DYNAMICALLY GENERATING THE QUARK-LEVEL SU(2) LINEAR SIGMA MODEL*

M.D. Scadron
Physics Department, University of Arizona
Tucson, AZ, 85721 USA

(Received August 27, 2001)
First we study Nambu-type gap equations, $\delta f_{\pi}=f_{\pi}$ and $\delta m_{q}=m_{q}$. Then we exploit the dimensional regularization lemma, subtracting quadratic from log-divergent integrals. The nonperturbative quark loop $\mathrm{L} \sigma \mathrm{M}$ solution recovers the original Gell-Mann-Levy (tree level) equations along with $m_{\sigma}=2 m_{q}$ and meson-quark coupling $g=2 \pi / \sqrt{N_{\mathrm{c}}}$. Next we use the Ben Lee null tadpole condition to reconfirm that $N_{\mathrm{c}}=3$ even through loop order. Lastly we show that this loop order $\mathrm{L} \sigma \mathrm{M}$ (a) reproduces the (remarkably successful) Vector Meson Dominance (VMD) scheme in tree order, and (b) could be suggested as the infrared limit of low energy QCD.

PACS numbers: 12.40.Aa, 13.20.Jf, 13.20.--v

1. Introduction

To begin, we give the original [1] tree-level chiral-broken $\mathrm{SU}(2)$ interacting $L \sigma$ M Lagrangian density, but after the Spontaneous Symmetry Breaking (SSB) shift

$$
\begin{equation*}
\mathcal{L}_{\mathrm{L} \sigma \mathrm{M}}^{\mathrm{int}}=g \bar{\Psi}\left(\sigma^{\prime}+i \gamma_{5} \boldsymbol{\tau} \cdot \boldsymbol{\pi}\right) \Psi+g^{\prime} \sigma^{\prime}\left(\sigma^{\prime 2}+\boldsymbol{\pi}^{2}\right)-\frac{\lambda\left(\sigma^{\prime 2}+\boldsymbol{\pi}^{2}\right)^{2}}{4} \tag{1.1}
\end{equation*}
$$

In Refs. [1] the couplings g, g^{\prime}, λ in (1.1) satisfy the quark-level GoldbergerTreiman Relation (GTR) for $f_{\pi} \approx 93 \mathrm{MeV}$ and $f_{\pi} \sim 90 \mathrm{MeV}$ in the Chiral Limit (CL):

$$
\begin{equation*}
g=\frac{m_{q}}{f_{\pi}}, \quad g^{\prime}=\frac{m_{\sigma}^{2}}{2 f_{\pi}}=\lambda f_{\pi} \tag{1.2}
\end{equation*}
$$

[^0]We work in loop order and dynamically generate mass terms in (1.1) via nonperturbative Nambu-type gap equations $\delta f_{\pi}=f_{\pi}, \delta m_{q}=m_{q}$. The CL $m_{\pi}=0$, corresponds to $\langle 0| \partial A|\pi\rangle=0$ for $\langle 0| A_{\mu}^{3}\left|\pi^{0}\right\rangle=i f_{\pi} q_{\mu}$. The latter requires the GTR $m_{q}=f_{\pi} g$ to be valid in tree and loop order, fixing g, g^{\prime}, λ in loop order.

In Sections 2 and 3 this quark-level $\mathrm{L} \sigma \mathrm{M}$ is nonperturbatively solved via loop-order gap equations. In Sec. 4 the Nambu-Goldstone Theorem (NGT) is expressed in $\mathrm{L} \sigma \mathrm{M}$ language with charge radius $r_{\pi}=1 / m_{q}$ characterizing quark fusion for the tightly bound $q \bar{q}$ pion. In Sec. 5 the Lee null tadpole sum is shown to require $N_{\mathrm{c}}=3$ for the true vacuum. Sec. 6 discusses s-wave chiral cancellations in the $\mathrm{L} \sigma \mathrm{M}$. Sec. 7 shows that VMD follows directly from the $\mathrm{L} \sigma \mathrm{M}$. Finally, Sec. 8 suggests that this $\mathrm{L} \sigma \mathrm{M}$ is the infrared limit of nonperturbative QCD. We give our conclusions in Sec. 9 .

