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First we study Nambu-type gap equations, 6 fr = fr and dm, = my,.
Then we exploit the dimensional regularization lemma, subtracting quadra-
tic from log-divergent integrals. The nonperturbative quark loop LoM
solution recovers the original Gell-Mann-Levy (tree level) equations along
with m, = 2m, and meson-quark coupling g = 2w/\/N.. Next we use
the Ben Lee null tadpole condition to reconfirm that N, = 3 even through
loop order. Lastly we show that this loop order LoM (a) reproduces the
(remarkably successful) Vector Meson Dominance (VMD) scheme in tree
order, and (b) could be suggested as the infrared limit of low energy QCD.

PACS numbers: 12.40.Aa, 13.20.Jf, 13.20.—v

1. Introduction

To begin, we give the original [1] tree-level chiral-broken SU(2) interact-
ing LoM Lagrangian density, but after the Spontaneous Symmetry Breaking
(SSB) shift

A (0'2 + 71'2)2

L8 = g (o +iysT -7 + g0’ (0" + 7?) — 1

(1.1)
In Refs. [1] the couplings g, ¢’, A in (1.1) satisfy the quark-level Goldberger—
Treiman Relation (GTR) for f; =~ 93MeV and f; ~ 90MeV in the Chiral
Limit (CL):

2

mq ' m,
9=+, g =57=Nx. 1.2
fr 2fr (12
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We work in loop order and dynamically generate mass terms in (1.1) via
nonperturbative Nambu-type gap equations 0 fr = fr, dmq = my. The CL
my = 0, corresponds to (0|dA|r) = 0 for (0|A}|7°) = ifrq,. The latter
requires the GTR my= frg to be valid in tree and loop order, fixing g, ¢’, A
in loop order.

In Sections 2 and 3 this quark-level LoM is nonperturbatively solved via
loop-order gap equations. In Sec. 4 the Nambu-Goldstone Theorem (NGT)
is expressed in LoM language with charge radius r, = 1/m, characterizing
quark fusion for the tightly bound ¢g pion. In Sec. 5 the Lee null tadpole
sum is shown to require N, = 3 for the true vacuum. Sec. 6 discusses s-wave
chiral cancellations in the LoM. Sec. 7 shows that VMD follows directly
from the LoM. Finally, Sec. 8 suggests that this LoM is the infrared limit
of nonperturbative QCD. We give our conclusions in Sec. 9.

2. Quark loop gap equations

First we compute df, = fr in the CL via the u and d quark loops
shown in Fig. 1(a). Replacing fr by m,/g and taking the quark trace,
giving 4myq,,, the factors myq, cancel, requiring the CL Log-Divergent Gap

Equation (LDGE) [2,3], d'p = d*p/(27)* we obtain:
2
1= —4iN, g2/ <p2 — mg) d4p. (2.1)

Anticipating g ~ 320 MeV/90MeV ~3.6 from the CL GTR, this LDGE
(2.1) suggests an UV cutoff 4 ~750 MeV. Such a 750 MeV cutoff separates
LoM elementary particle ¢(600) < A from bound states p(770), w(780),
a1(1260) > A. This is a Z = 0 compositeness condition [4], requiring
g = 27 //N¢. We later derive this from our Dynamical Symmetry Breaking
(DSB) loop order Lo M.

Next we study ém, = m, in the CL, with zero current quark mass; m, is
the nonstrange constituent quark mass. The needed mass gap is formed via
the quadratically divergent quark tadpole loop of Fig. 1(b); additional quark

u, d
o, o -
T
(a) O
Fig. 1. Quark loop for fr (a) and quark tadpole loop for m, (b).
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m- and o-mediated self-energy graphs then cancel [3], giving the quadratic
divergent mass gap

8iN. ¢°

1= ] /(p2 —mg)_1 d'p. (2.2)

(=m3

Here the ¢ = 0 tadpole o propagator (0 —m?2)~! means that the right-hand

side of the integral in Eq. (2.2) acts as a counterterm quadratic divergent
NJL [5] mass gap.

References [3] first subtract the quadratic — from the log — divergent

integrals of Egs. (2.1), (2.2) to form the dimensional regularization (dim.
reg.) lemma for 2/ =4

2
—4 my 1
dp —
/ [(p2—m3)2 p2‘m3]

il [F(Q )+ T(1- l)] -

SN

—im
(4m)
This dim. reg. lemma (2.3) follows because I'(2—1)+I'(1-1)——1 as | — 2

due to the gamma function defining identity I'(z + 1) = 2I'(z). This lemma
in Eq. (2.3) is more general than dimensional regularization;

m

(2.3)

N

(i) use partial fractions to write

m?2 1 1 m?
ST T e BT A I (2.4)
(p? —m?)" p°—m*  p”[(p* —m?)

