ M for SU(3) is given by the authors of Ref. [3].

8. L σ M as infrared limit of nonperturbative QCD

We suggest five links between the $L\sigma M$ and the infrared limit of QCD.

- (i) Quark mass: the L σ M has $m_q = f_\pi 2\pi/\sqrt{3} \approx 325$ MeV, while QCD has [19] $m_{\rm dyn} = (4\pi\alpha_s/3 \langle -\bar{\Psi}\Psi \rangle_{1\rm GeV})^{1/3} \approx 320$ MeV at 1 GeV near-infrared cutoff.
- (ii) Quark condensate: the L σ M condensate is at infrared cutoff m_q [20]

$$\langle -\bar{\Psi}\Psi \rangle_{m_q} = i4N_{\rm c}m_q \int \frac{\bar{d}\,^4 p}{p^2 - m_q^2} = \frac{3m_q^3}{4\pi^2} \left[\frac{\Lambda^2}{m_q^2} - \ln\left(\frac{\Lambda^2}{m_q^2} + 1\right) \right]$$

 $\approx (209\,{\rm MeV})^3,$

while the condensate in QCD is $\langle -\bar{\Psi}\Psi \rangle_{m_q} = 3m_{\rm dyn}^3/\pi^2 \approx (215\,{\rm MeV})^3$.

- (iii) Frozen coupling strength: the L σ M coupling is for $g = 2\pi/\sqrt{3}$ or $\alpha_{L\sigma M} = g^2/4\pi = \pi/3$, while in QCD $\alpha_s = \pi/4$ at infrared freezeout [21] leads to $\alpha_s^{\text{eff}} = (4/3)\alpha_s = \pi/3$.
- (iv) σ mass: the L σ M requires $m_{\sigma} = 2m_q$, while the QCD condensate gives [22] $m_{\rm dyn} = (g_{\sigma qq}/m_{\sigma}^2) \langle -\bar{\Psi}\Psi \rangle_{m_{\sigma}}$ for $\alpha_s(m_{\sigma}) \approx \pi/4$, or $m_{\sigma}^2/m_{\rm dyn}^2 = \pi/\alpha_s(m_{\sigma}^2) \approx 4$.
- (v) Chiral restoration temperature T_c : the L σ M requires [23] $T_c = 2f_{\pi} \approx 180$ MeV, while QCD computer lattice simulations find [24] $T_c = (173 \pm 8)$ MeV.

9. Conclusions

In Secs. 2, 3 the SU(2) L σ M Lagrangian was dynamically generated in all (chiral) regularization schemes, via loop gap equations, predicting the NJL σ mass $m_{\sigma} = 2m_q$ along with meson–quark coupling $g = 2\pi/\sqrt{N_c}$. Then the three-and four-point quark loops were shown to "shrink" to tree graphs, giving the meson cubic and quartic couplings $g' = m_{\sigma}^2/2f_{\pi}$, $\lambda = 8\pi^2/N_c$.

Next in Sec. 4 the Nambu–Goldstone Theorem was shown to hold in $L\sigma M$ loop order with the pion charge radius $r_{\pi} = 1/m_q$. In Sec. 5 the SU(2) $L\sigma M$ requires color number $N_c = 3$ in loop order, then predicting $m_q \approx 325$ MeV, $m_{\sigma} \approx 650$ MeV, $g \approx 3.63$, $\lambda \approx 26$, $r_{\pi} \approx 0.6$ fm in the CL.

In Sec. 6 we considered $L\sigma M$ chiral cancellations, both in tree and in loop order. Next, in Sec. 7 Sakurai's vector meson dominance empirically accurate scheme follows from the $L\sigma M$, the latter further predicting $g_{\rho\pi\pi} = 2\pi$ and $g_{\rho\pi\pi}/g_{\rho} = 6/5$ along with the KSRF relation. Finally, in Sec. 8 we suggested that the $L\sigma M$ is the infrared limit of nonperturbative QCD.

REFERENCES

- M. Gell-Mann, M. Levy, Nuovo Cimento 16, 705 (1960); V. de Alfaro, S. Fubini, G. Furlan, C. Rossetti, Currents in Hadron Physics, Ed. North Holland, 1973, Chap. 5.
- T. Hakioglu, M.D. Scadron, *Phys. Rev.* D42, 941 (1990); T. Hakioglu,
 M.D. Scadron, *Phys. Rev.* D43, 2439 (1991).
- [3] R. Delbourgo, M.D. Scadron, Mod. Phys. Lett. A10, 251 (1995); R. Delbourgo,
 A. Rawlinson, M.D. Scadron, Mod. Phys. Lett. A13, 1893 (1998).
- [4] A. Salam, Nuovo Cimento 25, 224 (1962); S. Weinberg, Phys. Rev. 130, 776 (1963); M.D. Scadron, Phys. Rev. D57, 5307 (1998).
- [5] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); also see Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).
- [6] T. Eguchi, Phys. Rev. D14, 2755 (1976); T. Eguchi, Phys. Rev. D17, 611 (1978).
- [7] A. Bramon, Riazuddin, M.D. Scadron, J. Phys. G 24, 1 (1998).
- [8] R. Tarrach, Z. Phys. C2, 221 (1979); S.B. Gerasimov, Sov. J. Nucl. Phys. 29, 259 (1979).
- [9] A.F. Grashin, M.V. Lepeshkin, *Phys. Lett.* **B146**, 11 (1984).
- [10] B.W. Lee, Chiral Dynamics, Ed. Gordon and Breach, New York 1972, p. 12.
- [11] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
- [12] M.D. Scadron, Eur. Phys. J. C6, 141 (1999).
- [13] R. Kamiński, et al. Z. Phys. C74, 79 (1997).
- [14] A.N. Ivanov, M. Nagy, M.D. Scadron, Phys. Lett. B273, 137 (1991).
- [15] L.R. Babukhadia, et al., Phys. Rev. **D62**, 037901 (2000).
- [16] S. Ishida, et al., Prog. Theor. Phys. 95, 745 (1996); S. Ishida, et al., Prog. Theor. Phys. 98, 621 (1997).
- [17] See e.g. P. Ko, S. Rudaz, Phys. Rev. D50, 6877 (1994).
- [18] K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16, 255 (1966); Riazuddin, Fayyazudin, Phys. Rev. 147, 1071 (1966).

- [19] V. Elias, M.D. Scadron, Phys. Rev. D30, 647 (1984).
- [20] L.R. Babukhadia, V. Elias, M.D. Scadron, J. Phys. G 23, 1065 (1997).
- [21] A. Mattingly, P. Stevenson, Phys. Rev. Lett. 69, 1320 (1992).
- [22] V. Elias, M.D. Scadron, Phys. Rev. Lett. 53, 1129 (1984).
- [23] N. Bilic, J. Cleymans, M.D. Scadron, Intern. J. Mod. Phys. A 10, 1160 (1995).
- [24] F. Karsch, Nucl. Phys. B605, 579 (2001).