
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 12
DIRAC OPERATOR AND ISING MODELON A COMPACT 2D RANDOM LATTICE�L. Bogaza;b, Z. Burdaa;b, J. Jurkiewizb, A. Krzywiki,C. Petersena, and B. PeterssonaaFakultät für Physik, Universität BielefeldP.O.Box 100131, D-33501 Bielefeld, GermanybInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Poland Laboratoire de Physique ThéoriqueBâtiment 210, Université Paris-Sud, 91405 Orsay, Frane(Reeived Otober 11, 2001)Lattie formulation of a fermioni �eld theory de�ned on a randomlytriangulated ompat manifold is disussed, with emphasis on the topolog-ial problem of de�ning spin strutures on the manifold. An expliit on-strution is presented for the two-dimensional ase and its relation with theIsing model is disussed. Furthermore, an exat realization of the Kramers�Wannier duality for the two-dimensional Ising model on the manifold is on-sidered. The global properties of the �eld are disussed. The importaneof the GSO projetion is stressed. This projetion has to be performed forthe duality to hold.PACS numbers: 04.60.Kz, 05.50.+q1. IntrodutionThe massless Majorana free fermion theory belongs to the same univer-sality lass as the ritial Ising model on a regular lattie [1�4℄. An expliitonstrution of the Majorana�Dira�Wilson fermion �eld theory on a ran-domly triangulated plane was introdued in [5℄. This theory was shown tobe equivalent to the Ising model also outside the ritial region. In Ref. [5℄Cartesian oordinates were assigned to the nodes of the lattie. The di-retions of the links and of the related gamma matries were expressed inthe global frame of the plane. This approah works for latties embeddedin a �at bakground, where one has at one's disposal a global frame of the� Presented at the XLI Craow Shool of Theoretial Physis, Zakopane, Poland,June 2�11, 2001. (4121)



4122 L. Bogaz et al.underlying geometry [6�8℄. However, if one wants to generalize it to a lat-tie on a urved bakground, where no global frame exists, a �eld of loalframes [9�11℄ has to be introdued. This being done, one an put fermionson a urved manifold with any topology and one an eventually attak, forexample, problems of �eld theory on a dynamial geometry like those en-ountered in string theory or in quantum gravity [14�18℄.This generalization was partially arried out in [10,11℄ where an expliitonstrution of the Majorana�Dira�Wilson operators on urved ompattwo-dimensional latties was introdued.Here we extend these studies. In partiular, we disuss the signi�ane ofthe GSO projetion, whih as in string theory also here plays an importantphysial role [12, 13℄. We show that with a areful treatment of the globalproperties of the Dira operator and of the spin strutures on the mani-fold one an �nd a strit mathematial one-to-one equivalene between thepartition funtion of the Majorana�Wilson fermions and that of the Isingmodel. We show expliitly that in our disretization of the Dira operatoron a ompat manifold, the GSO projetion � the summation over all spinstrutures � does remove the non-ontratible fermioni loops, that is thosenot orresponding to the domain-walls of the orresponding Ising model.Further, we show that for the duality to hold exatly as a one-to-onemap between the Ising model on a triangulation and on its dual lattie, asort of GSO projetion has also to be done. Di�erent spin strutures forthe Ising �eld are simulated by physial uts produed by the introdutionof antiferromagneti loops, whih mimi antiperiodi fermioni boundaryonditions.The paper is organized as follows. In Setion 2 we give an introdutionto the problem of de�ning the Dira operator on a ompat manifold. Itis text-book material [13, 20℄. We reall it here for ompleteness, to keepthe artile self-ontained. In Setion 3, we show how to adapt the standardWilson disretization sheme of fermions on the regular translationally in-variant hyperubi lattie [22℄ to the loal-frame desription, whih an begeneralized to the ase of irregular urved latties. In Setion 4, using as anexample the standard toroidal regular lattie, we disuss the sign problemand the global properties of the fermioni �eld on a ompat manifold. InSetion 5 we argue that in the ase of irregular latties the loal frame de-sription is partiularly natural, and then in Setion 6 we show how to liftthis onstrution to the spinorial representation. In doing this we introduerotation matries between neighboring frames whih are ruial for the on-strution. In partiular, using the spinorial representation of these matrieswe are able to de�ne in Setion 7 the Dira�Wilson operator. The stan-dard de�nition of the partition funtion representing quantum amplitudesis realled in Setion 8. In this setion we also list the properties of the



Dira Operator and Ising Model on a Compat 2D Random Lattie 4123mathematial expressions enountered in alulating the partition funtion.In Setion 9 we alulate the partition funtion using the hopping parameterexpansion. The topologial loop sign problem emerges naturally there. Theissue of loop signs is disussed in more detail in Setion 10 where the signis de�ned as a funtion of lasses of loop homotopies. The relation betweensigns of non-ontratible fermioni loops and of domain-walls in Ising modeland the topologial aspet of the duality is disussed in Setion 11. In Se-tion 12 we give two analyti examples, alulating the ritial temperatureof the Ising model on the honeyomb lattie and the ritial value of thehopping parameter on the dynamial triangulation, making use of the exis-tene of the exat map between the Ising model and the fermioni model.We lose with a short disussion.2. PreliminariesThe aim of this paper is to disretize a theory of fermions on a random,possibly �utuating geometry. Let us �rst reall some basi fats about theontinuum formulation of this problem.Consider a D-dimensional ompat Riemannian manifold, on whih aoordinate system �� is de�ned. If a nonsingular hange of oordinates�� ! �0� is performed at some point x on the manifold, then a linear trans-formation of the omponents of any vetor or tensor �eld in the tangentspae at x has also to be arried out, in order to ensure the invariane ofthe theory under oordinate transformations. For vetors, the matrix of thislinear transformation reads: A�� (x) = ��0���� (x) : (1)Sine the hange of oordinates is not singular, the determinant of A isnonzero. The matries A thus form a linear group of non-singular real ma-tries GL(D;R). The basi di�ulty in any attempt to apply the trans-formation law (1) to a fermioni �eld is that the group GL(D;R) has nospinorial representation. In other words, one annot diretly apply the in-formation enoded in A to transform a spinor when hanging the oordi-nates. In order to overome this di�ulty one has to restrit somehow thegroup GL(D;R) to its SO(D) subgroup, whih does have spinorial half-integer representations. One an do this by introduing an additional �eldof loal orthonormal frames. More preisely, at eah point x of the mani-fold one introdues a basis ea(x), a = 1; : : : ;D, in the tangent spae, whihobeys ea(x) � eb(x) = Æab (orthonormality) and e1(x) ^ e2(x) : : : ^ eD(x) > 0(orientability), where the symbols � and ^ denote the internal and externalproduts.



4124 L. Bogaz et al.Expressed in a given oordinate system ��, the orthonormality and ori-entability onditions read:g��(x) e�a (x) e�b (x) = Æab ; e(x) � det e�a(x) =pg(x) > 0 : (2)The matrix e�a(x) is alled the vielbein. It is non-singular, and one an denoteits inverse matrix by ea�(x). Thus one has, for instane, ea�(x)eb�(x)Æab =g��(x).With these vetors one an also assoiate gamma matries a, fa; bg =2Æab, that an be hosen so as to have the same numerial values a for allpoints x. One an write the Dira matries in the urved oordinates as�(x) = e�a(x)a.The prie to pay for introduing this new �eld is that one also has tointrodue an additional onnetion on top of the Levy�Civita onnetion.The new onnetion ! (whih is alled the spin onnetion) allows one to al-ulate ovariant derivatives of objets that have frame indies. For instane,the ovariant derivative of the vielbein itself is given byr�e�a = ��e�a + � ���e�a � !�ab e�b : (3)The reward is that the spin onnetion an be lifted to the spinorial repre-sentation, and we an alulate the ovariant derivatives of spinors as well:r� = �� + 12!�ab�ab ; (4)where �ab = 12i [a; b℄ is the rotation generator in the spinorial representa-tion.The ation for fermions oupled to gravity an now be written as:S = 12 Z dD� e � �r�  = 12 Z dDx � (a � ra) = 12 Z dDx dDy � (x)D(x; y) (y) : (5)The Dira operator on the manifold isD(x; y) = Æ(x� y) a(x) � ra(x) ; (6)or, less formally, just  � D. We shall disretize this operator in the nextsetion. Before doing so, however, let us disuss its topologial properties.Loally, one an always de�ne a ontinuously varying �eld of frames.However, doing this globally for a ompat manifold is usually impossible.What an be done instead in this ase is to over the manifold with openpathes, in eah of whih one an separately de�ne a ontinuous �eld of



Dira Operator and Ising Model on a Compat 2D Random Lattie 4125frames, and for any region of overlapping pathes U and V provide transitionmatries for realulating the frames when going from one path to the other:[eU ℄a(x) = [RUV ℄ba [eV ℄b(x) : (7)Here, the transition funtion RUV is a SO(D) rotation matrix. It followsthat the spinors in the overlapping region an be realulated as:[ U ℄�(x) = [RUV ℄�� [ V ℄�(x) ; (8)where RUV is an image of RUV in the spinorial representation. In a regionwhere three pathes U; V;W interset, the transition matries must obviouslyful�ll the following self-onsisteny equations:RUVRVWRWU = 1 ; RUVRVWRWU = 1 : (9)The seond equation an be almost automatially dedued from the �rstone by rewriting it in the spinorial representation. However, beause thespinorial representation R! �R is two-valued, the signs of the R's are notautomatially �xed by R's. In other words, one has to adjust in additionthe signs of the transition funtions for the spinors in suh a way that theonsisteny equation is ful�lled in any triple interseting path.This is a global topologial problem. If it is solvable on the entire mani-fold, the manifold is said to admit a spin struture. In two and tree dimen-sions, the question of the existene of a spin struture redues simply to themanifold orientability; in higher dimensions the problem is more omplex.Another important question is: how many non-equivalent spin struturesare admitted on a given manifold? In two dimensions, the answer is 22g,where g is the genus of the manifold [13℄. This number is related to thenumber of possible sign hoies for independent non-ontratible loops onthe manifold.A good disretization sheme should re�et all these topologial proper-ties. As will be seen, the expliit onstrution for two-dimensional ompatmanifolds to be proposed in the present paper does ful�ll this requirement.The Dira operator (6) an be expressed in loal oordinates as �r�,or alternatively in frame omponents as ara, i.e. without referene to loaloordinates. The onstrution proposed in this paper is, in fat, oordinate-free: we shall express everything in frame indies a, without referring tooordinate indies �.In the lattie onstrution, the nearest neighbor relation that mimis thestruture of the ontinuum formulation will be given by a loal vetor: ateah point i on the dual lattie we shall de�ne loal vetors nji pointing tothe three neighboring verties j. To alulate derivatives (di�erenes) in the