2. Quark loop gap equations

First we compute $\delta f_{\pi}=f_{\pi}$ in the CL via the u and d quark loops shown in Fig. 1(a). Replacing f_{π} by m_{q} / g and taking the quark trace, giving $4 m_{q} q_{\mu}$, the factors $m_{q} q_{\mu}$ cancel, requiring the CL Log-Divergent Gap Equation (LDGE) $[2,3], \overline{\boldsymbol{d}}^{4} p=d^{4} p /(2 \pi)^{4}$ we obtain:

$$
\begin{equation*}
1=-4 i N_{\mathrm{c}} g^{2} \int\left(p^{2}-m_{q}^{2}\right)^{-2} \overline{\boldsymbol{d}}^{4} p \tag{2.1}
\end{equation*}
$$

Anticipating $g \sim 320 \mathrm{MeV} / 90 \mathrm{MeV} \sim 3.6$ from the CL GTR, this LDGE (2.1) suggests an UV cutoff $\Lambda \sim 750 \mathrm{MeV}$. Such a 750 MeV cutoff separates $\mathrm{L} \sigma \mathrm{M}$ elementary particle $\sigma(600)<\Lambda$ from bound states $\rho(770), \omega(780)$, $a_{1}(1260)>\Lambda$. This is a $Z=0$ compositeness condition [4], requiring $g=2 \pi / \sqrt{N_{\mathrm{c}}}$. We later derive this from our Dynamical Symmetry Breaking (DSB) loop order L $\sigma \mathrm{M}$.

Next we study $\delta m_{q}=m_{q}$ in the CL, with zero current quark mass; m_{q} is the nonstrange constituent quark mass. The needed mass gap is formed via the quadratically divergent quark tadpole loop of Fig. 1(b); additional quark

Fig. 1. Quark loop for f_{π} (a) and quark tadpole loop for m_{q} (b).
π - and σ-mediated self-energy graphs then cancel [3], giving the quadratic divergent mass gap

$$
\begin{equation*}
1=\frac{8 i N_{\mathrm{c}} g^{2}}{\left(-m_{\sigma}^{2}\right)} \int\left(p^{2}-m_{q}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p \tag{2.2}
\end{equation*}
$$

Here the $q^{2}=0$ tadpole σ propagator $\left(0-m_{\sigma}^{2}\right)^{-1}$ means that the right-hand side of the integral in Eq. (2.2) acts as a counterterm quadratic divergent NJL [5] mass gap.

References [3] first subtract the quadratic - from the log - divergent integrals of Eqs. (2.1), (2.2) to form the dimensional regularization (dim. reg.) lemma for $2 l=4$

$$
\begin{align*}
& \int \overline{\boldsymbol{d}}^{4} p\left[\frac{m_{q}^{2}}{\left(p^{2}-m_{q}^{2}\right)^{2}}-\frac{1}{p^{2}-m_{q}^{2}}\right] \\
& =\lim _{l \rightarrow 2} \frac{i m_{q}^{2 l-2}}{(4 \pi)^{l}}[\Gamma(2-l)+\Gamma(1-l)]=\frac{-i m_{q}^{2}}{(4 \pi)^{2}} . \tag{2.3}
\end{align*}
$$

This dim. reg. lemma (2.3) follows because $\Gamma(2-l)+\Gamma(1-l) \rightarrow-1$ as $l \rightarrow 2$ due to the gamma function defining identity $\Gamma(z+1)=z \Gamma(z)$. This lemma in Eq. (2.3) is more general than dimensional regularization;
(i) use partial fractions to write

$$
\begin{equation*}
\frac{m^{2}}{\left(p^{2}-m^{2}\right)^{2}}-\frac{1}{p^{2}-m^{2}}=\frac{1}{p^{2}}\left[\frac{m^{4}}{\left(p^{2}-m^{2}\right)^{2}}-1\right], \tag{2.4}
\end{equation*}
$$

(ii) integrate Eq. (2.4) via $\overline{\boldsymbol{d}}^{4} p$ and neglect the latter massless tadpole $\int \overline{\boldsymbol{d}}^{4} p / p^{2}=0$ (as is also done in dimensional regularization, analytic, zeta function and Pauli-Villars regularization [3]),
(iii) Wick rotate $d^{4} p=i \pi^{2} p_{\mathrm{E}}^{2} d p_{\mathrm{E}}^{2}$ in the integral over Eq. (2.4) to find

$$
\begin{align*}
& \int \overline{\boldsymbol{d}}^{4} p\left[\frac{m^{2}}{\left(p^{2}-m^{2}\right)^{2}}-\frac{1}{p^{2}-m^{2}}\right] \\
&=-\frac{i m^{4}}{(4 \pi)^{2}} \int_{0}^{\infty} \frac{d p_{\mathrm{E}}^{2}}{\left(p_{\mathrm{E}}^{2}+m^{2}\right)^{2}}=\frac{-i m^{2}}{(4 \pi)^{2}} . \tag{2.5}
\end{align*}
$$

So (2.5) gives the dimensional regularization lemma (2.3); both are regularization scheme independent.

