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DIRAC OPERATOR AND ISING MODELON A COMPACT 2D RANDOM LATTICE�L. Boga
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e(Re
eived O
tober 11, 2001)Latti
e formulation of a fermioni
 �eld theory de�ned on a randomlytriangulated 
ompa
t manifold is dis
ussed, with emphasis on the topolog-i
al problem of de�ning spin stru
tures on the manifold. An expli
it 
on-stru
tion is presented for the two-dimensional 
ase and its relation with theIsing model is dis
ussed. Furthermore, an exa
t realization of the Kramers�Wannier duality for the two-dimensional Ising model on the manifold is 
on-sidered. The global properties of the �eld are dis
ussed. The importan
eof the GSO proje
tion is stressed. This proje
tion has to be performed forthe duality to hold.PACS numbers: 04.60.Kz, 05.50.+q1. Introdu
tionThe massless Majorana free fermion theory belongs to the same univer-sality 
lass as the 
riti
al Ising model on a regular latti
e [1�4℄. An expli
it
onstru
tion of the Majorana�Dira
�Wilson fermion �eld theory on a ran-domly triangulated plane was introdu
ed in [5℄. This theory was shown tobe equivalent to the Ising model also outside the 
riti
al region. In Ref. [5℄Cartesian 
oordinates were assigned to the nodes of the latti
e. The di-re
tions of the links and of the related gamma matri
es were expressed inthe global frame of the plane. This approa
h works for latti
es embeddedin a �at ba
kground, where one has at one's disposal a global frame of the� Presented at the XLI Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,June 2�11, 2001. (4121)
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z et al.underlying geometry [6�8℄. However, if one wants to generalize it to a lat-ti
e on a 
urved ba
kground, where no global frame exists, a �eld of lo
alframes [9�11℄ has to be introdu
ed. This being done, one 
an put fermionson a 
urved manifold with any topology and one 
an eventually atta
k, forexample, problems of �eld theory on a dynami
al geometry like those en-
ountered in string theory or in quantum gravity [14�18℄.This generalization was partially 
arried out in [10,11℄ where an expli
it
onstru
tion of the Majorana�Dira
�Wilson operators on 
urved 
ompa
ttwo-dimensional latti
es was introdu
ed.Here we extend these studies. In parti
ular, we dis
uss the signi�
an
e ofthe GSO proje
tion, whi
h as in string theory also here plays an importantphysi
al role [12, 13℄. We show that with a 
areful treatment of the globalproperties of the Dira
 operator and of the spin stru
tures on the mani-fold one 
an �nd a stri
t mathemati
al one-to-one equivalen
e between thepartition fun
tion of the Majorana�Wilson fermions and that of the Isingmodel. We show expli
itly that in our dis
retization of the Dira
 operatoron a 
ompa
t manifold, the GSO proje
tion � the summation over all spinstru
tures � does remove the non-
ontra
tible fermioni
 loops, that is thosenot 
orresponding to the domain-walls of the 
orresponding Ising model.Further, we show that for the duality to hold exa
tly as a one-to-onemap between the Ising model on a triangulation and on its dual latti
e, asort of GSO proje
tion has also to be done. Di�erent spin stru
tures forthe Ising �eld are simulated by physi
al 
uts produ
ed by the introdu
tionof antiferromagneti
 loops, whi
h mimi
 antiperiodi
 fermioni
 boundary
onditions.The paper is organized as follows. In Se
tion 2 we give an introdu
tionto the problem of de�ning the Dira
 operator on a 
ompa
t manifold. Itis text-book material [13, 20℄. We re
all it here for 
ompleteness, to keepthe arti
le self-
ontained. In Se
tion 3, we show how to adapt the standardWilson dis
retization s
heme of fermions on the regular translationally in-variant hyper
ubi
 latti
e [22℄ to the lo
al-frame des
ription, whi
h 
an begeneralized to the 
ase of irregular 
urved latti
es. In Se
tion 4, using as anexample the standard toroidal regular latti
e, we dis
uss the sign problemand the global properties of the fermioni
 �eld on a 
ompa
t manifold. InSe
tion 5 we argue that in the 
ase of irregular latti
es the lo
al frame de-s
ription is parti
ularly natural, and then in Se
tion 6 we show how to liftthis 
onstru
tion to the spinorial representation. In doing this we introdu
erotation matri
es between neighboring frames whi
h are 
ru
ial for the 
on-stru
tion. In parti
ular, using the spinorial representation of these matri
eswe are able to de�ne in Se
tion 7 the Dira
�Wilson operator. The stan-dard de�nition of the partition fun
tion representing quantum amplitudesis re
alled in Se
tion 8. In this se
tion we also list the properties of the