4126 L. Bogaz et al.diretion of nji we shall deompose it in the loal frame eia. Similarly, allvetor, tensor and spinor indies of objets from the tangent spaes will beexpressed in these loal orthonormal frames. Lifting the onstrution fromthe vetor to the spinor representation of the rotation group, we shall storethe information about nearest neighbors in the form of rotation matries.We refer to them as to the `basi rotations', and denote them by the letter B.The advantage of using rotations is that we an express them in the spinorialrepresentation, B ! B.3. The disretization shemeLet us start with a disussion of fermions on a regular �at lattie, usingthe Wilson formulation [22℄. Then, we shall see how to go over, after somemodi�ations, to the ase of irregular latties.The Dira�Wilson ation for free fermions reads:S = �K2 X~{;� � �	~{+~�(1 + �)	~{ + �	~{(1� �)	~{+~�	+ 12X~{ �	~{	~{ ; (10)where the multi-index ~{ desribes the node position on the lattie, and ~� isone of the D diretions of the lattie. The gamma matries � are rigidlyassoiated with these diretions:f�; �g = 2Æ�� : (11)In the Eulidean setor, the Dira �eld is represented by independent Grass-mann variables �	� and 	�, � = 1; : : : ; N . In partiular, for D = 2, thedimension of the spinor representation is N = 2. In the following, spinorindies will usually be impliit; we shall write them expliitly only whenneessary.We shall now rewrite the ation (10) in a oordinate-free form whih anbe extended to the ase of irregular latties.Instead of using the multi-index ~{ to desribe the vertex position, weassoiate with eah vertex a single label, say i, whih is a oordinate-freeonept. Obviously, the partiular hoie of a label does not have any phys-ial meaning and the theory has to be invariant under relabelings. Thephysial information will be enoded in the nearest neighbor relations.Using these labels, the ation an be ast into the following form:S = �KXhiji �	iHij	j + 12Xi �	i	i ; (12)where the �rst sum runs over oriented links onneting nearest neighbors onthe lattie. The hopping operator Hij is de�ned asHij = 12(1 + nij � ) ; (13)



Dira Operator and Ising Model on a Compat 2D Random Lattie 4127where nij is a loal vetor pointing from j to i, being assumed that thetwo are nearest neighbors. Note that in the sum over oriented links, eahlink (ij) appears twie, one as hiji and one as hjii; sine we learly havenij = �nji, we see that the ation (12) is indeed equivalent to (10).Even at this stage it is more elegant to stop referring to oordinates andinstead use omponents of the global frame Ea = (E1; E2). Thus, we replae� by a, and deompose the nearest neighbor vetor nji into omponentsin this frame. The produt nij �  an then be expressed as:nij �  = nij;aa = nij;11 + nij;22 : (14)Written in the form (12), the ation is now oordinate-free, but it still de-pends on the global frame through the vetor omponents nij;a and thegamma matries a. Suh a global frame and a ommon spinorial basis ex-ist only in exeptional geometries, like the regular torus or plane. In order tode�ne a theory on another topology or, generally, on a urved bakground,we have to get rid of this onept and use loal frames instead.One an introdue independent orthonormal frames as in Fig. 1. At eahlattie point i one has a pair of orthonormal vetors (ei1; ei2). In partiular,on a torus the loal frames eia an be obtained from the global frame Ea byloal rotations: eia = [Ri℄baEb : (15)

Fig. 1. A hyperubi lattie with translational symmetry and a global frame that�xes the oordinate diretions for the entire lattie. Alternatively, one an use loalframes that vary from point to point. This has the advantage of being generalizableto a urved bakground.



4128 L. Bogaz et al.The spinor omponents 	i are transformed by these rotations into theiromponents in the loal bases  i: i� = [Ri℄��	i� ; � �i = �	�i �R�1i ��� ; (16)where the matries Ri belong to the half-integer representation of the rota-tions Ri: RiaR�1i = [Ri℄ab b : (17)In omponent-free notation the equations (15), (16) and (17) read:ei = RiE ;  i = Ri	i ; � i = �	iR�1i ; RiR�1i = Ri : (18)Using this notation, one should remember that the matrix R ats on thespinor indies whereas R ats on the frame indies. Using the loal frames,we an write the ation (12) as:S = �KXhiji � iHij j + 12Xi � i i ; (19)where Hij = RiHijR�1j = 12Ri [1 + nij � ℄R�1i RiR�1j| {z }Uij : (20)Here, Uij is a matrix allowing to realulate the omponents of a spinor goingfrom a frame j to the frame i. In other words, it is a sort of a onnetionmatrix that performs a parallel transport of spinors between neighboringverties.So far, equation (20) is written in a hybrid notation, beause the spinorsare already expressed in the loal frames ei whereas nij and  are still writtenin the global frame E. However, applying (17) to (20) one �nds:Ri nij �  R�1i = nij;aRiaR�1i = nij;aRab b = n(i)ij �  ; (21)where in the loal basis the vetor n(i)ij has the omponentsn(i)ij;b = nij;aRab ; (22)di�erent from the global frame omponents nij;a. The new braketed index(i) now di�erentiates between di�erent loal frames where the omponentsof the vetor are alulated; thus, n(i)ij refers to the same vetor as n(j)ij ,but with omponents expressed in a di�erent frame. Intuitively, what theequation means is simply that the omponents of a vetor in a rotated basis



Dira Operator and Ising Model on a Compat 2D Random Lattie 4129an be alternatively alulated by performing the inverse rotation on thevetor itself while keeping the basis �xed.An important point is that the rossover from the global desription tothe loal one as in (21) preserves the numerial values of the a matries.In other words, 1 assoiated with the loal diretion ei1 at a point i hasthe same numerial value as 1 assoiated with the ej1 at any other pointj, and likewise for 2.Using the omponents n(i)ij of the nearest neighbor vetor in the loalframe i, we an now write (20) asHij = 12 h1 + n(i)ij � i Uij : (23)Alternatively, using the features of n(i)ij disussed above, we an ast thehopping operator into several equivalent forms:Hij = 12 h1 + n(i)ij � iUij = 12 h1� n(i)ji � iUij = Uij 12 h1 + n(j)ij � i : (24)These di�erent expressions for Hij orrespond to di�erent ways of alu-lating the hopping term � iHij j in (19). One method is to �rst paralleltransport the spinor  j from j to i, getting Uij j , and then to alulatethe orresponding salar in the frame i, as is done on the left hand side of(24). Sometimes it is onvenient to replae nij = �nji in order to hangethe diretion of the vetor between indies i and j, as is done in the seondexpression. Alternatively, one an �rst transport the spinor � i from i to j,whih gives � iUij, and then alulate the orresponding salar in the framej, as is done on the right hand side, et. All these expressions are equivalentand an be dedued from eah other, so that the most onvenient one isalways hosen.The additional upper index in the brakets makes formulae visually lesstransparent but removes the logial ambiguity whih otherwise might lead toonfusion. We will, therefore, extend this notation to all objets ourringin our onstrution. For example,  (i)j = Uij (j)j means that the spinor j is transported from j to i. Similarly, � (j)i = � (i)i Uij means that � i istransported from i to j. There is no summation over the repeated indies.The only exeption will be made for objets alulated in the frame belongingto the point where they are themselves de�ned, sine in this ase leaving outthe upper index does not ause any ambiguity. For example, we will write i instead of  (i)i .Using this notation, the Wilson ation beomes:S = �KXhiji � i 12 h1 + n(i)ij � i j + 12Xi � i i : (25)



4130 L. Bogaz et al.Contrary to (10), this form of the Wilson ation an now be generalized toany random irregular lattie. It also makes diret ontat with the ontin-uum formalism (5). Finally, note that it is invariant under a hange of theloal frames:ei ! Riei ; 	i !Ri	 ; �	i ! �	iR�1i ; Uij !RiUijR�1j ; (26)where Ri are arbitrary loal rotations, andRi are the orresponding matriesin the spinorial representation.4. A topologial problemLet us return to the onsequenes of the fat that the (spinorial) half-integer representation of the rotation group is atually only a representationup to a sign fator.In two dimensions, the SO(2) group an be parametrized by a singleparameter � 2 [0; 2�). For a given value of this parameter the rotationmatrix is given by:R(�) = e�� = os(�) + � sin(�) = � os(�) sin(�)� sin(�) os(�) � ; (27)where � ba is the standard antisymmetri matrix with � 21 = 1.The orresponding matrix R(�) in the spinorial representation isR(�) =e i2�12�. In partiular, if we set 1 = �3 and 2 = �1, where �i are the Paulimatries, then �12 = �2 and rotation matrix is:R(�) = e i2�2� = os��2�+ � sin��2� = 0� os��2� sin��2�� sin��2� os��2� 1A ; (28)where � = i�2 is an antisymmetri tensor that is numerially idential withthe one in (27). The di�erene, of ourse, is that the tensor in equation (27)has frame indies � ba whereas the one in (28) has spinorial indies � �� .In order to �x the global sign of R(�), on should ontrol the angle � inthe range [0; 4�) rather than the usual [0; 2�). This would require hangingontinuously the angle and alulating the overall hange R d� keeping trakof the number of `full irles'. However, this annot be done here sine therelative angles between the frames eia are determined in the fundamentalrange [0; 2�) only.The sign ambiguity also has topologial onsequenes. Consider onemore the regular, toroidal, �at lattie and hoose on it a onstant �eld ofidential frames (see Fig. 2). We �rst set Uij = 1 for all links. Trivially,