Following Ref. [3] we combine Eqs. (2.3) or (2.5) with the LDGE (2.1) to solve the quadratically divergent mass gap integral (2.2) as

$$
\begin{equation*}
m_{\sigma}^{2}=2 m_{q}^{2}\left(1+\frac{g^{2} N_{\mathrm{c}}}{4 \pi^{2}}\right) \tag{2.6}
\end{equation*}
$$

Also the Fig. 2 quark bubble plus tadpole graphs dynamically generate the σ mass [3]:

$$
\begin{equation*}
m_{\sigma}^{2}=16 i N_{\mathrm{c}} g^{2} \int \overline{\boldsymbol{d}}^{4} p\left[\frac{m_{q}^{2}}{\left(p^{2}-m_{q}^{2}\right)^{2}}-\frac{1}{p^{2}-m_{q}^{2}}\right]=\frac{N_{\mathrm{c}} g^{2} m_{q}^{2}}{\pi^{2}} \tag{2.7}
\end{equation*}
$$

where we have deduced the rhs of Eq. (2.7) by using (2.3) or (2.5). Finally, solving the two equations (2.6) and (2.7) for the two unknowns $m_{\sigma}^{2} / m_{q}^{2}$ and $g^{2} N_{\mathrm{c}}$, one finds [3]

$$
\begin{equation*}
m_{\sigma}=2 m_{q}, \quad g=\frac{2 \pi}{\sqrt{N_{\mathrm{C}}}} \tag{2.8}
\end{equation*}
$$

Not surprisingly, the lhs equation in (2.8) is the famous NJL four quark result [5], earlier anticipated for the $L \sigma M$ in Refs. [6]. The rhs equation in (2.8) is also the consequence of the $Z=0$ compositeness condition [4], as noted earlier.

Fig. 2. Quark bubble plus quark tadpole loop for m_{σ}^{2}.

Finally, we compute m_{π}^{2} from the analog pion bubble plus tadpole graphs of Fig. 3. Since both quark loops (ql) are quadratic divergent in the CL, one finds $[2,3]$

$$
\begin{align*}
m_{\pi, \mathrm{ql}}^{2} & =4 i N_{\mathrm{c}}\left[2 g^{2}-4 g g^{\prime} \frac{m_{q}}{m_{\sigma}^{2}}\right] \int\left(p^{2}-m_{q}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p=0 \\
g^{\prime} & =\frac{m_{\sigma}^{2}}{2 f_{\pi}} \tag{2.9}
\end{align*}
$$

using the GTR. Not suprisingly, Eq. (2.9) is the dynamical version of the SSB (1.2).

Fig. 3. Quark bubble plus quark tadpole loop for m_{π}^{2}.

3. Loop order three- and four-point functions

Having studied all two-point functions in Sec. 2, we now look at threeand four-point functions. In the CL the u and d quark loops of Fig. 4 generate $g_{\sigma \pi \pi}[2,3]$ as

$$
\begin{equation*}
g_{\sigma \pi \pi}=-8 i g^{3} N_{\mathrm{c}} m_{q} \int\left(p^{2}-m_{q}^{2}\right)^{-2} \overline{\boldsymbol{d}}^{4} p=2 g m_{q} \tag{3.1}
\end{equation*}
$$

by virtue of the LDGE (2.1). Using the GTR and $m_{\sigma}=2 m_{q}$, Eq.
reduces to

$$
\begin{equation*}
g_{\sigma \pi \pi}=2 g m_{q}=\frac{m_{\sigma}^{2}}{2 f_{\pi}}=g^{\prime} \tag{3.2}
\end{equation*}
$$

In effect, the $g_{\sigma \pi \pi}$ loop of Fig. 4 "shrinks" to the $\mathrm{L} \sigma \mathrm{M}$ cubic meson coupling g^{\prime} in the tree-level Lagrangian Eq. (1.1), but only when $m_{\sigma}=2 m_{q}$ and $g / m_{q}=1 / f_{\pi}$.