Dira
 Operator and Ising Model on a Compa
t 2D Random Latti
e 4123mathemati
al expressions en
ountered in 
al
ulating the partition fun
tion.In Se
tion 9 we 
al
ulate the partition fun
tion using the hopping parameterexpansion. The topologi
al loop sign problem emerges naturally there. Theissue of loop signs is dis
ussed in more detail in Se
tion 10 where the signis de�ned as a fun
tion of 
lasses of loop homotopies. The relation betweensigns of non-
ontra
tible fermioni
 loops and of domain-walls in Ising modeland the topologi
al aspe
t of the duality is dis
ussed in Se
tion 11. In Se
-tion 12 we give two analyti
 examples, 
al
ulating the 
riti
al temperatureof the Ising model on the honey
omb latti
e and the 
riti
al value of thehopping parameter on the dynami
al triangulation, making use of the exis-ten
e of the exa
t map between the Ising model and the fermioni
 model.We 
lose with a short dis
ussion.2. PreliminariesThe aim of this paper is to dis
retize a theory of fermions on a random,possibly �u
tuating geometry. Let us �rst re
all some basi
 fa
ts about the
ontinuum formulation of this problem.Consider a D-dimensional 
ompa
t Riemannian manifold, on whi
h a
oordinate system �� is de�ned. If a nonsingular 
hange of 
oordinates�� ! �0� is performed at some point x on the manifold, then a linear trans-formation of the 
omponents of any ve
tor or tensor �eld in the tangentspa
e at x has also to be 
arried out, in order to ensure the invarian
e ofthe theory under 
oordinate transformations. For ve
tors, the matrix of thislinear transformation reads: A�� (x) = ��0���� (x) : (1)Sin
e the 
hange of 
oordinates is not singular, the determinant of A isnonzero. The matri
es A thus form a linear group of non-singular real ma-tri
es GL(D;R). The basi
 di�
ulty in any attempt to apply the trans-formation law (1) to a fermioni
 �eld is that the group GL(D;R) has nospinorial representation. In other words, one 
annot dire
tly apply the in-formation en
oded in A to transform a spinor when 
hanging the 
oordi-nates. In order to over
ome this di�
ulty one has to restri
t somehow thegroup GL(D;R) to its SO(D) subgroup, whi
h does have spinorial half-integer representations. One 
an do this by introdu
ing an additional �eldof lo
al orthonormal frames. More pre
isely, at ea
h point x of the mani-fold one introdu
es a basis ea(x), a = 1; : : : ;D, in the tangent spa
e, whi
hobeys ea(x) � eb(x) = Æab (orthonormality) and e1(x) ^ e2(x) : : : ^ eD(x) > 0(orientability), where the symbols � and ^ denote the internal and externalprodu
ts.
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z et al.Expressed in a given 
oordinate system ��, the orthonormality and ori-entability 
onditions read:g��(x) e�a (x) e�b (x) = Æab ; e(x) � det e�a(x) =pg(x) > 0 : (2)The matrix e�a(x) is 
alled the vielbein. It is non-singular, and one 
an denoteits inverse matrix by ea�(x). Thus one has, for instan
e, ea�(x)eb�(x)Æab =g��(x).With these ve
tors one 
an also asso
iate gamma matri
es 
a, f
a; 
bg =2Æab, that 
an be 
hosen so as to have the same numeri
al values 
a for allpoints x. One 
an write the Dira
 matri
es in the 
urved 
oordinates as
�(x) = e�a(x)
a.The pri
e to pay for introdu
ing this new �eld is that one also has tointrodu
e an additional 
onne
tion on top of the Levy�Civita 
onne
tion.The new 
onne
tion ! (whi
h is 
alled the spin 
onne
tion) allows one to 
al-
ulate 
ovariant derivatives of obje
ts that have frame indi
es. For instan
e,the 
ovariant derivative of the vielbein itself is given byr�e�a = ��e�a + � ���e�a � !�ab e�b : (3)The reward is that the spin 
onne
tion 
an be lifted to the spinorial repre-sentation, and we 
an 
al
ulate the 
ovariant derivatives of spinors as well:r� = �� + 12!�ab�ab ; (4)where �ab = 12i [
a; 
b℄ is the rotation generator in the spinorial representa-tion.The a
tion for fermions 
oupled to gravity 
an now be written as:S = 12 Z dD� e � 
�r�  = 12 Z dDx � (
a � ra) = 12 Z dDx dDy � (x)D(x; y) (y) : (5)The Dira
 operator on the manifold isD(x; y) = Æ(x� y) 
a(x) � ra(x) ; (6)or, less formally, just 
 � D. We shall dis
retize this operator in the nextse
tion. Before doing so, however, let us dis
uss its topologi
al properties.Lo
ally, one 
an always de�ne a 
ontinuously varying �eld of frames.However, doing this globally for a 
ompa
t manifold is usually impossible.What 
an be done instead in this 
ase is to 
over the manifold with openpat
hes, in ea
h of whi
h one 
an separately de�ne a 
ontinuous �eld of
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e 4125frames, and for any region of overlapping pat
hes U and V provide transitionmatri
es for re
al
ulating the frames when going from one pat
h to the other:[eU ℄a(x) = [RUV ℄ba [eV ℄b(x) : (7)Here, the transition fun
tion RUV is a SO(D) rotation matrix. It followsthat the spinors in the overlapping region 
an be re
al