Dira Operator and Ising Model on a Compat 2D Random Lattie 4131if at a vertex i the frame is rotated by 2�, the frame on�guration doesnot hange. However, beause Ri(2�) = �1 in the spinorial representa-tion, all links emerging from i aquire a negative sign Uji = �1 aordingto the transformation law (26). The resulting `sign �eld' is di�erent fromthe original one but at the same time equivalent to it. By repeating thisproedure in other verties one an produe many di�erent, but equivalent,sign on�gurations for the same �eld of frames.
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++Fig. 2. Rotation of a loal frame by 2�. Even though the resulting frame on�g-uration is obviously the same as before, spinor omponents an hange their signdue to the sign ambiguity.It is easy to see that a loal rotation of a frame by 2� preserves the overallsign of all elementary plaquettes, i.e. the produt of signs of all links onthe plaquette's perimeter. Thus, for any on�guration obtained from theoriginal one, all elementary plaquettes have a positive overall sign. We shallrequire this to be true in general, i.e. for any on�guration of loal frameson the lattie the sign of all elementary plaquettes is set to +1; this ensuresthat spinors remain unhanged by parallel transport around any elementaryplaquette. This requirement is ditated by the underlying ontinuum theory,in whih parallel transport of a spinor around a losed loop in a loally �atpath leaves the spinor intat. Later on, for urved latties, we shall modifythis onstraint so as to adjust it to the ase where there is a de�it angleinside an elementary plaquette.Assuming that all elementary plaquettes have a positive sign we anprove now some simple topologial theorems onerning the signs of loopson the lattie.It is onvenient to de�ne an auxiliary operation for loops on a lattie,to be alled a small deformation of a loop. To deform a loop L, we pik an



4132 L. Bogaz et al.elementary plaquette P whih shares at least one ommon link with L, andsubstitute the intersetion L\P by the omplementary part of P , resultingin a new loop L0 = L [ P � L \ P (see Fig. 3) 1.
PSfrag replaements L L \ PP L [ P

Fig. 3. A small deformation of a loop L (bold line) by an elementary loop P (dashedline), resulting in the loop L0.As with elementary plaquettes, we an de�ne the overall sign of a loop asthe produt of signs of all links on the loop. One easily heks that the signof the deformed loop L0 is the same as that of L � namely, the addition ofP to L annot hange the sign beause P has a positive sign by default, andthe removal of the intersetion L \ P annot hange the sign beause eahlink is `removed twie' (one from P and one from L), so that the totalnumber of removed links is always even.Any ontratible loop an be obtained from the elementary loop by asequene of small deformations. Thus all ontratible loops have positivesigns.This is not, however, the ase with non-ontratible loops, whih antake either sign. An example of a loop with negative sign is shown in Fig. 4:if we hoose Uji = �1 for one omplete row of links on the lattie (as in the�gure) and Uji = 1 everywhere else, then any loop that enirles the lattiein the y diretion passes through exatly one link with negative sign, andthus has a negative overall sign2.1 Somewhat more preisely, we also have to require that the intersetion L \ P isonneted, so as to avoid situations in whih a small deformation splits a loop intotwo or more parts.2 More generally, if a loop whih enirles the lattie in the y diretion goes bak andforth having a sort of S shape, it may ross links with negative signs more than one.The number of rossings is however odd.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4133

Fig. 4. A non-ontratible loop on a toroidal lattie with a onstant frame. Thesingle links drawn as bold lines all have transition matries Uji = �1, whereas allother links have Uji = 1; as a onsequene, the loop has a negative overall sign.Obviously, two sign on�gurations are equivalent if one an transformone into the other by a sequene of loal rotations Ri(2�) = �1. Beauseloal rotations do not hange the sign of any loop, a on�guration with atleast one loop of negative sign annot be equivalent to a on�guration thathas only loops of positive sign. In other words, the two sign on�gurationsare topologially distint.Now, using small deformations we an easily prove that all non-ontrat-ible loops enirling the torus in the same diretion must have the same sign.This means, for example, that it is su�ient to alulate the sign of just one`vertial' loop (whih enirles the lattie in the y diretion) to know the signof all other vertial loops. More generally, the sign of a loop is not a propertyof a single loop but rather of all loops in the same homotopy lass, i.e. thosethat an be obtained from eah other by a sequene of small deformations.On the torus there are two independent non-trivial homotopy lasses ofloops (`vertial' and `horizontal') and, therefore, four distint possible signon�gurations. These, in turn, orrespond to four distint spin strutures.The statement an be generalized by observing that there are 2g inde-pendent lasses of non-ontratible loops on a surfae with genus g, whihmeans that there are 22g di�erent sign on�gurations and thus the samenumber of spin strutures. In partiular, a lattie with spherial topologyadmits only one spin struture.



4134 L. Bogaz et al.On the other hand, on a non-orientable lattie one annot globally de�nea �eld of orientable frames. An example of suh a lattie is the so-alledone-sided torus or Klein bottle, whih is onstruted in the same way as thestandard torus but has di�erent boundary onditions, as shown in Fig. 5. Itis possible to show that a frame transported along a losed path would havehanged its handedness after a omplete tour around the lattie. Beausethere does not exists a �eld of orientable frames, one annot in this asede�ne a spin struture or a Dira operator.

Fig. 5. Left � a lattie with toroidal boundary onditions. Right � a lattie withthe boundary onditions of a Klein bottle. The arrows indiate the diretions inwhih the opposite edges are to be taken when joined together.5. Loal frames on a random lattieThe form (10) of the Wilson ation is partiularly simple not only beauseof the simple topology of the torus, whih allows for the de�nition of aglobal frame, but also beause of the regular geometry of the lattie whiheverywhere repeats the same simple motif. On an irregular lattie, loalangles and link lengths hange from point to point. This must be re�etedin the onstrution of the hopping term, whih depends on these loal detailsthrough the ovariant derivative.To make the geometrial part of the disussion as simple as possible,and to minimize the number of loal degrees of freedom of the lattie, werestrit the disussion to equilateral random triangulations. This greatlyredues the number of loal degrees of freedom, making the disussion moretransparent and allowing us to fous on the interesting topologial part ofthe problem. Let us mention, however, that the presented onstrution anbe easily generalized to the ase of variable link lengths and angles.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4135On an equilateral triangulation, the loal geometry is ompletely enodedin the onnetivity of the lattie; all other details are �xed by the simplegeometry of the equilateral triangle. In partiular, the de�it angle at avertex i is determined solely by its order qi : �i = (6� qi)�=6.The loal urvature of the lattie is onentrated in the verties of thetriangulation. The geometry beomes singular in these points and thereforeit is di�ult to provide a unique de�nition of a tangent spae at the verties.It is more onvenient to de�ne tangent spaes at the dual points of the lattie,i.e. at the enters of the triangles. Inside eah triangle the geometry is loally�at and thus naturally spans a tangent spae. We therefore loate all loalframes, and also all fermioni �elds, at the enters of the triangles. Eahpoint i where a �eld is de�ned has then three neighbors, eah of whih at thesame distane from i. The vetors pointing to the neighbors are also equallyspaed in the angular variable, i.e. they are separated by angles 2�=3.Before de�ning the fermioni �elds, however, let us disuss the propertiesof the �eld of oriented orthonormal loal frames on suh a random triangu-lation. An example of a triangulation deorated with frames is shown inFig. 6.
jk

i
k

j

U

q =4i

Fig. 6. A small piee of a random triangulation with loal frames. Ujk is thetransition matrix between the frames at k and j, and qi is the order of the vertex i.At eah triangle i live two orthonormal vetors ei1 and ei2 suh thateia �eib = Æab. Apart from the internal produt there is also an external one ^,whih enables one to hoose frames with the same handedness ei1^ei2 > 0 forall triangles. Now onsider two neighboring triangles i and j, eah endowedwith its own frame ei and ej . The interiors of the two triangles together forma �at path of the triangulation. One an think of the two frames as beingtwo alternative frames for the same path. One an alulate omponentsof our objets in either one of them, and easily realulate them when goingfrom one to the other. To this purpose introdue SO(2) transition matries



4136 L. Bogaz et al.Uij and Uji suh that:UijUji = 1 ; ei = Uijej ; ej = Ujiei : (29)One an repeat the same alulation for any pair of neighboring trianglesand use it to transport a frame between any two points i1 and in along anopen path C = (i1; i2; : : : ; in):ein = Uinin�1 : : : Ui3i2 Ui2i1 ei1 = U(C) ei1 : (30)Sine we study a theory whose ontent is independent of the hoie of frames,we are interested in the pertinent transformation laws and in quantitiesinvariant under loal SO(2) rotations of the frames: ei ! e0i = Riei. Theobjet U(Cji) = Ujk : : : Uni for any open path between i and j transformsas: U(Cji)! U 0(Cji) = RjU(Cji)R�1i ; (31)as one an see from (29). In partiular, for a losed path Li beginning andending at the same triangle i, U(Li) transforms asU(Li)! U 0(Li) = RiU(Li)R�1i ; (32)and hene TrU(Li) is an invariant. Moreover, this invariant does not dependon the hoie of the initial point i of the loop, and is thus a property of theloop L itself. It is a geometrial quantity related simply to the total angleR d� by whih a tangent vetor is rotated when transported along the loop.On a �at lattie, this angle is a multiple of 2�. On a urved lattie thesituation is somewhat more ompliated. In partiular, for an elementaryloop Lq surrounding a vertex of order q, the loop invariant is12TrU(Lq) = os q�3 = os (6� q)�3 = os�q (33)and ontains information about the de�it angle �q, or equivalently aboutthe urvature at the vertex. There are various possibilities to prove thisstatement; the proof outlined here o�ers us an opportunity to introdue anauxiliary onstrution whih will be useful throughout the remaining part ofthe paper, espeially when we shall lift the spin onnetion to the spinorialrepresentation.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4137Reall that the information about the loal geometry of the lattie isstored in the form of three loal unit vetors n(i)ji pointing from i to its threenearest neighbors. There is, however, another and for the problem at handmore suitable way of ahieving the same goal. Instead of the vetors n(i)jithemselves, one an equivalently onsider the rotations that onnet n(i)jito ei. To introdue the rotation matries, we �rst assoiate an entire framewith eah of the three nearest neighbor vetors, treating n(i)ji as the �rst basisvetor of eah orresponding frame. The seond base vetor of the frameis then automatially determined by the orthonormality ondition. Now wehave three partiular frames n(i)ji;a = (n(i)ji;1; n(i)ji;2) for the three neighbors jof i. The frames n(i)ji an be obtained from the loal frame ei by a rotationB(i)j : n(i)ji = B(i)j ei : (34)We refer to them as to the basi rotations at i.Now, it is onvenient to deompose the onnetion matries Uji into basirotations B(i)j at i and B(j)i at j. Letting them at �rst on the frame ei, oneobtains the frame n(i)ji . One then �ip it to the frame n(j)ij using a rotation
PSfrag replaements i jei1 ej1nji

n

k

Fig. 7. A path of two neighboring triangles, and the three nearest neighbor vetorsnij for eah of them. The same information an be provided by a rotation matrixbetween nij and the �rst basis vetor ej1, shown as the �ag emerging from theenter of eah triangle. In this example, the basi rotation B(j)i of frame j to thediretion of its neighbor i is a rotation by 5�=3, whereas the basi rotation B(i)j offrame i to the diretion of its neighbor j is a rotation by �.