Fig. 4. Quark triangle shrinks to point for $m_{\sigma} \rightarrow \pi \pi$.
Next we study the four-point $\pi \pi$ quark box of Fig. 5, giving a CL \log divergence [3]:

$$
\begin{equation*}
\lambda_{\mathrm{box}}=-8 i N_{\mathrm{c}} g^{4} \int\left(p^{2}-m_{q}^{2}\right)^{-2} \overline{\boldsymbol{d}}^{4} p=2 g^{2}=\frac{g^{\prime}}{f_{\pi}}=\lambda_{\text {tree }} \tag{3.3}
\end{equation*}
$$

Fig. 5. Quark box shrinks to point contact for $\pi \pi \rightarrow \pi \pi$.
employing the LDGE (2.1) to reduce (3.3) to $2 g^{2}$. Eq. (3.3) shrinks to $\lambda_{\text {tree }}$, by virtue of Eq. (1.2). Substituting (2.8) into (3.3), we find $\lambda=8 \pi^{2} / N_{\mathrm{c}}$.

We have dynamically generated the entire $\mathrm{L} \sigma \mathrm{M}$ Lagrangian (1.1), but using the DSB true vacuum, satisfying specific values of g, g^{\prime}, λ in Eq. (1.1).

4. Nambu-Goldstone Theorem in $\mathbf{L} \boldsymbol{\sigma} \mathbf{M}$ loop order

Having dynamically generated the chiral pion and σ as elementary, we must add to Fig. 3 the five meson loops of Fig. 6. The first bubble graph in Fig. 6 is \log divergent, while the latter four quartic and tadpole graphs are quadratic divergent.

Fig. 6. Meson bubble (a), meson quartic (b), meson tadpole (c) graphs for m_{π}^{2}.

To proceed, first one uses a partial fraction identity to rewrite the logdivergent bubble graph as the difference of π and σ quadratic divergent integrals $[2,7]$. Then the six meson loops (ml) of Fig. 6 can be separated into three quadratic divergent π and three quadratic divergent σ integrals [7]:

$$
\begin{align*}
m_{\pi, \mathrm{ml}}^{2}= & (-2 \lambda+5 \lambda-3 \lambda) i \int\left(p^{2}-m_{\pi}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p \\
& +(2 \lambda+\lambda-3 \lambda) i \int\left(p^{2}-m_{\sigma}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p \tag{4.1}
\end{align*}
$$

Adding Eq. (4.1) to Eq. (2.9), the total m_{π}^{2} in the CL is in loop order

$$
\begin{equation*}
m_{\pi}^{2}=m_{\pi, \mathrm{ql}}^{2}+m_{\pi, \pi l}^{2}+m_{\pi, \sigma l}^{2}=0+0+0=0 . \tag{4.2}
\end{equation*}
$$

Moreover, Eq. (4.2) is chirally regularized and renormalized because the tadpole graphs of Figs. 3 and 6(c) are already counterterm masses acting as subtraction constants.

A second aspect of the chiral pion concerns the pion charge radius r_{π} in the CL. First one computes the pion form factor $F_{\pi, \text { ql }}\left(q^{2}\right)$ due to quark loops (ql) and then differentiates it with respect to q^{2} at $q^{2}=0$ to find $r_{\pi, \mathrm{ql}}^{2}$ as

$$
\begin{align*}
r_{\pi, \mathrm{ql}}^{2} & =\left.\frac{6 d F_{\pi, \mathrm{ql}}\left(q^{2}\right)}{d q^{2}}\right|_{q^{2}=0}=8 i N_{\mathrm{c}} g^{2} \int_{0}^{1} d x 6 x(1-x) \int\left(p^{2}-m_{q}^{2}\right)^{-3} \overline{\boldsymbol{d}}^{4} p \\
& =8 i N_{\mathrm{c}}\left(\frac{4 \pi^{2}}{N_{\mathrm{c}}}\right)\left(\frac{-i \pi^{2}}{2 m_{q}^{2} 16 \pi^{4}}\right)=\frac{1}{m_{q}^{2}} \tag{4.3}
\end{align*}
$$

Although r_{π} was originally expressed as $\sqrt{N_{\mathrm{c}}} / 2 \pi f_{\pi}[7,8]$, we prefer the result (4.3) or $r_{\pi}=1 / m_{q}$, as it requires the tightly bound $q \bar{q}$ pion to have the two quarks fused in the CL. Later we will show that $N_{\mathrm{c}}=3, m_{q} \approx 325 \mathrm{MeV}$ in the CL gives $r_{\pi}=1 / m_{q} \approx 0.6 \mathrm{fm}$. The observed r_{π} is $[9](0.63 \pm 0.01) \mathrm{fm}$. The alternative ChPT requires $r_{\pi} \propto L_{9}$, a Low Energy Constant (LEC)! However, VMD successfully predicts

$$
\begin{equation*}
r_{\pi}^{\mathrm{VMD}}=\frac{\sqrt{6}}{m_{\rho}} \approx 0.63 \mathrm{fm} \tag{4.4}
\end{equation*}
$$

not only accurate but r_{π}^{VMD} and $r_{\pi}^{\mathrm{L} \sigma \mathrm{M}}$ in (4.3) and (4.4) are clearly related [7].