ulated as:[ U ℄�(x) = [RUV ℄�� [ V ℄�(x) ; (8)where RUV is an image of RUV in the spinorial representation. In a regionwhere three pat
hes U; V;W interse
t, the transition matri
es must obviouslyful�ll the following self-
onsisten
y equations:RUVRVWRWU = 1 ; RUVRVWRWU = 1 : (9)The se
ond equation 
an be almost automati
ally dedu
ed from the �rstone by rewriting it in the spinorial representation. However, be
ause thespinorial representation R! �R is two-valued, the signs of the R's are notautomati
ally �xed by R's. In other words, one has to adjust in additionthe signs of the transition fun
tions for the spinors in su
h a way that the
onsisten
y equation is ful�lled in any triple interse
ting pat
h.This is a global topologi
al problem. If it is solvable on the entire mani-fold, the manifold is said to admit a spin stru
ture. In two and tree dimen-sions, the question of the existen
e of a spin stru
ture redu
es simply to themanifold orientability; in higher dimensions the problem is more 
omplex.Another important question is: how many non-equivalent spin stru
turesare admitted on a given manifold? In two dimensions, the answer is 22g,where g is the genus of the manifold [13℄. This number is related to thenumber of possible sign 
hoi
es for independent non-
ontra
tible loops onthe manifold.A good dis
retization s
heme should re�e
t all these topologi
al proper-ties. As will be seen, the expli
it 
onstru
tion for two-dimensional 
ompa
tmanifolds to be proposed in the present paper does ful�ll this requirement.The Dira
 operator (6) 
an be expressed in lo
al 
oordinates as 
�r�,or alternatively in frame 
omponents as 
ara, i.e. without referen
e to lo
al
oordinates. The 
onstru
tion proposed in this paper is, in fa
t, 
oordinate-free: we shall express everything in frame indi
es a, without referring to
oordinate indi
es �.In the latti
e 
onstru
tion, the nearest neighbor relation that mimi
s thestru
ture of the 
ontinuum formulation will be given by a lo
al ve
tor: atea
h point i on the dual latti
e we shall de�ne lo
al ve
tors nji pointing tothe three neighboring verti
es j. To 
al
ulate derivatives (di�eren
es) in the
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z et al.dire
tion of nji we shall de
ompose it in the lo
al frame eia. Similarly, allve
tor, tensor and spinor indi
es of obje
ts from the tangent spa
es will beexpressed in these lo
al orthonormal frames. Lifting the 
onstru
tion fromthe ve
tor to the spinor representation of the rotation group, we shall storethe information about nearest neighbors in the form of rotation matri
es.We refer to them as to the `basi
 rotations', and denote them by the letter B.The advantage of using rotations is that we 
an express them in the spinorialrepresentation, B ! B.3. The dis
retization s
hemeLet us start with a dis
ussion of fermions on a regular �at latti
e, usingthe Wilson formulation [22℄. Then, we shall see how to go over, after somemodi�
ations, to the 
ase of irregular latti
es.The Dira
�Wilson a
tion for free fermions reads:S = �K2 X~{;� � �	~{+~�(1 + 
�)	~{ + �	~{(1� 
�)	~{+~�	+ 12X~{ �	~{	~{ ; (10)where the multi-index ~{ des
ribes the node position on the latti
e, and ~� isone of the D dire
tions of the latti
e. The gamma matri
es 
� are rigidlyasso
iated with these dire
tions:f
�; 
�g = 2Æ�� : (11)In the Eu
lidean se
tor, the Dira
 �eld is represented by independent Grass-mann variables �	� and 	�, � = 1; : : : ; N . In parti
ular, for D = 2, thedimension of the spinor representation is N = 2. In the following, spinorindi
es will usually be impli
it; we shall write them expli
itly only whenne
essary.We shall now rewrite the a
tion (10) in a 
oordinate-free form whi
h 
anbe extended to the 
ase of irregular latti
es.Instead of using the multi-index ~{ to des
ribe the vertex position, weasso
iate with ea
h vertex a single label, say i, whi
h is a 
oordinate-free
on
ept. Obviously, the parti
ular 
hoi
e of a label does not have any phys-i
al meaning and the theory has to be invariant under relabelings. Thephysi
al information will be en
oded in the nearest neighbor relations.Using these labels, the a
tion 
an be 
ast into the following form:S = �KXhiji �	iHij	j + 12Xi �	i	i ; (12)where the �rst sum runs over oriented links 
onne
ting nearest neighbors onthe latti
e. The hopping operator Hij is de�ned asHij = 12(1 + nij � 
) ; (13)
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e 4127where nij is a lo
al ve
tor pointing from j to i, being assumed that thetwo are nearest neighbors. Note that in the sum over oriented links, ea
hlink (ij) appears twi
e, on
e as hiji and on
e as hjii; sin
e we 
learly havenij = �nji, we see that the a
tion (12) is indeed equivalent to (10).Even at this stage it is more elegant to stop referring to 
oordinates andinstead use 
omponents of the global frame Ea = (E1; E2). Thus, we repla
e
� by 
a, and de
ompose the nearest neighbor ve
tor nji into 
omponentsin this frame. The produ
t nij � 
 