4138 L. Bogaz et al.by �, whih is represented by the matrix F = e��. Finally, using the inversebasi rotation at j one rotates it to ej . In other words, the transition fromei to ej (and vie versa) an be done in the following three steps (see Fig. 7):ej = [B(j)i ℄�1FB(i)j ei ; ei = [B(i)j ℄�1FB(j)i ej : (35)Comparison with (29) leads to:Uij = [B(i)j ℄�1FB(j)i ; Uji = [B(j)i ℄�1FB(i)j : (36)One an use this deomposition to alulate the loop invariants TrU(L):TrU(L) = Tr nYk=1Uik+1ik = Tr Yk Tik ; (37)where Q is an ordered produt that runs through all verties on the loopL = (i1; i2; : : : ; in) with the yli boundary ondition in+1 = i1 and therotation matries Tik � B(ik)ik+1 [B(ik)ik�1 ℄�1F = e(�)ik �3 � (38)orrespond to the turn taken by the path at the triangle ik [19℄. It dependson the turn-angle, whih an be either +�=3 if the path turns to the leftor ��=3 if it turns to the right. In fat, on a equilateral triangulation, thesign (�)ik determines ompletely the turn matrix Tik at the triangle ik. Itdoes not depend on the partiular orientation of the frame, beause underrotation of the frame ik the basi rotations transform as:B(ik) ! B(ik)Rik ; [B(ik)℄�1 ! R�1ik [B(ik)℄�1 (39)thus leaving the ombination B(ik)[B(ik)℄�1 in Tik intat.An elementary loop around a vertex of order q turns exatly q times inthe same diretion. Thus we have12TrU(Lq) = Tr e� q�3 � = os q�3 = os (6� q)�3 ; (40)as laimed in (33). 6. The spinorial representationThe next step is to lift the onnetions Uij to the spinorial representation,Uij ! Uij. We ontinue to use the onvention of denoting all rotationmatries in the spinorial representation by alligraphi letters: U ! U foronnetions, B ! B for basi frame rotations, T ! T for turns and F ! Ffor �ips.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4139The starting point of the onstrution is the deomposition (36). Ifwe write it in the spinorial representation, eah matrix that ours in thisequation is determined only up to a sign: e�� ! �e��=2 (28). The idea isnow to a�x the spinorial representation of all matries on the right-handside of (36) with a positive sign:B = e�� ! B = e��=2 (41)F = e�� = 1 ! F = e��=2 = � ; (42)and keep the sign sji = �1 as a separate variable for eah link:Uij ! Uij = sij [B(i)j ℄�1�B(j)i ; Uji ! Uji = sji [B(j)i ℄�1�B(i)j : (43)We demand that parallel transport of a spinor along a given link and bakdoes not hange the spinor. We see that this is indeed the ase, i.e. we haveUjiUij = 1 if sjisij = �1 : (44)Using a similar alulation as the one whih led to (40) one �nds that in thespinorial representation the loop invariant for an elementary loop around avertex is 12TrU(Lq) = SLq � os �q2 ; (45)where �q is the de�it angle, and SLq is a sign �. The fator one-half inthe argument of the osine follows from (42). The total sign of the loop,denoted by SLq , depends on the hoie of signs sij in (43) and has to bealulated. We require that the signs sij are hosen in suh a way that foreah elementary loop the sign SLq is positive:SLq = 1 : (46)Note that for q = 6 this requirement is natural, beause the plaquette is�at, �6 = 0, and as disussed before for a �at path the parallel transportshould be trivial: U(L6) = 1. Thus indeed we should have SL6 = 1. Also forother q's the requirement an be motivated. The geometry of an elementaryplaquette orresponds to the geometry of a �at one, whih has a singularityat the peak. The elementary loop enirles this singularity at some distaner from the peak. One an regularize the singularity by smoothing the peak,i.e. replaing it by a di�erentiable surfae (see Fig. 8).In doing so, one deforms only a very small region within a distane of� around the peak, where � � r. Now imagine that we shrink the loop,ontinuously dereasing its radius. Then TrU(r) and �(r) both hangeontinuously with r. In the limit r ! 0, the loop ends up on the top of the
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a
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Fig. 8. The internal geometry of a set of triangles around a vertex is the same asthat around the peak of a one: it is �at everywhere exept for a single point wherethe urvature is onentrated in a singularity. We an determine the sign of anyloop around the one if we �rst regularize this singularity by `�attening' the one,and �nd S = +1.regularized part of the geometry whih is �at. Thus, again S = +1 in thelimit of r ! 0. This already is su�ient to have positive sign for all valuesof r, beause in the ourse of ontinuous hanging, the de�it angle � washanging ontinuously and hene the sign S ould not have jumped betweennegative to positive values without making U disontinuous. In other words,S must keep the value +1 for all r.Beause the regularized zone an be made arbitrarily small, we assumethat the triangulated lattie, whih orresponds to the limit �! 0, inheritsthe property of the regularized geometry: the sign of any elementary loop isSLq = +1 for any q.In order to enfore the onstraint SLq = +1 for eah plaquette, one hasto establish a relation between SLq and the signs of links sji. In analogy to(37), one an alulate the loop invariant in the spinorial representation as:TrU(L) = Tr nYk=1Uik+1ik =Yk sik+1ik � Tr Yk Tik : (47)Comparing this to the result pertinent for the fundamental representation(37), one �nds that an additional produt of link signs appears, as expeted.But there is also another soure of signs hidden in (47). It has its originin the spinorial representation of the turn matries T ! T . Surprisingly,and in ontrast to the fundamental representation, the produt of basirotations depends on the position of the frame. More preisely, alulatingthe rotation orresponding to the turn taken by the path at ik one gets an



Dira Operator and Ising Model on a Compat 2D Random Lattie 4141additional sign zik : Tik = B(ik)ik+1 [B(ik)ik�1 ℄�1F = zike(�)ik �6 � (48)whih was not present in the fundamental representation.The reason for the appearane of these new signs is the following: In thespinorial representation, the basi rotations are given byBik+1ik = e 12�ik+1ik � ; Bik�1ik = e 12�ik�1ik � ; (49)where �ik+1ik and �ik�1ik are the angles between (eik1; nik+1ik) and(eik1; nik�1ik), respetively. Therefore, we haveTik = e 12 (�ik+1ik��ik�1ik+�)� = e 12 (��ik+�)� : (50)By onstrution, �ik+1ik and �ik�1ik both lie in the range [0; 2�). However,the di�erene ��ik = �ik+1ik ��ik�1ik an lie outside this range. In general,one has ��ik + � = ��=3 modulo 2�, but 2� an be disregarded sinee2�� = 1. In the spinorial representation, however, due to the fator 1=2 onehas (��ik + �)=2 = ��=6 modulo �, and this � annot be ignored beausee�� = �1.One has to alulate the exponents in (50) exatly and to �nd all possiblevalues of ��ik . There are six di�erent ases, olleted in Fig. 9.
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(e)

(a)

(d) (f)
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Fig. 9. The six di�erent possibilities for a path to ross a triangle with a markedz-�ag, onstruted from the two possible diretions of the path (left turn or rightturn) and the three possible diretions of the �ag. The sign of ��ik is determinedby whether or not the auxiliary line to the right of the path rosses the �ag.



4142 L. Bogaz et al.The �ag in eah drawing represents the position of the vetor eik1, withrespet to whih the angles are alulated. We all it the z-�ag. For example,in the drawing (a) one has �ik+1ik 2 [0; 2�=3) and �ik�1ik = �ik+1ik + 4�=3,whih yields ��ik = �4�=3 and thus the rotation matrix:Tik = e 12 (�4�=3+�) = e��6 � : (51)In the drawing (b) one has �ik+1ik 2 [2�=3; 4�=4) and �ik�1ik = �ik+1ik �2�=3, so that ��ik = 2�=3 and the rotation matrix isTik = e 12 (2�=3+�)� = e 5�6 � = �e��6 � : (52)The results for all six ases (a)�(f) are given in Table I. Inserting them intothe formula for the loop invariant (47) one obtains:TrU(L) =Yk sik+1ik � Tr Yk Tik =Yk sik+1ikzik � Tr Yk e(�)ik �6 � ; (53)where zik is the sign of Tik . Setting:SL = �Yk sik+1ikzik (54)one �nds: TrU(L) = �SL � Tr Yk e(�)ik �6 � : (55)The relation (54) between the loop sign SL, the link signs s, and the z-signsan be represented graphially in a very intuitive way. The signs zik tellTABLE IThe di�erene of angles ��ik and the turning matrix Tik in the spinorial represen-tation for the six ases shown in Fig. 9.��ik Tik = e 12 (�ik+1ik��ik�1ik+�) �(a) �4�=3 +e��=6 �(b) +2�=3 �e��=6 �() +2�=3 �e��=6 �(d) �2�=3 +e+�=6 �(e) +4�=3 �e+�=6 �(f) �2�=3 +e+�=6 �



Dira Operator and Ising Model on a Compat 2D Random Lattie 4143on whih side of the path lives the z-�ag. If one draws an auxiliary line,as in Fig. 9, that runs along the right-hand side of the main path, thenthe sign zik an be determined geometrially by hoosing zik = �1 if theauxiliary line rosses the z-�ag and zik = +1 otherwise. Similarly, one anintrodue a �eld of �ags assoiated with the oriented links, and hoose thesign sji = �1(+1) when the respetive s-�ag is (is not) rossed when oneis going from i to j. Beause for any given link the auxiliary path rossesthe s-�ag when going in one diretion but not in the other, this hoie leadsto sjisij = �1 as required by (44). The total sign SL of the loop L is nowgiven by the number of �ags FL that are rossed by the auxiliary path:SL = (�1)1+FL : (56)As on the regular lattie, one an use the onept of small deformations ofloops to prove some topologial theorems for the signs of the loops. Thefat that eah elementary loop has S = +1 implies that two loops L, L0 thatan be transformed into eah other by a small deformation always have thesame sign, SL = SL0 , beause a small deformation hanges the number of�ags rossed by the loop by an even number (see Fig. 10).