5. Lee null tadpole sum in $\mathrm{SU}(2) \mathrm{L} \sigma \mathrm{M}$ finding $N_{\mathrm{c}}=3$

To characterize the true DSB (not the false SSB) vacuum, Lee [10] requires the sum of loop-order tadpoles to vanish (see Fig. 7). This tadpole sum is [3]

$$
\begin{align*}
\left\langle\sigma^{\prime}\right\rangle=0= & -i 8 N_{\mathrm{c}} g m_{q} \int\left(p^{2}-m_{q}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p \\
& +3 i g^{\prime} \int\left(p^{2}-m_{\sigma}^{2}\right)^{-1} \overline{\boldsymbol{d}}^{4} p \tag{5.1}
\end{align*}
$$

Fig. 7. Null tadpole sum for $\mathrm{SU}(2) \mathrm{L} \sigma \mathrm{M}$.

Replacing g by $m_{q} / f_{\pi}, g^{\prime}$ by $m_{\sigma}^{2} / 2 f_{\pi}$ and scaling the quadratic divergent q (or σ) loop integrals by m_{q}^{2} (or m_{σ}^{2}), Eq. (5.1) requires [3] (neglecting the pion tadpole)

$$
\begin{equation*}
N_{\mathrm{c}}\left(2 m_{q}\right)^{4}=3 m_{\sigma}^{4} \tag{5.2}
\end{equation*}
$$

But we know from Eq. (2.8) that $2 m_{q}=m_{\sigma}$, so the loop-order $\mathrm{SU}(2) \mathrm{L} \sigma \mathrm{M}$ result (5.2) in turn predicts $N_{\mathrm{c}}=3$, a satisfying result. Then the dynamically generated $\mathrm{SU}(2)$ loop-order $\mathrm{L} \sigma \mathrm{M}$ in Sec. 3 also predicts in the CL [3] $m_{q} \approx 325 \mathrm{MeV}, m_{\sigma} \approx 650 \mathrm{MeV}$ and $g=2 \pi / \sqrt{3}=3.6276, g^{\prime}=2 g m_{q}$ $\approx 2.36 \mathrm{GeV}, \lambda=8 \pi^{2} / 3 \approx 26.3$.

6. Chiral s-wave cancellations in $\mathrm{L} \sigma \mathrm{M}$

Away from the CL, the tree-order $L \sigma \mathrm{M}$ requires the cubic meson coupling to be

$$
\begin{equation*}
g_{\sigma \pi \pi}=\frac{\left(m_{\sigma}^{2}-m_{\pi}^{2}\right)}{2 f_{\pi}}=\lambda f_{\pi} \tag{6.1}
\end{equation*}
$$

But at threshold $s=m_{\pi}^{2}$, so the net $\pi \pi$ amplitude then vanishes using (6.1)

$$
\begin{equation*}
M_{\pi \pi}=M_{\pi \pi}^{\text {contact }}+M_{\pi \pi}^{\sigma \text { pole }} \rightarrow \lambda+2 g_{\sigma \pi \pi}^{2}\left(m_{\pi}^{2}-m_{\sigma}^{2}\right)^{-1}=0 \tag{6.2}
\end{equation*}
$$

In effect, the contact λ "chirally eats" the σ pole at the $\pi \pi$ threshold at tree level. Then σ poles from the cross channels predict a $L \sigma M$ Weinberg PCAC form $[11,12]$

$$
\begin{align*}
M_{\pi \pi}^{a b c d} & =A \delta^{a b} \delta^{c d}+B \delta^{a c} \delta^{b d}+C \delta^{a d} \delta^{b c} \\
A^{\mathrm{L} \sigma \mathrm{M}} & =-2 \lambda\left[1-\frac{2 \lambda f_{\pi}^{2}}{m_{\sigma}^{2}-s}\right]=\left(\frac{m_{\sigma}^{2}-m_{\pi}^{2}}{m_{\sigma}^{2}-s}\right)\left(\frac{s-m_{\pi}^{2}}{f_{\pi}^{2}}\right) \tag{6.3}
\end{align*}
$$