an then be expressed as:nij � 
 = nij;a
a = nij;1
1 + nij;2
2 : (14)Written in the form (12), the a
tion is now 
oordinate-free, but it still de-pends on the global frame through the ve
tor 
omponents nij;a and thegamma matri
es 
a. Su
h a global frame and a 
ommon spinorial basis ex-ist only in ex
eptional geometries, like the regular torus or plane. In order tode�ne a theory on another topology or, generally, on a 
urved ba
kground,we have to get rid of this 
on
ept and use lo
al frames instead.One 
an introdu
e independent orthonormal frames as in Fig. 1. At ea
hlatti
e point i one has a pair of orthonormal ve
tors (ei1; ei2). In parti
ular,on a torus the lo
al frames eia 
an be obtained from the global frame Ea bylo
al rotations: eia = [Ri℄baEb : (15)

Fig. 1. A hyper
ubi
 latti
e with translational symmetry and a global frame that�xes the 
oordinate dire
tions for the entire latti
e. Alternatively, one 
an use lo
alframes that vary from point to point. This has the advantage of being generalizableto a 
urved ba
kground.
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z et al.The spinor 
omponents 	i are transformed by these rotations into their
omponents in the lo
al bases  i: i� = [Ri℄��	i� ; � �i = �	�i �R�1i ��� ; (16)where the matri
es Ri belong to the half-integer representation of the rota-tions Ri: Ri
aR�1i = [Ri℄ab 
b : (17)In 
omponent-free notation the equations (15), (16) and (17) read:ei = RiE ;  i = Ri	i ; � i = �	iR�1i ; Ri
R�1i = Ri
 : (18)Using this notation, one should remember that the matrix R a
ts on thespinor indi
es whereas R a
ts on the frame indi
es. Using the lo
al frames,we 
an write the a
tion (12) as:S = �KXhiji � iHij j + 12Xi � i i ; (19)where Hij = RiHijR�1j = 12Ri [1 + nij � 
℄R�1i RiR�1j| {z }Uij : (20)Here, Uij is a matrix allowing to re
al
ulate the 
omponents of a spinor goingfrom a frame j to the frame i. In other words, it is a sort of a 
onne
tionmatrix that performs a parallel transport of spinors between neighboringverti
es.So far, equation (20) is written in a hybrid notation, be
ause the spinorsare already expressed in the lo
al frames ei whereas nij and 
 are still writtenin the global frame E. However, applying (17) to (20) one �nds:Ri nij � 
 R�1i = nij;aRi
aR�1i = nij;aRab 
b = n(i)ij � 
 ; (21)where in the lo
al basis the ve
tor n(i)ij has the 
omponentsn(i)ij;b = nij;aRab ; (22)di�erent from the global frame 
omponents nij;a. The new bra
keted index(i) now di�erentiates between di�erent lo
al frames where the 
omponentsof the ve
tor are 
al
ulated; thus, n(i)ij refers to the same ve
tor as n(j)ij ,but with 
omponents expressed in a di�erent frame. Intuitively, what theequation means is simply that the 
omponents of a ve
tor in a rotated basis
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an be alternatively 
al
ulated by performing the inverse rotation on theve
tor itself while keeping the basis �xed.An important point is that the 
rossover from the global des
ription tothe lo
al one as in (21) preserves the numeri
al values of the 
a matri
es.In other words, 
1 asso
iated with the lo
al dire
tion ei1 at a point i hasthe same numeri
al value as 
1 asso
iated with the ej1 at any other pointj, and likewise for 
2.Using the 
omponents n(i)ij of the nearest neighbor ve
tor in the lo
alframe i, we 
an now write (20) asHij = 12 h1 + n(i)ij � 
i Uij : (23)Alternatively, using the features of n(i)ij dis
ussed above, we 
an 
ast thehopping operator into several equivalent forms:Hij = 12 h1 + n(i)ij � 
iUij = 12 h1� n(i)ji � 
iUij = Uij 12 h1 + n(j)ij � 
i : (24)These di�erent expressions for Hij 
orrespond to di�erent ways of 
al
u-lating the hopping term � iHij j in (19). One method is to �rst paralleltransport the spinor  j from j to i, getting Uij j , and then to 
al
ulatethe 
orresponding s
alar in the frame i, as is done on the left hand side of(24). Sometimes it is 
onvenient to repla
e nij = �nji in order to 
hangethe dire
tion of the ve
tor between indi
es i and j, as is done in the se
ondexpression. Alternatively, one 
an �rst transport the spinor � i from i to j,whi
h gives � iUij, and then 
al
ulate the 
orresponding s
alar in the framej, as is done on the right hand side, et
. All these expressions are equivalentand 
an be dedu
ed from ea
h other, so that the most 
onvenient one isalways 
hosen.The additional upper index in the bra
kets makes formulae visually lesstransparent but removes the logi
al ambiguity whi
h otherwise might lead to
onfusion. We will, therefore, extend this notation to all obje
ts o