Fig. 10. A small deformation of a loop on a triangulated lattie.Thus, we see that if all elementary loops on the lattie have positivesigns, all ontratible loops have positive signs SL = +1, too. Likewise,one an show that all loops belonging to the same homotopy lass have thesame sign. In other words, all the topologial theorems we found for theregular lattie hold for the triangulated one as well. The remaining thing is



4144 L. Bogaz et al.to hek that on a given lattie an assignment of the link signs sij, ensuringthe positivity of all elementary loops signs, does always exist. That it is sofor any disretized orientable 2D manifold in [10, 11℄.7. The Dira�Wilson operatorWe now have all what is needed to onstrut the fermioni ation (19).We start by asting the formula (24) for the hopping operatorHij = 12 h1� n(i)ji � iUij (57)into a form that depends on the �eld of orthogonal frames through the basirotations. One an use equation (43) to deompose the matrix Uij :Uij = sij [B(i)j ℄�1�B(j)i : (58)Likewise, we write the vetor n(i)ji in terms of the basi rotations. By de�-nition, the basi rotations at point i relate the diretion ei1 of the frame tothe diretions of the links between i and its neighbors j:ei1 = [B(i)j ℄�1n(i)ji : (59)In the spinorial representation (17) one an write:n(i)ji �  = [B(i)i ℄�11B(i)j ; (60)where 1 = ei1 �  is the gamma matrix assoiated with the �rst diretionof the frame. As mentioned before, the gamma matries have the samenumerial values 1 = �3, 2 = �1 in eah frame on the triangulation.Inserting everything into (57) we eventually obtain:Hij = sij[B(i)j ℄�1 12 [1� 1℄�B(j)i (61)whih de�nes the hopping term in the Dira�Wilson operator on the trian-gulated lattie.To alulate the basi rotations, one has to �nd on eah triangle thethree angles between ei1 and the nearest neighbor vetors nji; denote themby �(i)j . Eah is de�ned in the fundamental range of the rotation group,[0; 2�). Sine physial quantities annot depend on the hoie of the �eld offrames, we are free to make the most onvenient hoie. Hene, we assumethat in eah triangle the vetor ei1 points to one of the verties. This implies



Dira Operator and Ising Model on a Compat 2D Random Lattie 4145that the angles �(i)j an take only one of the three possible values � �=3, �or 5�=3 � whih in turn makes the basi rotation matries very simple:B(i)j = e�(i)j2 � =  (i)j s(i)j�s(i)j (i)j ! ; (62)where (i)j � os �(i)j2 = p32 ; 0;�p32 ; s(i)j � sin �(i)j2 = 12 ; 1 ; 12 (63)for �(i)j = �=3; �; 5�=3, respetively. Inserting this expliit form of the basirotations into (61) leads to an extremely simple formula beause (1�1)=2 isa projetion matrix, whih with our hoie of 1 has only one non-vanishingelement. Hene: Hij = sij  s(i)j (j)i s(i)j s(j)i�(i)j (j)i �(i)j s(j)i ! : (64)In this form the Dira�Wilson operator is easy to implement. For eah pair ofneighboring triangles j and i we �rst �nd the sign sji and the angles betweenthe z-�ag and the dual link ji and alulate the appropriate trigonometrifuntions. For example, assuming sij = 1 for the link ji in Fig. 7 we have�(j)i = 5�=3, �(i)j = �. Hene:Hij = � �p32 120 0 � : (65)The Dira�Wilson operator is built from bloks like the above one, for eahpair of indies representing neighboring triangles, and from 2 � 2 unit ma-tries for eah pair of idential indies. De�ning the adjaeny matrix fortriangles as: Aij = � 1 if i and j are neighbors0 otherwise (66)one an write the Dira�Wilson operator as:Dij = �KAijHij + Æij1 : (67)What are the properties of the Dira�Wilson operator in this form? Considerthe harge onjugation transformation: !   = C � T ; � ! �  = � TC�1 ; (68)



4146 L. Bogaz et al.where the matrix C is unitary and ful�lls the requirements:C�1TC = � ; CT = �C : (69)One an hek that the hopping operator (61) transforms as:CHTijC�1 = Hji : (70)In two dimensions we an hoose the standard antisymmetri matrix " asthe harge onjugation matrix, C = ". It is onvenient to use two di�erentversions of ", one with lower indies "�� and one with upper indies "�� , butwith the same numerial values:"12 = "12 = 1 ; "�"� = �Æ�� : (71)One an treat " as a simpleti form to raise or lower the spinorial indies:( )� = "�� � ; ( )� =  �"�� : (72)We reall that in the expliit index notation, the omponents of the spinor� are denoted by  � and those of  by  �. Furthermore, in this notationone an write: D��ij = "� [Dij ℄� : (73)In the impliit index notation one has to distinguish between di�erent ases,namely D for mixed indies, "D for only upper indies, and D" for only lowerindies, by displaying expliitly the ation of ".The fat that the hopping operator is onstruted from a projetor im-plies in partiular, that:HijHji = 0 ; HijUjiHij = Hij : (74)The onsequene of the transformation law (70) is that:"Hij" = �HTji (75)and, furthermore, that: ("Dij)T = �"Dji : (76)In index-expliit notation, this last equation reads:D��ij = �D��ji (77)whih means that the matrix D��ij is antisymmetri in the double indiesI = (i�) and J = (j�): DIJ = �DJI .



Dira Operator and Ising Model on a Compat 2D Random Lattie 41478. Seond-quantized theoryQuantum �eld theory of free Dira fermions in a urved geometrialbakground represented by a triangulation T is de�ned by the partitionfuntion: ZT (K) = Z Yi d2 id2 � ie� �i [Dij ℄�� i� = jDj : (78)The propagator is:h n� �mi = 1ZT (K) Z Yi d2 id2 � i  n� �m e� �i [Dij ℄�� i� = [D�1nm℄�� : (79)It transforms under a loal hange of frames ei ! e0i = Riei as follows:h n� �mi ! 
 0n� 0�m� = [Rn℄�� [R�1m ℄�� D n� �mE : (80)Let us further explore the onsequenes of the symmetry with respet to theharge onjugation that is enoded in the transformation law (70). Introduetwo families of Majorana fermions:�1 = 12(  +  ) ; ��1 = 12( �  + � ) ;�2 = 12i (  �  ) ; ��2 = � 12i( �  � � ) : (81)They are harge self-onjugate: �1 = �1 and �2 = �2. This means thatthe omponents of �1 are not independent, likewise for �2. The omponentsare related: �� = ��"�� (82)as an be seen from (72). We skipped the family index 1; 2 in the lastformula.It is onvenient to express the Dira�Wilson ation in terms of the Ma-jorana families �1 and �2. Indeed, using equation (70) one �nds that thetwo families deouple:S( � ; ) = 12Xi � i i �KXhiji � iHij j = S(�1) + S(�2) ; (83)where S(�) = 12Xi ��i�i �KXhiji ��iHij�j : (84)



4148 L. Bogaz et al.The two ations S( � ; ) and S(�) appear idential to eah other, but theydi�er in the number of degrees of freedom; in the latter ase, �� is uniquelydetermined by �. By hanging the variables in the integration measure of(78) one an rewrite the partition funtion as a produt of two identialfators: ZT (K) = Z Yi d2�1id2�2i e�S(�1)�S(�2) = [ZT (K)℄2 ; (85)where ZT (K) is the partition funtion for a single Majorana family:ZT (K) = Z Yi d2�i e� 12 Pi ��i�i+KPhiji ��iHij�j= Z Yi d2�ie��i�D��ij �i� = Pfa�["D℄ : (86)Here, "D is the antisymmetri matrix (77), whih implies that the squareof the Pfa�an is equal to the determinant of "D, whih is in turn equalto the determinant of D. We an alulate the partition funtion for theMajorana fermions using the hopping parameter expansion. This leads to ageometrial interpretation of the model, as will be seen in the next setion.9. Fermioni loopsTo �nd the hopping parameter expansion of ZT (K) let us �rst split theintegrand into two parts:ZT (K) = Z Yi �d2�i e� 12 ��i�i� Yhiji �1 +K ��iHij�j� : (87)The �rst part is a produt of independent one-point integrations with anexponential measure, whereas the seond is a produt over all oriented linksthat onnet neighboring points. Sine we know from equations (70) and(75) that for Majorana fermions:��jHji�i = ��iHij�j ; (88)it is onvenient to rewrite the produt in (87) as a produt over non-orientedlinks (ij): ZT (K) = Z Yi �d2�i e� 12 ��i�i� Y(ij) �1 + 2K ��iHij�j� : (89)