So the $I=0 s$-channel amplitude $3 A+B+C$ at threshold predicts a 23% enhancement of the Weinberg s-wave $I=0$ scattering length at $s=4 m_{\pi}^{2}$, $t=u=0$ for $m_{\sigma} \approx 650 \mathrm{MeV}$ with $\varepsilon=m_{\pi}^{2} / m_{\sigma}^{2} \approx 0.045$ and [12] (using only Eq. (6.3))

$$
\begin{equation*}
\left.a_{\pi \pi}^{(0)}\right|_{\mathrm{L} \sigma \mathrm{M}}=\left(\frac{7+\varepsilon}{1-4 \varepsilon}\right) \frac{m_{\pi}}{32 \pi f_{\pi}^{2}} \approx(1.23) \frac{7 m_{\pi}}{32 \pi f_{\pi}^{2}} \approx 0.20 m_{\pi}^{-1} \tag{6.4}
\end{equation*}
$$

For $\sigma(550)$ and $\varepsilon \approx 0.063$ this $L \sigma \mathrm{M}$ scattering length (6.4) increases to $0.22 m_{\pi}^{-1}$. Compare this simple $L \sigma \mathrm{M}$ tree order result (6.4) with the analogue ChPT $0.22 m_{\pi}^{-1}$ scattering length requiring a two-loop calculation involving
about 100 LECs ! These $\pi \pi$ scattering length problems should be sorted out soon by Kamiński, et al. [13].

In $\mathrm{L} \sigma \mathrm{M}$ loop order the analog cancellation is due to a Dirac matrix identity [14]

$$
\begin{equation*}
(\gamma p-m)^{-1} 2 m \gamma_{5}(\gamma p-m)^{-1}=-\gamma_{5}(\gamma p-m)^{-1}-(\gamma p-m)^{-1} \gamma_{5} . \tag{6.5}
\end{equation*}
$$

At a soft pion momentum, Eq. (6.5) requires a σ meson to be "eaten" via a quark box-quark triangle cancellation for $a_{1} \rightarrow \pi(\pi \pi) s$ wave, $\gamma \gamma \rightarrow 2 \pi^{0}$, $\pi^{-} p \rightarrow \pi \pi n$ as suggested in each case by low energy data [14, 15]. Also a soft pion scalar kappa $\kappa(800-900)$ is "eaten" in $K^{-} p \rightarrow K^{-} \pi^{+} n$ peripheral scattering [15].

7. VMD and the $\mathrm{L} \sigma \mathrm{M}$

Given the implicit LDGE (2.1) UV cutoff $\Lambda \approx 750 \mathrm{MeV}$, the $\rho(770)$ can be taken as an external field (bound state $\bar{q} q$ vector meson). Accordingly the quark loop graphs of Fig. 8 generate the loop order $\rho \pi \pi$ coupling $[2,3]$

$$
\begin{equation*}
g_{\rho \pi \pi}=g_{\rho}\left[-i 4 N_{\mathrm{c}} g^{2} \int\left(p^{2}-m_{q}^{2}\right)^{-2} \overline{\boldsymbol{d}}^{4} p\right]=g_{\rho} \tag{7.1}
\end{equation*}
$$

via the LDGE (2.1). While the individual $u d u$ and dud quark graphs of Fig. 8 are both linearly divergent, when added together with vertices $g_{\rho^{0} u u}=-g_{\rho^{0} d d}$ the net $g_{\rho \pi \pi}$ loop in Fig. 8 is log divergent. Equation (7.1) is Sakurai's VMD universality condition. Also a $\pi^{+} \sigma \pi^{+}$meson loop added to the quark loops in Fig. 8 gives [7]

$$
\begin{equation*}
g_{\rho \pi \pi}=g_{\rho}+\frac{g_{\rho \pi \pi}}{6} \quad \text { or } \quad \frac{g_{\rho \pi \pi}}{g_{\rho}}=\frac{6}{5} . \tag{7.2}
\end{equation*}
$$

If one first gauges the $\mathrm{L} \sigma \mathrm{M}$ Lagrangian, the inverted squared gauge coupling is related to the $q^{2}=0$ polarization amplitude as [3]

$$
\begin{equation*}
g_{\rho}^{-2}=\pi\left(0, m_{q}^{2}\right)=\frac{-8 i N_{\mathrm{c}}}{6} \int\left(p^{2}-m_{q}^{2}\right)^{-2} \overline{\boldsymbol{d}}^{4} p=\left(3 g^{2}\right)^{-1} \tag{7.3}
\end{equation*}
$$

Fig. 8. Quark triangle graphs contributing to $\rho^{0} \rightarrow \pi \pi$.
by virtue of the_LDGE(2.1). But since we know $g=2 \pi / \sqrt{3}$, Eq. (7.3) requires $g_{\rho}=\sqrt{3} g=2 \pi$, reasonably near the observed values $g_{\rho \pi \pi} \approx 6.05$ and $g_{\rho} \approx 5.03$.