urringin our 
onstru
tion. For example,  (i)j = Uij (j)j means that the spinor j is transported from j to i. Similarly, � (j)i = � (i)i Uij means that � i istransported from i to j. There is no summation over the repeated indi
es.The only ex
eption will be made for obje
ts 
al
ulated in the frame belongingto the point where they are themselves de�ned, sin
e in this 
ase leaving outthe upper index does not 
ause any ambiguity. For example, we will write i instead of  (i)i .Using this notation, the Wilson a
tion be
omes:S = �KXhiji � i 12 h1 + n(i)ij � 
i j + 12Xi � i i : (25)
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z et al.Contrary to (10), this form of the Wilson a
tion 
an now be generalized toany random irregular latti
e. It also makes dire
t 
onta
t with the 
ontin-uum formalism (5). Finally, note that it is invariant under a 
hange of thelo
al frames:ei ! Riei ; 	i !Ri	 ; �	i ! �	iR�1i ; Uij !RiUijR�1j ; (26)where Ri are arbitrary lo
al rotations, andRi are the 
orresponding matri
esin the spinorial representation.4. A topologi
al problemLet us return to the 
onsequen
es of the fa
t that the (spinorial) half-integer representation of the rotation group is a
tually only a representationup to a sign fa
tor.In two dimensions, the SO(2) group 
an be parametrized by a singleparameter � 2 [0; 2�). For a given value of this parameter the rotationmatrix is given by:R(�) = e�� = 
os(�) + � sin(�) = � 
os(�) sin(�)� sin(�) 
os(�) � ; (27)where � ba is the standard antisymmetri
 matrix with � 21 = 1.The 
orresponding matrix R(�) in the spinorial representation isR(�) =e i2�12�. In parti
ular, if we set 
1 = �3 and 
2 = �1, where �i are the Paulimatri
es, then �12 = �2 and rotation matrix is:R(�) = e i2�2� = 
os��2�+ � sin��2� = 0� 
os��2� sin��2�� sin��2� 
os��2� 1A ; (28)where � = i�2 is an antisymmetri
 tensor that is numeri
ally identi
al withthe one in (27). The di�eren
e, of 
ourse, is that the tensor in equation (27)has frame indi
es � ba whereas the one in (28) has spinorial indi
es � �� .In order to �x the global sign of R(�), on should 
ontrol the angle � inthe range [0; 4�) rather than the usual [0; 2�). This would require 
hanging
ontinuously the angle and 
al
ulating the overall 
hange R d� keeping tra
kof the number of `full 
ir
les'. However, this 
annot be done here sin
e therelative angles between the frames eia are determined in the fundamentalrange [0; 2�) only.The sign ambiguity also has topologi
al 
onsequen
es. Consider on
emore the regular, toroidal, �at latti
e and 
hoose on it a 
onstant �eld ofidenti
al frames (see Fig. 2). We �rst set Uij = 1 for all links. Trivially,



Dira
 Operator and Ising Model on a Compa
t 2D Random Latti
e 4131if at a vertex i the frame is rotated by 2�, the frame 
on�guration doesnot 
hange. However, be
ause Ri(2�) = �1 in the spinorial representa-tion, all links emerging from i a
quire a negative sign Uji = �1 a

ordingto the transformation law (26). The resulting `sign �eld' is di�erent fromthe original one but at the same time equivalent to it. By repeating thispro
edure in other verti
es one 
an produ
e many di�erent, but equivalent,sign 
on�gurations for the same �eld of frames.