Dira Operator and Ising Model on a Compat 2D Random Lattie 4149To do this, we have to require that terms like ��iHij�j ��jHji�i do not ourin the expansion. Atually, they vanish beause of (74).The only non-vanishing integrals relevant to our problem are:Z d2� e� 12 ��� � 1 = 1 (90)and Z d2� e� 12 ��� � (� � ��) = 1 : (91)These rules are used to alulate the integral of eah term in the expansion:Y(ij)(1 + 2K ��iHij�j) = 1 + 2KX(ij) ��iHij�j+(2K)2 X(ij);(kl) ��iHij�j � ��kHkl�l + : : : : (92)Consider the quadrati term on the right hand side. If j = k then, aordingto (91), the integration over �j yields:X(ij);(jl) ��iHij�j � ��jHjl�l = X(ij);(jl) ��i(HijHjl)�l : (93)Otherwise, if j 6= k, the integral vanishes. In general, one observes thatthe ontribution of a term in the expansion (92) is non-vanishing only whenall neighboring �elds �j � �k belong to the same point. Integration of theseterms over all �elds gives:��j1Hj1j2Hj2j3 � � � Hjn�1jn�jn ; (94)where all ji in the hain are di�erent. For the �nal integration to yieldsomething non-vanishing one must have j1 = jn. Finally:C(L) = �TrHj1j2Hj2j3 � � � Hjn�1j1 : (95)This ontribution an be graphially represented by a losed loopL = (j1; j2; : : : ; jn�1; j1) of length n. On the other hand, integration over a�eld �k assoiated with a vertex k that does not lie on any loop ontributesa fator of 1 (90).In summary, all terms of the expansion that survive the integration (89)an be represented graphially as diagrams onsisting of losed loops. Theseloops do not bak-trak or touh eah other. A on�guration onsisting of lloops L1; L2; : : : ; Ll with total length n = n1 + : : : + nl ontributes a term



4150 L. Bogaz et al.(2K)nC(L1)C(L2) : : : C(Ll) (96)to the partition funtion.One an alulate the ontribution C(L) of a single loop L in a waysimilar to that used to obtain the loop invariant (47), i.e. by extrating thetotal sign of the loop (54) and expressing the remaining produt in terms ofturns at the verties (48). The result is:C(L) = �Tr Yk Hik+1;ik = SL � Tr Yk Tik 12(1� 1) : (97)The di�erene between this expression and the one for the loop invariant (53)is that now in addition to the turn matrix a projetion operator appears inthe produt. Inserting the expliit form of the turn matrix Ti = e���=6 andof the projetor (1� 1)=2 = (1� �3)=2, one obtains:C(L) = SL p32 !n : (98)This is again similar to the result found for the loop invariant (55), butwith two di�erenes. First, one now has SL instead of �SL. Seond, inthe alulation of the loop invariant the turn angles enter the result with asign � depending on whether the path turns left or right, whereas here theprojetor leaves only the osines of the rotation matrix, whih depend onthe absolute value of the turn angle. Thus, eah turn ontributes a fator+p3=2 independently of its diretion. Sine a loop makes a turn at eahvertex, the number of turns in a loop is simply equal to the loop length,whih gives (98).

Fig. 11. A on�guration of fermioni loops.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4151Inserting this result into (96), one �nds that the ontribution of a loopon�guration of total length n is:Stotal � �p3K�n ; (99)where Stotal =YL SL : (100)On a lattie with spherial topology all loops L have a positive sign SL = 1and therefore Stotal = 1 for eah loop on�guration.On a torus, the sign of the ontribution depends on the spin struture.Assuming periodi boundary onditions in both diretions (++), all loopsfrom any non-trivial homology lasses, ontratible or not, have SL = 1,and again Stotal = 1 for any loop on�guration. The standard notationis used here: the spin struture is referred to by the signs of independentlasses of non-ontratible loops. On the torus there are two lasses andtherefore four possibilities (ss0), with s; s0 = �. Plus/minus orrespondsto periodi/antiperiodi boundary ondition for spinors transported alongloops in this lass. With anti-periodi boundary onditions in any diretion� (+�), (�+), or (��) � any non-ontratible loop irling the lattie inthis diretion has a negative sign SL = �1. Thus, all of these three ases anprodue unwanted on�gurations with a negative ontribution to the parti-tion funtion. More generally, any on�guration that has an odd number ofnon-ontratible loops irling the lattie in an anti-periodi diretion has anegative total sign Stotal = �1.Yet another possible hoie of boundary onditions imposes summationover all spin strutures � (++), (+�), (�+), and (��) � in the partitionfuntion. This operation is alled GSO projetion, and in many ases seemsto be the most physial hoie. Negative ontributions are not a problemin this ase: a on�guration with an odd numbers of loops in one of thenon-trivial homotopy lasses, say in the �rst lass of non-ontratible loops,has Stotal = 1 for (++) and (+�), but Stotal = �1 for (�+) and (��). Thesummation over all ases yields zero. More generally all `bad' ontributionsto the partition funtion anel out in the GSO projetion.Con�gurations with an odd number of non-ontratible loops in at leastone diretion annot orrespond to Ising model domain wall on�gurations,beause only an even number of these domain walls is rossed when one isperforming a round trip on the lattie (see Fig. 12). From this point of view,the loop anellation in GSO projetion is very physial. Before disussingthis point in more detail, a more areful look at the properties of the loopsigns is needed.
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Fig. 12. Domain walls versus loops on a torus. A non-ontratible loop on a torus,like for instane the upper urve in the �gure, annot be a part of the domainwall on�guration of Ising spins unless there is a partner urve in the same lass ofloops in this on�guration, like for example the lower one. In general, domain-wallon�gurations of 2D Ising model have an even number of loops in eah non-triviallass of non-ontratible loops.10. The GSO projetionAs disussed in the preeding setions, the global properties of the Dira�Wilson operator on a two-dimensional ompat manifold are losely relatedto the signs of the fermioni loops. Self-onsisteny requires a positive signfor all elementary fermioni loops, and this in turn implies a positive signfor all ontratible loops. Non-ontratible loops, on the other hand, arenot subjet to this restrition. In fat, it is the ensemble of signs of allindependent non-ontratible loops that de�nes the spin struture of themanifold.In this setion, it will be shown that the sign of any loop on the lattie isuniquely determined by the signs of a minimal number of independent non-ontratible loops. Stated di�erently: the signs of all loops on the manifoldare ompletely enoded in the manifold's spin struture.So far, we disussed the loops without self-rossings only, for the simplereason that on a triangulation no other loops our in the hopping parameterexpansion of the Majorana�Dira�Wilson fermions. On the other hand, wealready enountered self-rossing impliitly in the alulation of the invari-ants TrU(C) (47), sine they an be de�ned on loops of any kind, inludingthe self-rossing ones3.3 It is onvenient to think of a self-rossing on a lattie not as a meeting at exatlyone vertex, but rather as a sort of smeared overlapping that may oupy one or morelinks of the lattie. In partiular, on a lattie with only verties of order three, thereare no exat one-vertex self-rossings; the most loalized ones still oupy at leastone link.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4153For this reason, and also for the sake of ompleteness, we shall nowdisuss the signs and topologial properties of loops in a general ontext,and restrit them to self-avoiding loops only when neessary. We requirethe sign of a loop to be a property of its homotopy, whih means that wehave to modify the de�nition of the sign (56) to:SL = (�1)1+FL+CLL ; (101)where CLL is the number of self-rossings of the loop L. Of ourse, for anyontratible loop this must still result in a positive sign, independently of thenumber of self-rossings. A few examples of ontratible loops with variousnumbers of self-rossings are shown in Fig. 13. It is easy to verify that theauxiliary line running along the right hand side of the loop rosses an oddnumber of �ags in the �rst two ases and an even number of �ags in the lasttwo.
Fig. 13. Examples of ontratible loops with and without self-rossings on a squarelattie. The numbers of rossed �ags and self-rossings are F1 = 9, C1 = 0 for the�rst example; F2 = 9, C2 = 0 for the seond (the �ag in the enter of the �gureis rossed twie!); F3 = 8, C3 = 1 for the third; and F3 = 12, C3 = 1 for the lastone. The result is a positive sign in all ases. Note that in the last three examples,the �ag at the vertex in the enter, where four links of the loop meet, is rossed aneven number of times by the auxiliary line.Let us now return to the operation that we alled a 'small deforma-tion'. So far, we have onsidered only deformations that do not indueself-rossings (see for example Fig. 10). These deformations will be alledeven. It is onvenient to introdue also an odd version of a small deforma-tion, where an elementary plaquette is again used to deform the loop, butwith a a self-rossing like in Fig. 14. The two kinds of small deformationsdi�er by the orientation of the plaquette that is used to deform the loop.Neither kind hanges the overall sign of the deformed loop.One an introdue equivalene lasses of loops that an be obtained fromeah other by a sequene of small deformations. A lass of loops equivalentto a loop A will be denoted by [A℄. Inside this lass, [A℄even denotes thesub-lass of loops that an be obtained from [A℄ by a sequene of an evennumber of small deformations.
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Fig. 14. Even and odd versions of a `small deformation'. In the upper �gure, thetwo loops ontain a ommon link of opposite orientation, ausing the two versionsof the link to `anel out' in the resulting deformed loop. In the lower �gure, theommon link has the same orientation in both loops, ausing it to appear twie inthe deformed loop and thus introduing a self-rossing.Let us de�ne the loop merging operation, that ats on a set of equivalenelasses of loops. Take two loops A 2 [A℄ and B 2 [B℄, and deform both ofthem smoothly until they have a ommon link. If this ommon link hasan opposite orientation in both loops, erase it and form a loop out of theremaining links. Otherwise, leave the link as it is and join A and B by aself-rossing (see Fig. 15). The resulting loop belongs, by de�nition, to anew equivalene lass of loops [A �B℄.
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Fig. 15. The loop merging operation. Two loops A 2 [A℄ and B 2 [B℄ are smoothlydeformed until they share a link. They are then joined either by erasing the link orby a self-rossing, depending on the link's relative orientation in both loops. Theresulting loop belongs to a new lass of loops [A � B℄.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4155The produt of loop lasses de�ned in this way has a unity element inthe lass of ontratible loops [E℄, for whih [A �E℄ = [E �A℄ = [A℄. Countingthe number of rossed �ags before and after the loop merging (steps 2 and3 in Fig. 15), one �nds:F[A�B℄ mod 2= F[A℄ + F[B℄ + 1 + CAB ; (102)where CAB is the number of rossings of the loops A and B. The equationimplies the law of sign omposition:S[A�B℄ = S[A℄ S[B℄ : (103)Indeed, in the upper drawing in Fig. 15 the loop merging does not intro-due any additional self-rossing, CAB = 0, and the number of rossed �agshanges by 1 modulo 2, whereas in the lower �gure one additional self-rossing appears, CAB = 1, and the number of rossed �ags hanges by 0modulo 2, i.e. it remaines unaltered. The fators oming from the �ag ountand from the number of additional self-rossings ompensate eah other, andthe above simple omposition law (103) follows.Thus, the set of equivalene lasses of loops forms a group with respetto the loop merging operation. On a two-dimensional ompat manifold,this group ontains a minimal set of independent lasses of non-ontratibleloops [Hi℄, i = 1; : : : ; 2g, where g is the genus of the manifold (see Fig. 16).PSfrag replaements
H1H2 H3H4 H2g�1H2gFig. 16. Independent lasses of non-ontratible loops on a 2d manifold withgenus g.This minimal set has the nie feature that all other lasses an be reatedfrom [E℄, [Hi℄, and their inverses [Hi℄�1 by use of the loop merging operation.In other words, one an deompose any loop in terms of [E℄ and [Hi℄, andthen use equation (103) to alulate the sign of this loop as a produt ofsigns of the Hi.Let us illustrate this with a few examples. For simpliity, denote thesigns of the lasses in the minimal set with Si � S[Hi℄ = S[Hi℄�1 .Consider �rst a loop whih goes around a torus in two distint homotopydiretions simultaneously. Suh a loop an be obtained by loop merging ofthe lasses [H1℄ and [H2℄, as shown in Fig. 17. Note that the loops shownin the �gure do not self-ross; nor does the resulting loop H1 � H2. This
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Fig. 17. Loop merging on a torus. Take two loops from the lasses [H1℄ and [H2℄and smoothly deform them until they share a link, then merge them. The resultingloop [H1 �H2℄ irles the torus in both diretions [H1℄ and [H2℄ simultaneously. Itssign is the produt S1 � S2.might seem surprising at �rst, given that the loop merging itself introduesa rossing, CH1H2 = 1. But indeed one an see that the original loops, even ifnot self-rossing, do ross eah other. In general, any loop from [H1℄ alwaysrosses any loop from [H2℄ an odd number of times. In the resulting mergedloop, these rossings beome self-rossings, so that the produt has an evennumber of self-rossings overall. This in turn means it an be deformed bya sequene of an even number of small deformations to a non-self-rossingloop.As a general de�nition, one an state that a lass [A℄ rosses a lass [B℄if the number of rossings between any two representatives A and B is odd.By this de�nition, the lasses [H1℄ and [H2℄ ross eah other, as do any twoof the lasses [H2i�1℄ and [H2i℄ shown in Fig. 16. This onept will be usefulin a while in the ontext of the GSO projetion.Another example of loop merging is shown in Fig. 18. The loop C inthe lower drawing is obtained by merging H1 and H3, so its sign an bealulated as the produt SC = SH1SH3 .Let us apply the sign omposition law to the alulation of the partitionfuntion of Majorana fermions (89). In the hopping expansion, one generatesnon-self-rossing loops only. Denote the number of loops from a given lassS[C℄ on a on�guration by N[C℄. Then the total sign of this on�gurationan be written as: Stotal =Y[C℄ �S[C℄�N[C℄ : (104)
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PSfrag replaements H1 H3C
Fig. 18. Loop merging on a double torus. The sign of the loop in the lower �gurean be alulated by observing that it an be reated by a merging of the loopsdrawn in the upper �gure. This an be done by �rst deforming the two loopsuntil they have a ommon link, then erasing this link, and smoothly deforming theremaining loop.After GSO projetion:ZGSO = 122g Xf(�)1;:::;2ggZ((�)1;(�)2;:::;(�)2g) ; (105)the total ontribution of the on�guration is proportional toWGSO �Y[C℄ 12 �1 + (�1)N[C℄� : (106)To see this, note �rst of all that the sum over the signs Si of the lasses[Hi℄ an be replaed by a sum over the signs S[C℄ of the lasses [C℄ presentin the on�guration, sine all these loops do not ross and are independentfrom eah other. Summing over all signs S[C℄ means that eah loop of eahnon-trivial lass [C℄ ours an equal number of times with plus and minussigns, whih eventually leads to the last formula. In a sense, the ation ofthe GSO projetion fatorizes into a produt of independent ations for theloops of eah non-trivial lass on the on�guration.The last equation also tells us that all on�gurations with an odd numberof loops from any non-trivial lass have a vanishing ontribution to theGSO projetion. Physially, this means that the projetion removes all loopon�gurations whih annot represent domain wall on�gurations.