The chiral KSRF relation for the ρ mass [18] $m_{\rho}^{2}=2 g_{\rho \pi \pi} g_{\rho} f_{\pi}^{2}$ coupled with this $\mathrm{L} \sigma \mathrm{M}$ implies $m_{\rho}^{2}=2(2 \pi)^{2} f_{\pi}^{2} 5 / 6 \approx(754 \mathrm{MeV})^{2}$, close to the observed ρ mass. Also, the dynamically generated $\mathrm{L} \sigma \mathrm{M}$ for $\mathrm{SU}(3)$ is given by the authors of Ref. [3].

8. $L \sigma \mathrm{M}$ as infrared limit of nonperturbative QCD

We suggest five links between the $\mathrm{L} \sigma \mathrm{M}$ and the infrared limit of QCD.
(i) Quark mass: the $\mathrm{L} \sigma \mathrm{M}$ has $m_{q}=f_{\pi} 2 \pi / \sqrt{3} \approx 325 \mathrm{MeV}$, while QCD has [19] $m_{\mathrm{dyn}}=\left(4 \pi \alpha_{s} / 3\langle-\bar{\Psi} \Psi\rangle_{1 \mathrm{GeV}}\right)^{1 / 3} \approx 320 \mathrm{MeV}$ at 1 GeV nearinfrared cutoff.
(ii) Quark condensate: the $\mathrm{L} \sigma \mathrm{M}$ condensate is at infrared cutoff m_{q} [20]

$$
\begin{aligned}
\langle-\bar{\Psi} \Psi\rangle_{m_{q}} & =i 4 N_{\mathrm{c}} m_{q} \int \frac{\overline{\boldsymbol{d}}^{4} p}{p^{2}-m_{q}^{2}}=\frac{3 m_{q}^{3}}{4 \pi^{2}}\left[\frac{\Lambda^{2}}{m_{q}^{2}}-\ln \left(\frac{\Lambda^{2}}{m_{q}^{2}}+1\right)\right] \\
& \approx(209 \mathrm{MeV})^{3}
\end{aligned}
$$

while the condensate in QCD is $\langle-\bar{\Psi} \Psi\rangle_{m_{q}}=3 m_{\mathrm{dyn}}^{3} / \pi^{2} \approx(215 \mathrm{MeV})^{3}$.
(iii) Frozen coupling strength: the $\mathrm{L} \sigma \mathrm{M}$ coupling is for $g=2 \pi / \sqrt{3}$ or $\alpha_{\mathrm{L} \sigma \mathrm{M}}=g^{2} / 4 \pi=\pi / 3$, while in $\mathrm{QCD} \alpha_{s}=\pi / 4$ at infrared freezeout [21] leads to $\alpha_{s}^{\text {eff }}=(4 / 3) \alpha_{s}=\pi / 3$.
(iv) σ mass: the $\mathrm{L} \sigma \mathrm{M}$ requires $m_{\sigma}=2 m_{q}$, while the QCD condensate gives [22] $m_{\mathrm{dyn}}=\left(g_{\sigma q q} / m_{\sigma}^{2}\right)\langle-\bar{\Psi} \Psi\rangle_{m_{\sigma}}$ for $\alpha_{s}\left(m_{\sigma}\right) \approx \pi / 4$, or $m_{\sigma}^{2} / m_{\mathrm{dyn}}^{2}=$ $\pi / \alpha_{s}\left(m_{\sigma}^{2}\right) \approx 4$.
(v) Chiral restoration temperature T_{c} : the $\mathrm{L} \sigma \mathrm{M}$ requires [23] $T_{\mathrm{c}}=2 f_{\pi}$ $\approx 180 \mathrm{MeV}$, while QCD computer lattice simulations find [24] $T_{\mathrm{C}}=(173 \pm 8) \mathrm{MeV}$.

9. Conclusions

In Secs. 2, 3 the $\mathrm{SU}(2) \mathrm{L} \sigma \mathrm{M}$ Lagrangian was dynamically generated in all (chiral) regularization schemes, via loop gap equations, predicting the NJL σ mass $m_{\sigma}=2 m_{q}$ along with meson-quark coupling $g=2 \pi / \sqrt{N_{\mathrm{c}}}$. Then the three-and four-point quark loops were shown to "shrink" to tree graphs, giving the meson cubic and quartic couplings $g^{\prime}=m_{\sigma}^{2} / 2 f_{\pi}, \lambda=8 \pi^{2} / N_{\mathrm{c}}$.