(ii) integrate Eq. (2.4) via c_l4p and neglect the latter massless tadpole

i ;141)/;[)2 = 0 (as is also done in dimensional regularization, analytic,
zeta function and Pauli-Villars regularization [3]),

(i4i) Wick rotate d*p = in?pidp? in the integral over Eq. (2.4) to find

/&4p[(p in;?)? P : ]

o0
im? dp?, —im
= ) 2.5
T (47)2 (pZ +m?)2  (4m)? (25)
0

2

So (2.5) gives the dimensional regularization lemma (2.3); both are
reqularization scheme independent.
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Following Ref. [3] we combine Egs. (2.3) or (2.5) with the LDGE (2.1)
to solve the quadratically divergent mass gap integral (2.2) as

N,
m2 = 2m3 <1 + 947r26> . (2.6)

Also the Fig. 2 quark bubble plus tadpole graphs dynamically generate
the o mass [3]:

2 202
. —4 m 1 Ncg=m
mi:lechgQ/d p 1 - ==L (@27
<p2_m2> P —myg w
q

where we have deduced the rhs of Eq. (2.7) by using (2.3) or (2.5). Finally,
solving the two equations (2.6) and (2.7) for the two unknowns m?2/ mg and
g% N, one finds [3]

2T
9= —"F=
VN

Not surprisingly, the lhs equation in (2.8) is the famous NJL four quark
result [5], earlier anticipated for the LoM in Refs. [6]. The rhs equation in
(2.8) is also the consequence of the Z = 0 compositeness condition [4], as
noted earlier.

My = 2my,

(2.8)

Fig.2. Quark bubble plus quark tadpole loop for m2.

Finally, we compute m?2 from the analog pion bubble plus tadpole graphs
of Fig. 3. Since both quark loops (ql) are quadratic divergent in the CL, one
finds |2, 3]

—1_
m? g = 4iN, [2g2 —4g9' =2 ] / (r*—m2) a'p=0.
a

2
' m

- _g

2fx’
using the GTR. Not suprisingly, Eq. (2.9) is the dynamical version of the
SSB (1.2).

(2.9)
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Fig. 3. Quark bubble plus quark tadpole loop for m2.

3. Loop order three- and four-point functions

Having studied all two-point functions in Sec. 2, we now look at three-
and four-point functions. In the CL the w and d quark loops of Fig. 4
generate gorr [2,3] as

. 24
Jonm = —8193Ncmq/ (p2 — m3> d p=2gm,, (3.1)

by virtue of the LDGE (2.1). Using the GTR and m, = 2m,, Eq. (3.1)

reduces to
m
Jorr = 2gMg = —~ = q. (3.2)

In effect, the gorr loop of Fig. 4 “shrinks” to the LoM cubic meson coupling
¢’ in the tree-level Lagrangian Eq. (1.1), but only when m, = 2m, and

g/mq = l/fﬂ'

Fig.4. Quark triangle shrinks to point for m, — 7.

Next we study the four-point w7 quark box of Fig. 5, giving a CL log
divergence [3]:

-2 _ /
Moox = —8iNeg! [ (o7 =) A= 20 = L = h, (33
M- " T TE- _-n
ud e
L Tt T T

Fig. 5. Quark box shrinks to point contact for 77 — 7.
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employing the LDGE (2.1) to reduce (3.3) to 2¢g. Eq. (3.3) shrinks to A¢ree,

by virtue of Eq. (1.2). Substituting (2.8) into (3.3), we find A = 872/N.
We have dynamically generated the entire LoM Lagrangian (1.1), but

using the DSB true vacuum, satisfying specific values of g, ¢’, A in Eq. (1.1).

4. Nambu—Goldstone Theorem in LoM loop order

Having dynamically generated the chiral pion and o as elementary, we
must add to Fig. 3 the five meson loops of Fig. 6. The first bubble graph in
Fig. 6 is log divergent, while the latter four quartic and tadpole graphs are
quadratic divergent.