+

- -
-

-+ + +

+ + +

++++

+

+ +

+ +

+

+

++Fig. 2. Rotation of a lo
al frame by 2�. Even though the resulting frame 
on�g-uration is obviously the same as before, spinor 
omponents 
an 
hange their signdue to the sign ambiguity.It is easy to see that a lo
al rotation of a frame by 2� preserves the overallsign of all elementary plaquettes, i.e. the produ
t of signs of all links onthe plaquette's perimeter. Thus, for any 
on�guration obtained from theoriginal one, all elementary plaquettes have a positive overall sign. We shallrequire this to be true in general, i.e. for any 
on�guration of lo
al frameson the latti
e the sign of all elementary plaquettes is set to +1; this ensuresthat spinors remain un
hanged by parallel transport around any elementaryplaquette. This requirement is di
tated by the underlying 
ontinuum theory,in whi
h parallel transport of a spinor around a 
losed loop in a lo
ally �atpat
h leaves the spinor inta
t. Later on, for 
urved latti
es, we shall modifythis 
onstraint so as to adjust it to the 
ase where there is a de�
it angleinside an elementary plaquette.Assuming that all elementary plaquettes have a positive sign we 
anprove now some simple topologi
al theorems 
on
erning the signs of loopson the latti
e.It is 
onvenient to de�ne an auxiliary operation for loops on a latti
e,to be 
alled a small deformation of a loop. To deform a loop L, we pi
k an
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z et al.elementary plaquette P whi
h shares at least one 
ommon link with L, andsubstitute the interse
tion L\P by the 
omplementary part of P , resultingin a new loop L0 = L [ P � L \ P (see Fig. 3) 1.
PSfrag repla
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Fig. 3. A small deformation of a loop L (bold line) by an elementary loop P (dashedline), resulting in the loop L0.As with elementary plaquettes, we 
an de�ne the overall sign of a loop asthe produ
t of signs of all links on the loop. One easily 
he
ks that the signof the deformed loop L0 is the same as that of L � namely, the addition ofP to L 
annot 
hange the sign be
ause P has a positive sign by default, andthe removal of the interse
tion L \ P 
annot 
hange the sign be
ause ea
hlink is `removed twi
e' (on
e from P and on
e from L), so that the totalnumber of removed links is always even.Any 
ontra
tible loop 
an be obtained from the elementary loop by asequen
e of small deformations. Thus all 
ontra
tible loops have positivesigns.This is not, however, the 
ase with non-
ontra
tible loops, whi
h 
antake either sign. An example of a loop with negative sign is shown in Fig. 4:if we 
hoose Uji = �1 for one 
omplete row of links on the latti
e (as in the�gure) and Uji = 1 everywhere else, then any loop that en
ir
les the latti
ein the y dire
tion passes through exa
tly one link with negative sign, andthus has a negative overall sign2.1 Somewhat more pre
isely, we also have to require that the interse
tion L \ P is
onne
ted, so as to avoid situations in whi
h a small deformation splits a loop intotwo or more parts.2 More generally, if a loop whi
h en
ir
les the latti
e in the y dire
tion goes ba
k andforth having a sort of S shape, it may 
ross links with negative signs more than on
e.The number of 
rossings is however odd.
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Fig. 4. A non-
ontra
tible loop on a toroidal latti
e with a 
onstant frame. Thesingle links drawn as bold lines all have transition matri
es Uji = �1, whereas allother links have Uji = 1; as a 
onsequen
e, the loop has a negative overall sign.Obviously, two sign 
on�gurations are equivalent if one 
an transformone into the other by a sequen
e of lo
al rotations Ri(2�) = �1. Be
auselo
al rotations do not 
hange the sign of any loop, a 
on�guration with atleast one loop of negative sign 
annot be equivalent to a 
on�guration thathas only loops of positive sign. In other words, the two sign 
on�gurationsare topologi
ally distin
t.Now, using small deformations we 
an easily prove that all non-
ontra
t-ible loops en
ir
ling the torus in the same dire
tion must have the same sign.This means, for example, that it is su�
ient to 
al
ulate the sign of just one`verti
al' loop (whi
h en
ir
les the latti
e in the y dire
tion) to know the signof all other verti
al loops. More generally, the sign of a loop is not a propertyof a single loop but rather of all loops in the same homotopy 
lass, i.e. thosethat 
an be obtained from ea
h other by a sequen
e of small deformations.On the torus there are two independent non-trivial homotopy 
lasses ofloops (`verti
al' and `horizontal') and, therefore, four distin
t possible sign
on�gurations. These, in turn, 
orrespond to four distin
t spin stru
tures.The statement 
an be generalized by observing that there are 2g inde-pendent 
lasses of non-
ontra
tible loops on a surfa
e with genus g, whi
hmeans that there are 22g di�erent sign 
on�gurations and thus the samenumber of spin stru
tures. In parti
ular, a latti
e with spheri
al topologyadmits only one spin stru
ture.
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z et al.On the other hand, on a non-orientable latti
e one 
annot globally de�nea �eld of orientable frames. An example of su
h a latti
e is the so-
alledone-sided torus or Klein bottle, whi
h is 
onstru
ted in the same way as thestandard torus but has di�erent boundary 
onditions, as shown in Fig. 5. Itis possible to show that a frame transported along a 
losed path would have
hanged its handedness after a 
omplete tour around the latti
e. Be
ausethere does not exists a �eld of orientable frames, one 
annot in this 
asede�ne a spin stru
ture or a Dira
 operator.