4158 L. Bogaz et al.11. Topology of the Ising modelWe shall onsider now the Ising model with nearest neighbor interations,fousing on the issue of the exatness of the duality transformation betweenthe model de�ned on a triangulation and on its dual graph, respetively, andemphasizing the topologial aspet of the duality. Furthermore, the relationbetween the Ising and the fermioni model will be disussed.To distinguish between a triangulation and its dual, we attah a star tosymbols referring to the triangulation, while the unstared symbols refer tothe dual lattie.With this onvention, the partition funtion of the Ising spins living onthe triangulation reads:
T�(��) = 
 (++)T� (��) = Xf�i�g e��P(i�j�) �i��j� ; (107)where �i� = �1 are spin variables loated at the verties i� of the tri-angulation. As we shall see later disussing boundary onditions for theIsing model, the partition funtion (107) orresponds to the partition fun-tion with the spin struture (++). Therefore we additionally denoted it by
 (++)T� (��) in the last equation.Any spin on�guration on the triangulation an be graphially repre-sented as a on�guration of loops on the dual graph. Namely, for any linkonneting two spin variables of opposite sign, �i� = ��j�, one an drawthat link's dual as a part of a loop. It is easy to see that the result will beloops surrounding domains of aligned spins (Fig. 19).One an alulate the statistial weight of every loop on�guration. Forthis purpose, it is onvenient to rewrite the partition funtion as:
T�(��) = e3=2N�� Xf�i�g e��P(i�j�)(�i��j��1) (108)whih an be obtained from (107) by subtrating unity from the link in-teration energy. Sine we onsider triangulations without boundaries, thenumbers of links and dual links are equal, NL = NL� , and related to thenumber, N , of triangles by NL = 3=2N . The subtration of unity in eahinteration term is ompensated by adding an appropriate onstant fator infront of the sum in (108). The ontribution to the sum of a term (�i��j��1)is 0 if �i� = �j� , and 2 if �i� 6= �j� . Thus, the sum in the exponent gives twiethe number of domain wall links (denoted as bold links in Fig. 19), whih isequal to the total length n of all loops on the on�guration. Therefore:
T�(��) = 2 e3=2N��XfLg e�2��n ; (109)
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Fig. 19. Ising spins on the triangulated lattie, and the orresponding domain wallsdrawn as loops on the dual graph.where the sum runs over all loop on�gurations on the dual graph (whih areidential to the loop on�gurations of the fermioni model disussed in theprevious setion). The additional fator of 2 in front of the sum re�ets thefat that eah loop on�guration represents two distint spin on�gurationswhih an be obtained from eah other by a simultaneous �ip of all spins�i� ! ��i� .For a non-spherial topology, some attention has to be paid to non-ontratible loops. Consider one more a toroidal triangulation. A on�gu-ration with an odd number of non-ontratible loops does not form a domainwall on�guration of the Ising model and therefore does not appear in (109).The same is true of the fermioni model if we perform the GSO projetion.Therefore the equivalene between the models is exat:ZGSOT (K) = 2 e�3=2N�� � 
T�(��) ; (110)if we set p3K = e�2�� ; (111)as an be seen by omparing (99) and (109). This statement holds foran arbitrary triangulation of a two-dimensional orientable manifold withoutboundary.Consider now the Ising model with spins �i living on the verties of thedual lattie, or equivalently at the enters of the triangles of the originalmanifold (in other words, the spins are loated at the same spots as the



4160 L. Bogaz et al.Majorana �elds �i disussed before). The partition funtion reads now:
T (�) =Xf�ig e�P(ij) �i�j : (112)Performing the strong oupling expansion leads to the formula:
T (�) = osh(�)3=2N�Xf�igY(ij) (1 + �i�j tanh(�)) ; (113)in analogy to the hopping parameter expansion (89) in the Majorana �eldtheory. The integration rules for Ising spins:12 X�=� 1 = 1 ; 12 X�=� � = 0 ; 12 X�=� �2 = 1 ; (114)are ompletely analogous to those for the fermions (90), (91)4.Thus, alulating the strong oupling expansion, one again �nds a sumover the same loop on�gurations:
T (�) = (2 osh(�))3=2N�XfLg0(tanh �)n : (115)More preisely, for a spherial lattie the loop on�gurations ourring inthis sum are idential to the domain wall on�gurations of the Ising modelde�ned on the triangulation. However, this is not true for topologies ofhigher genus, where on�gurations with an odd number of non-ontratibleloops from the same homotopy lass our in the strong oupling expansion(115). This is why we have put a prime on the sum, to distinguish the set ofthese on�gurations from the set of domain walls (109). If we again take thetorus as an example, we see that the sum in (115) also ontains on�gurationswith a single loop, or with an even number of loops irling the torus in theH2-diretion. This kind of loop on�guration is also produed in the hoppingexpansion of the fermioni model if we restrit it to the spin struture withperiodi boundary onditions. Thus, in this ase we have:Z(++)T (K) = (2 osh(�))�3=2N� � 
T (�) (116)4 One would see a di�erene with the fermion rules on a lattie with vertex ordersgreater than three, beause then one ould also have terms like 1=2P�=� �4 = 1,whereas the orresponding terms in the Majorana model are zero, R d2� e� 12 ��� ����� = 0. However, in our ase the order of the dual lattie verties is three byonstrution.