.
E M, O
R o N
o L+ L
(6) Tt Tt ! (0}
,,ﬁ,,\,,,ﬁ,,
(a) (b) (c)

2

T

Fig.6. Meson bubble (a), meson quartic (b), meson tadpole (c) graphs for m

To proceed, first one uses a partial fraction identity to rewrite the log-
divergent bubble graph as the difference of 7 and o quadratic divergent
integrals [2,7]. Then the six meson loops (ml) of Fig. 6 can be separated
into three quadratic divergent 7 and three quadratic divergent o integrals [7]:

—1_
mfuml = (=2\+ 5\ — 3)\)i/ (p2 — mi) d'p
. 2 2 —1y
+2A+ X — 3)\)1/ (p —ma> dp. (4.1)
Adding Eq. (4.1) to Eq. (2.9), the total m2 in the CL is in loop order
2 _ .2 2 2 _ _
mz=mg g+t Mgy +my,; =0+0+0=0. (4.2)
Moreover, Eq. (4.2) is chirally regularized and renormalized because the

tadpole graphs of Figs. 3 and 6(c) are already counterterm masses acting as
subtraction constants.
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A second aspect of the chiral pion concerns the pion charge radius r, in
the CL. First one computes the pion form factor Fy q1(q2) due to quark loops
(ql) and then differentiates it with respect to ¢ at ¢>=0 to find 7'72“ ql S

2 6dFx, q (q2)
S 7

1
—3_
= SiNch/dm(ix(l — m)/ (p2 —mg) d4p
q*>=0 0

e —im? 1
= 8N, (=) (—Z ) =—=. 43
i C<NC> <2m3167r4) m2 (4.3)

Although 7, was originally expressed as /N./27f, [7,8], we prefer the
result (4.3) or rr = 1/my, as it requires the tightly bound ¢g pion to have the
two quarks fused in the CL. Later we will show that N. = 3, m, ~ 325 MeV
in the CL gives rr =1/my~0.6fm. The observed r, is [9] (0.63+0.01) fm.
The alternative ChPT requires r; o« Lg, a Low Energy Constant (LEC)!
However, VMD successfully predicts

FVMD _ @

™

~ 0.63 fm, (4.4)

mp

not only accurate but rYMP and rLM in (4.3) and (4.4) are clearly related [7].

5. Lee null tadpole sum in SU(2) LoM finding N. = 3

To characterize the true DSB (not the false SSB) vacuum, Lee [10] re-
quires the sum of loop-order tadpoles to vanish (see Fig. 7). This tadpole
sum is [3]

—1_
(oY =0 = —iSNCgmq/<p2—mg> d4p

+3ig'/<p2—m§)_lc_l4p. (5.1)
u,d T o
S - =0
o ' d

Fig. 7. Null tadpole sum for SU(2) LoM.
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Replacing g by my/ fr, ¢’ by m2/2f» and scaling the quadratic divergent
g(or o) loop integrals by mg (or m2), Eq. (5.1) requires [3] (neglecting the
pion tadpole)

Ne(2mg)* = 3m. (5.2)

But we know from Eq. (2.8) that 2m, = m,, so the loop-order SU(2) LoM
result (5.2) in turn predicts N, = 3, a satisfying result. Then the dynami-
cally generated SU(2) loop-order LoM in Sec. 3 also predicts in the CL [3]
mg =~ 325MeV, m, =~ 650MeV and g = 2m/V/3 = 3.6276, ¢ = 2gmy
~ 2.36 GeV, \ = 872/3 ~ 26.3.

6. Chiral s-wave cancellations in LecM

Away from the CL, the tree-order LoM requires the cubic meson coupling
to be

(mg —mx)

Jornn = 2f7r = >\f7r . (6.1)

But at threshold s = m?2 | so the net 77 amplitude then vanishes using (6.1)

™

My = MM M2 5 )\ 262 (m2 —m2)” =0.  (6.2)

In effect, the contact A “chirally eats” the o pole at the w7 threshold at tree
level. Then o poles from the cross channels predict a LoM Weinberg PCAC
form [11,12]

Mabcd — Aéabécd—i—Béacébd—i—Céaddl’c
2 2 2 _ 2
AP = o) [1— 2\ ]: <m” m”) <‘9 m”). (6.3)

2 _ 2 _ 2
ms — s ms —s VE

So the I = 0 s-channel amplitude 3A + B + C at threshold predicts a 23%
enhancement of the Weinberg s-wave I = 0 scattering length at s = 4m2,
t = u = 0 for m, =~ 650 MeV with ¢ = m2/m?2 ~ 0.045 and [12] (using only
Eq. (6.3))

T+e m m
(0) - T~ (1.2 T~ 0.20m-". 4
Grr LoM <1—45> 327 2 ( 3)327rf72 0-20m (64)

For o(550) and ¢ =~ 0.063 this LoM scattering length (6.4) increases to
0.22m_ . Compare this simple LoM tree order result (6.4) with the analogue
ChPT 0.22m. ! scattering length requiring a two-loop calculation involving
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about 100 LECs ! These 7m scattering length problems should be sorted out
soon by Kamiriski, et al. [13].