Fig. 5. Left � a latti
e with toroidal boundary 
onditions. Right � a latti
e withthe boundary 
onditions of a Klein bottle. The arrows indi
ate the dire
tions inwhi
h the opposite edges are to be taken when joined together.5. Lo
al frames on a random latti
eThe form (10) of the Wilson a
tion is parti
ularly simple not only be
auseof the simple topology of the torus, whi
h allows for the de�nition of aglobal frame, but also be
ause of the regular geometry of the latti
e whi
heverywhere repeats the same simple motif. On an irregular latti
e, lo
alangles and link lengths 
hange from point to point. This must be re�e
tedin the 
onstru
tion of the hopping term, whi
h depends on these lo
al detailsthrough the 
ovariant derivative.To make the geometri
al part of the dis
ussion as simple as possible,and to minimize the number of lo
al degrees of freedom of the latti
e, werestri
t the dis
ussion to equilateral random triangulations. This greatlyredu
es the number of lo
al degrees of freedom, making the dis
ussion moretransparent and allowing us to fo
us on the interesting topologi
al part ofthe problem. Let us mention, however, that the presented 
onstru
tion 
anbe easily generalized to the 
ase of variable link lengths and angles.
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e 4135On an equilateral triangulation, the lo
al geometry is 
ompletely en
odedin the 
onne
tivity of the latti
e; all other details are �xed by the simplegeometry of the equilateral triangle. In parti
ular, the de�
it angle at avertex i is determined solely by its order qi : �i = (6� qi)�=6.The lo
al 
urvature of the latti
e is 
on
entrated in the verti
es of thetriangulation. The geometry be
omes singular in these points and thereforeit is di�
ult to provide a unique de�nition of a tangent spa
e at the verti
es.It is more 
onvenient to de�ne tangent spa
es at the dual points of the latti
e,i.e. at the 
enters of the triangles. Inside ea
h triangle the geometry is lo
ally�at and thus naturally spans a tangent spa
e. We therefore lo
ate all lo
alframes, and also all fermioni
 �elds, at the 
enters of the triangles. Ea
hpoint i where a �eld is de�ned has then three neighbors, ea
h of whi
h at thesame distan
e from i. The ve
tors pointing to the neighbors are also equallyspa
ed in the angular variable, i.e. they are separated by angles 2�=3.Before de�ning the fermioni
 �elds, however, let us dis
uss the propertiesof the �eld of oriented orthonormal lo
al frames on su
h a random triangu-lation. An example of a triangulation de
orated with frames is shown inFig. 6.
jk

i
k

j

U

q =4i

Fig. 6. A small pie
e of a random triangulation with lo
al frames. Ujk is thetransition matrix between the frames at k and j, and qi is the order of the vertex i.At ea
h triangle i live two orthonormal ve
tors ei1 and ei2 su
h thateia �eib = Æab. Apart from the internal produ
t there is also an external one ^,whi
h enables one to 
hoose frames with the same handedness ei1^ei2 > 0 forall triangles. Now 
onsider two neighboring triangles i and j, ea
h endowedwith its own frame ei and ej . The interiors of the two triangles together forma �at pat
h of the triangulation. One 
an think of the two frames as beingtwo alternative frames for the same pat
h. One 
an 
al
ulate 
omponentsof our obje
ts in either one of them, and easily re
al
ulate them when goingfrom one to the other. To this purpose introdu
e SO(2) transition matri
es
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z et al.Uij and Uji su
h that:UijUji = 1 ; ei = Uijej ; ej = Ujiei : (29)One 
an repeat the same 
al
ulation for any pair of neighboring trianglesand use it to transport a frame between any two points i1 and in along anopen path C = (i1; i2; : : : ; in):ein = Uinin�1 : : : Ui3i2 Ui2i1 ei1 = U(C) ei1 : (30)Sin
e we study a theory whose 
ontent is independent of the 
hoi
e of frames,we are interested in the pertinent transformation laws and in quantitiesinvariant under lo
al SO(2) rotations of the frames: ei ! e0i = Riei. Theobje
t U(Cji) = Ujk : : : Uni for any open path between i and j transformsas: U(Cji)! U 0(Cji) = RjU(Cji)R�1i ; (31)as one 
an see from (29). In parti
ular, for a 
losed path Li beginning andending at the same triangle i, U(Li) transforms asU(Li)! U 0(Li) = RiU(Li)R�1i ; (32)and hen
e TrU(Li) is an invariant. Moreover, this invariant does not dependon the 
hoi
e of the initial point i of the loop, and is thus a property of theloop L itself. It is a geometri
al quantity related simply to the total angleR d� by whi
h a tangent ve
tor is rotated when transported along the loop.On a �at latti
e, this angle is a multiple of 2�. On a 
urved latti
e thesituation is somewhat more 
ompli
ated. In parti
ular, for an elementaryloop Lq surrounding a vertex of order q, the loop invariant is12TrU(Lq) = 
os q�3 = 
os (6� q)�3 = 
os�q (33)and 
ontains information about the de�
it angle �q, or equivalently aboutthe 
urvature at the vertex. There are various possibilities to prove thisstatement; the proof outlined here o�ers us an opportunity to introdu
e anauxiliary 
onstru
tion whi
h will be useful throughout the remaining part ofthe paper, espe
ially when we shall lift the spin 
onne
tion to the spinorialrepresentation.
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e 4137Re
all that the information about the lo
al geometry of the latti
e isstored in the form of three lo
al unit ve
tors n(i)ji pointing from i to its threenearest neighbors. There is, however, another and for the problem at handmore suitable way of a
hieving the same goal. Instead of the ve
tors n(i)jithemselves, one 
an equivalently 
onsider the rotations that 
onne
t n(i)jito ei. To introdu
e the rotation matri
es, we �rst asso
iate an entire framewith ea
h of the three nearest neighbor ve
tors, treating n(i)ji as the �rst basisve
tor of ea
h 
orresponding frame. The se
ond base ve
tor of the frameis then automati
ally determined by the orthonormality 
ondition. Now wehave three parti
ular frames n(i)ji;a = (n(i)ji;1; n(i)ji;2) for the three neighbors jof i. The frames n(i)ji 
an be obtained from the lo
al frame ei by a rotationB(i)j : n(i)ji = B(i)j ei : (34)We refer to them as to the basi
 rotations at i.Now, it is 
onvenient to de
ompose the 
onne
tion matri
es Uji into basi
rotations B(i)j at i and B(j)i at j. Letting them a
t �rst on the frame ei, oneobtains the frame n(i)ji . One then �ip it to the frame n(j)ij using a rotation
PSfrag repla
ements i jei1 ej1nji
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k