Dira Operator and Ising Model on a Compat 2D Random Lattie 4161if we set p3K = tanh(�) : (117)The equivalene also holds for topologies of higher genus if we hoose thisspin struture for the fermioni model.As expeted, both Ising models are almost dual to eah other. The onlydi�erene omes from topologial ontributions related to non-ontratibleloops. In fat, one an make the two models exatly equivalent by a sortof a `GSO projetion' for the Ising �eld. Contrary to the projetion in thefermioni model, whih appears as a natural option beause the model hasseveral possible spin strutures, its introdution here is somewhat arti�ial.Again, take the torus as an example. Originally, we have only one versionof the Ising model, whih orresponds to the spin struture (++) (107).Now, we attempt to de�ne a model that an reprodue the three otherstrutures. Let us start with the spin struture (�+), orresponding to ananti-periodi boundary ondition in the �rst homotopy diretion. On thislattie, hoose a non-ontratible loop irling the torus one in the seondhomotopy diretion (see Fig. 20). We all this an anti-ferromagneti line. Alllinks (ij) that ross this line will be alled anti-ferromagneti and denotedby (ij)�. All other links will be alled ferromagneti and denoted by (ij)+.We de�ne the partition funtion as follows:
 (�+)T (�) =Xf�ig e��P(ij)+ �i�j�P(ij)� �i�j� : (118)In the strong oupling expansion, eah ferromagneti link ontributes a fa-tor +tanh(�), and eah anti-ferromagneti link, a fator � tanh(�). Eah
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Fig. 20. For the dual Ising model on the torus, de�ne an anti-ferromagneti line inthe H2-diretion as a non-ontratible loop irling the torus in this diretion. TheIsing interation for a given link is de�ned as anti-ferromagneti or ferromagnetidepending on whether or not it rosses the anti-ferromagneti line.



4162 L. Bogaz et al.non-ontratible loop in the H1-diretion has an odd number of anti-ferro-magneti links, so its ontribution will be � tanhn(�), whereas eah on-tratible loop and eah non-ontratible loop in the H2-diretion has aneven number of anti-ferromagneti links, thus ontributing +tanhn(�). Inother words, this presription gives exatly the same sign fators as thoseourring for fermioni loops on the torus with spin struture (�+). Inthe same manner, one an also introdue an anti-ferromagneti line in theH1-diretion, to produe a model orresponding to a (+�) spin struture.Finally, a model with an anti-ferromagneti line in both diretions gives usa (��) spin struture.Summing over all four ases, one obtains a model with a partition fun-tion:
GSOT (�) = 14 �
 (++)T (�) + 
 (+�)T (�) + 
 (�+)T (�) + 
 (��)T (�)� ; (119)whih is exatly dual to the Ising model 
 (++)T� (��) that has its spin variablesde�ned on the verties of the triangulation (107), and is equivalent to themodel of Majorana fermions with GSO-projetion.For a lattie size going towards in�nity, the di�erene between 
++T (�)and 
GSOT (�) beomes negligible. As already explained, the di�erene omesonly from the non-ontratible loops. These loops an be regarded as havinga one-dimensional entropy, in the sense that they an be ordered by a one-dimensional index that represents their position on the lattie. Beauseof this, they beome less and less important when the system size grows.Therefore, in the thermodynami limit one expets an exat duality between(107) and (112) even without extending the model to the spin strutures(+�), (�+), and (��). We introdued this extension here to ensure exatduality, i.e. a one-to-one map, between the two models even for systems of�nite size.Generalization of this Ising model `GSO onstrution' to higher genustopologies is straightforward. In order to simulate a spin struture withan antiperiodi boundary in a given diretion Hi (see Fig. 16), one simplyintrodues an anti-ferromagneti line in the diretion Hj that rosses Hi.Altogether, this reates 22g di�erent spin strutures.12. Two examplesAs a �rst example, onsider the Dira�Wilson ation on a regular trian-gulation of the two-dimensional plane (Fig. 21). The fermions live at thetriangle enters, on a regular hexagonal lattie. Beause the lattie is �at,we an hoose a global frame, i.e. with the same diretions e1 and e2 at
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Fig. 21. Fermions on the honeyomb lattie.eah vertex. To �x the signs, we also hoose the �ag assignments, whih anlikewise be done in a translationally invariant way.One an easily write down the fermioni ation for this model. Choosean elementary ell as in Fig. 21. It onsists of two distint sites: A and B.The lattie an be onstruted by shifting the elementary ell by multiplesi1d1 + i2d2 of the fundamental shift vetors d1 = n0 + n1, d2 = n0 + n2onstruted from the the link vetors:n0 = (0; 1) ; n1 = �p32 ; 12� ; and n2 = ��p32 ; 12� : (120)The omponents of the vetors n1 and n2 are expressed in the global frame(X;Y ) shown in the �gure. The position of the ell is referred to by thedouble integer index i = (i1; i2). With this notation the ation is written as:S = �K2 Xi 2Xd=1 � � i+d;A(1 + nd � ) i;B + � i;B(1� nd � ) i+d;A��K2 Xi � � i;A(1� n0 � ) i;B + � i;B(1 + n0 � ) i;A�+12Xi � � i;A i;A + � i;B i;B� : (121)Sine the plane is non-ompat, topologial e�ets are not relevant. Fromthe disussion in the previous setions we know that for Majorana fermionsthe model with this ation is equivalent to the Ising model with spin variablesliving at the verties and at temperature �� given by (111), and likewise tothe Ising model with spins at the enters of the triangles and at tempera-ture � given by (117). The ritial temperature orresponds to the ritialhopping parameter, for whih the fermions beome massless. This ritial



4164 L. Bogaz et al.value is easily found to be: Kr = 13 ; (122)beause eah vertex on the dual lattie, where the fermions are living, hasthree neighbors. Thus, the ritial temperatures for the Ising models is:��r = �12 ln p33 ; �r = 12 ln(p3 + 2) ; (123)in agreement with the known results [23℄ .A seond example we want to disuss shortly here is the disretization ofthe Majorana �eld oupled to two-dimensional gravity. It is well-known thatthe integration measure over the metri �eld on a two-dimensional manifoldan be represented by a sum over all equilateral triangulations. If we dresseah triangulation in this sum with the fermion �eld, we e�etively obtaina theory of Majorana fermions oupled to two-dimensional gravity. Thistheory is given by the partition funtion:Z(K) =XT ZT (K) (124)with the sum running over all triangulations with a �xed topology. Fornon-spherial latties, one should sum in addition over spin strutures.We an use now the equivalene between the Majorana�Dira�Wilsonation and the Ising model to substitute, triangulation by triangulation, allterms ZT in the sum. We again obtain an exat map between the Ising modeland the model of fermions oupled to gravity. The Ising model, however, isexatly solvable [24℄; in partiular, the ritial temperature is [25℄:�r = 12 ln 10823 ; ��r = 12 ln 13185 (125)whih means that the Majorana fermions are massless when the hoppingparameter K is: Kr = 1p3e�2��r = 85p3393 : (126)This, again, is an exat result. The equivalene of the two models opens thepossibility of studying numerially the properties of the Dira�Wilson oper-ator oupled to gravity. In fat, one an use the Ising model as a generatorfor triangulations, and then dress the on�gurations with loal frames and zand s �ags to alulate D on eah of them. Sine the Dira�Wilson operatordepends on the triangulation, one gets a model of dynamial fermions in-terating with the �utuating geometry. Using the Ising model as a Monte



Dira Operator and Ising Model on a Compat 2D Random Lattie 4165Carlo generator for on�gurations is many orders of magnitude more e�-ient than a generator referring diretly to the fermioni ation, sine usingthe latter requires alulating the Pfa�an (86) in eah single Monte Carlostep, an extremely ostly operation in terms of CPU time. One an easily
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Fig. 22. Comparison of the results for the energy density of Ising �eld omputedfrom MC simulations of the Ising model (line) and of the orresponding quantityEq. (128) from MC simulations of the fermioni model (rosses). The error barsare smaller than the symbols used.onvine oneself by simulating small systems that the two generators do in-deed produe the same results but di�er enormously in algorithm e�ieny.In Fig. 22 we ompare the average energy of the Ising �eld alulated in thetwo di�erent ways: (a) diretly using the Ising model:e� = � 1N *X(i�j�) �i��j�+T = � 1N ���� ln
T� (127)or (b) using the equivalene (110), (111):e� = �32 � 1N �K�� � lnZ�K = �12 �� 12N Xa ��1a �T (128)where �a are eigenvalues of the Dira�Wilson operator D on the given tri-angulation T . In the derivation of the last formula we made use of therelations: ��K lnZ = *�jDj1=2�K +T = 12 �Tr�D�KD�1�T (129)



4166 L. Bogaz et al.The two methods yield the same results. Using the trik with the Isingmodel as a generator of triangulations one an extend the MC simulationsto larger systems in order to investigate the properties of the spetrum ofthe Dira�Wilson operator on dynamial triangulations. The results of theseinvestigations has been presented elsewhere [26℄. Here let us only quote aresult for the �nite size saling of the pseudoritial hopping parameterK� de�ned as the value of the hopping parameter for whih a mass gap isminimal. By the mass gap we mean the enter of mass of the distribution ofthe smallest positive eigenvalue of the Majorana�Dira�Wilson operator "D.The numerial results an be well �tted to the �nite size saling formula:K� = K1 + aN� ; (130)where K1 = 0:3756(16), and � = 1:03(30), a = �0:9(5). The parameterK1 orresponds to the ritial value of the hopping parameter in the ther-modynami limit. As one an see it agrees with the theoretial preditionKr = 0:3746 : : : given by the equation (126).13. ConlusionThe topologial properties of a fermion �eld on disretized two-dimensio-nal ompat manifolds were disussed at length. The exat equivalenebetween the model of Majorana�Wilson fermions and the Ising model wasestablished. An exat duality relation for the Ising model on a ompatmanifold was also found.It would be important to generalize the onstrution to higher�dimensio-nal simpliial manifolds. Having done this, one would then be able to attakthe problem of quantum gravity interating with a fermioni �eld. So far,it has only been possible to ouple integer spin �elds to four-dimensionalsimpliial gravity [16,18℄. Suh a theory is known to have problems with theontinuum limit [17℄, whih ould re�et the fat that higher-dimensionalgravity does not exist without a proper oktail of matter �elds oupled toit. If this were true, the addition of fermions might perhaps help solvingthese problems.It is straightforward to generalize parts of the onstrution presentedin this paper to higher dimensions. In partiular, one an assoiate witheah four-dimensional simplex an orthonormal oriented frame and basi ro-tations, and out of them one an easily build the transition matries andspin onnetions. However, the problem of lifting this onstrution to thehalf-integer representation leads to additional ompliations.One of the reasons is that the topologial problem is by itself more om-pliated in four dimensions. The question of whether a manifold admits a
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