In LoM loop order the analog cancellation is due to a Dirac matrix
identity [14]

(yp—m) 2mys(yp—m) ' = —ys(yp—m) = (yp—m) 1. (6.5)

At a soft pion momentum, Eq. (6.5) requires a ¢ meson to be “eaten” via
a quark box-quark triangle cancellation for a; — mw(n7) s wave, vy — 270,
m p — wmn as suggested in each case by low energy data [14,15]. Also
a soft pion scalar kappa k(800-900) is “eaten” in K p — K 7' n peripheral
scattering [15].

7. VMD and the LcM

Given the implicit LDGE (2.1) UV cutoff A = 750 MeV, the p(770) can
be taken as an external field (bound state gg vector meson). Accordingly
the quark loop graphs of Fig. 8 generate the loop order pm7 coupling |2, 3]

. 24
Gprr = 9p [—14Nc92/ (p2 - mZ) d p] =9, (7.1)

via the LDGE (2.1). While the individual udu and dud quark graphs
of Fig. 8 are both linearly divergent, when added together with vertices
9pouu = —9poda the net g,z loop in Fig. 8 is log divergent. Equation (7.1)

is Sakurai’s VMD universality condition. Also a 7#tom™ meson loop added
to the quark loops in Fig. 8 gives [7]
_ 9p Gprn _ 6
Gprr = 9p + 6= or g—”; == (7.2)

If one first gauges the LoM Lagrangian, the inverted squared gauge cou-
pling is related to the ¢> = 0 polarization amplitude as [3]

2 = (0md) = = [ (i) Taty =) L 0
u ] ffffff ud d - Tt
Pt T Jr @ od u

Fig.8. Quark triangle graphs contributing to p° — 7.
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by virtue of the LDGE(2.1). But since we know g = 2r/v/3, Eq. (7.3)
requires g, = V/3g = 2x, reasonably near the observed values Gprr = 6.05
and g, ~ 5.03.

The chiral KSRF relation for the p mass [18] m% = 29prrgpf? coupled
with this LoM implies m? = 2(27)?f25/6 ~ (754 MeV)?, close to the ob-
served p mass. Also, the dynamically generated LoM for SU(3) is given by
the authors of Ref. [3].

8. LoM as infrared limit of nonperturbative QCD
We suggest five links between the LoM and the infrared limit of QCD.

(i) Quark mass: the LoM has m, = fr27/v/3 ~ 325MeV, while QCD
has [19] magn = (4mas/3 (—0¥)1gev)'/? ~ 320MeV at 1GeV near-
infrared cutoff.

(it) Quark condensate: the LoM condensate is at infrared cutoff m, [20]

74 3[ 42 2
_ ] dp 3my | A A
(—00)p, = 7,4Ncmq/p2 2 =13 _mg —1In 2 +1

~ (209MeV)?
while the condensate in QCD is (—¥¥),, = 3mg’lyn/7r2 ~ (215 MeV)3.

(iii) Frozen coupling strength: the LoM coupling is for ¢ = 27/v/3 or
areM = g2/4n = ©/3, while in QCD «, = 7/4 at infrared freezeout
[21] leads to o = (4/3)as = /3.

(iv) o mass: the LoM requires m, = 2m,, while the QCD condensate gives
[22] mayn = (quQ/mg) (=0W)p, for as(my) ~ /4, or m?f/m?iyn =
7/as(m2) ~ 4.

(v) Chiral restoration temperature T: the LoM requires [23] T. = 2f,
~ 180 MeV, while QCD computer lattice simulations find [24]
T, =(17348) MeV.

9. Conclusions

In Secs. 2, 3 the SU(2) LoM Lagrangian was dynamically generated in all
(chiral) regularization schemes, via loop gap equations, predicting the NJL
o mass m, = 2mg, along with meson-quark coupling g = 2r/y/N.. Then
the three-and four-point quark loops were shown to “shrink” to tree graphs,
giving the meson cubic and quartic couplings ¢’ = m2/2f,, A = 87%/N,.
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Next in Sec. 4 the Nambu-Goldstone Theorem was shown to hold in LeM
loop order with the pion charge radius r = 1/m,. In Sec. 5 the SU(2) LoM
requires color number N. = 3 in loop order, then predicting m, ~ 325 MeV,
mg &= 650 MeV, g = 3.63, A = 26, r; = 0.6 fm in the CL.

In Sec. 6 we considered LoM chiral cancellations, both in tree and in
loop order. Next, in Sec. 7 Sakurai’s vector meson dominance empiri-
cally accurate scheme follows from the LoM, the latter further predicting
Gprr = 21 and gyrr/g,= 6/5 along with the KSRF relation. Finally, in Sec. 8
we suggested that the LoM is the infrared limit of nonperturbative QCD.
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