Next in Sec. 4 the Nambu-Goldstone Theorem was shown to hold in $\mathrm{L} \sigma \mathrm{M}$ loop order with the pion charge radius $r_{\pi}=1 / m_{q}$. In Sec. 5 the $\mathrm{SU}(2) \mathrm{L} \sigma \mathrm{M}$ requires color number $N_{\mathrm{c}}=3$ in loop order, then predicting $m_{q} \approx 325 \mathrm{MeV}$, $m_{\sigma} \approx 650 \mathrm{MeV}, g \approx 3.63, \lambda \approx 26, r_{\pi} \approx 0.6 \mathrm{fm}$ in the CL.

In Sec. 6 we considered $\mathrm{L} \sigma \mathrm{M}$ chiral cancellations, both in tree and in loop order. Next, in Sec. 7 Sakurai's vector meson dominance empirically accurate scheme follows from the $\mathrm{L} \sigma \mathrm{M}$, the latter further predicting $g_{\rho \pi \pi}=2 \pi$ and $g_{\rho \pi \pi} / g_{\rho}=6 / 5$ along with the KSRF relation. Finally, in Sec. 8 we suggested that the $\mathrm{L} \sigma \mathrm{M}$ is the infrared limit of nonperturbative QCD.

REFERENCES

[1] M. Gell-Mann, M. Levy, Nuovo Cimento 16, 705 (1960); V. de Alfaro, S. Fubini, G. Furlan, C. Rossetti, Currents in Hadron Physics, Ed. North Holland, 1973, Chap. 5.
[2] T. Hakioglu, M.D. Scadron, Phys. Rev. D42, 941 (1990); T. Hakioglu, M.D. Scadron, Phys. Rev. D43, 2439 (1991).
[3] R. Delbourgo, M.D. Scadron, Mod. Phys. Lett. A10, 251 (1995); R. Delbourgo, A. Rawlinson, M.D. Scadron, Mod. Phys. Lett. A13, 1893 (1998).
[4] A. Salam, Nuovo Cimento 25, 224 (1962); S. Weinberg, Phys. Rev. 130, 776 (1963); M.D. Scadron, Phys. Rev. D57, 5307 (1998).
[5] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); also see Y. Nambu, Phys. Rev. Lett. 4, 380 (1960).
[6] T. Eguchi, Phys. Rev. D14, 2755 (1976); T. Eguchi, Phys. Rev. D17, 611 (1978).
[7] A. Bramon, Riazuddin, M.D. Scadron, J. Phys. G 24, 1 (1998).
[8] R. Tarrach, Z. Phys. C2, 221 (1979); S.B. Gerasimov, Sov. J. Nucl. Phys. 29, 259 (1979).
[9] A.F. Grashin, M.V. Lepeshkin, Phys. Lett. B146, 11 (1984).
[10] B.W. Lee, Chiral Dynamics, Ed. Gordon and Breach, New York 1972, p. 12.
[11] S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).
[12] M.D. Scadron, Eur. Phys. J. C6, 141 (1999).
[13] R. Kamiński, et al. Z. Phys. C74, 79 (1997).
[14] A.N. Ivanov, M. Nagy, M.D. Scadron, Phys. Lett. B273, 137 (1991).
[15] L.R. Babukhadia, et al., Phys. Rev. D62, 037901 (2000).
[16] S. Ishida, et al., Prog. Theor. Phys. 95, 745 (1996); S. Ishida, et al., Prog. Theor. Phys. 98, 621 (1997).
[17] See e.g. P. Ko, S. Rudaz, Phys. Rev. D50, 6877 (1994).
[18] K. Kawarabayashi, M. Suzuki, Phys. Rev. Lett. 16, 255 (1966); Riazuddin, Fayyazudin, Phys. Rev. 147, 1071 (1966).
[19] V. Elias, M.D. Scadron, Phys. Rev. D30, 647 (1984).
[20] L.R. Babukhadia, V. Elias, M.D. Scadron, J. Phys. G 23, 1065 (1997).
[21] A. Mattingly, P. Stevenson, Phys. Rev. Lett. 69, 1320 (1992).
[22] V. Elias, M.D. Scadron, Phys. Rev. Lett. 53, 1129 (1984).
[23] N. Bilic, J. Cleymans, M.D. Scadron, Intern. J. Mod. Phys. A 10, 1160 (1995).
[24] F. Karsch, Nucl. Phys. B605, 579 (2001).

[^0]: * Presented at the XLI Cracow School of Theoretical Physics, Zakopane, Poland, June 2-11, 2001.