Fig. 7. A pat
h of two neighboring triangles, and the three nearest neighbor ve
torsnij for ea
h of them. The same information 
an be provided by a rotation matrixbetween nij and the �rst basis ve
tor ej1, shown as the �ag emerging from the
enter of ea
h triangle. In this example, the basi
 rotation B(j)i of frame j to thedire
tion of its neighbor i is a rotation by 5�=3, whereas the basi
 rotation B(i)j offrame i to the dire
tion of its neighbor j is a rotation by �.
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z et al.by �, whi
h is represented by the matrix F = e��. Finally, using the inversebasi
 rotation at j one rotates it to ej . In other words, the transition fromei to ej (and vi
e versa) 
an be done in the following three steps (see Fig. 7):ej = [B(j)i ℄�1FB(i)j ei ; ei = [B(i)j ℄�1FB(j)i ej : (35)Comparison with (29) leads to:Uij = [B(i)j ℄�1FB(j)i ; Uji = [B(j)i ℄�1FB(i)j : (36)One 
an use this de
omposition to 
al
ulate the loop invariants TrU(L):TrU(L) = Tr nYk=1Uik+1ik = Tr Yk Tik ; (37)where Q is an ordered produ
t that runs through all verti
es on the loopL = (i1; i2; : : : ; in) with the 
y
li
 boundary 
ondition in+1 = i1 and therotation matri
es Tik � B(ik)ik+1 [B(ik)ik�1 ℄�1F = e(�)ik �3 � (38)
orrespond to the turn taken by the path at the triangle ik [19℄. It dependson the turn-angle, whi
h 
an be either +�=3 if the path turns to the leftor ��=3 if it turns to the right. In fa
t, on a equilateral triangulation, thesign (�)ik determines 
ompletely the turn matrix Tik at the triangle ik. Itdoes not depend on the parti
ular orientation of the frame, be
ause underrotation of the frame ik the basi
 rotations transform as:B(ik) ! B(ik)Rik ; [B(ik)℄�1 ! R�1ik [B(ik)℄�1 (39)thus leaving the 
ombination B(ik)[B(ik)℄�1 in Tik inta
t.An elementary loop around a vertex of order q turns exa
tly q times inthe same dire
tion. Thus we have12TrU(Lq) = Tr e� q�3 � = 
os q�3 = 
os (6� q)�3 ; (40)as 
laimed in (33). 6. The spinorial representationThe next step is to lift the 
onne
tions Uij to the spinorial representation,Uij ! Uij. We 
ontinue to use the 
onvention of denoting all rotationmatri
es in the spinorial representation by 
alligraphi
 letters: U ! U for
onne
tions, B ! B for basi
 frame rotations, T ! T for turns and F ! Ffor �ips.
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e 4139The starting point of the 
onstru
tion is the de
omposition (36). Ifwe write it in the spinorial representation, ea
h matrix that o

urs in thisequation is determined only up to a sign: e�� ! �e��=2 (28). The idea isnow to a�x the spinorial representation of all matri
es on the right-handside of (36) with a positive sign:B = e�� ! B = e��=2 (41)F = e�� = 1 ! F = e��=2 = � ; (42)and keep the sign sji = �1 as a separate variable for ea
h link:Uij ! Uij = sij [B(i)j ℄�1�B(j)i ; Uji ! Uji = sji [B(j)i ℄�1�B(i)j : (43)We demand that parallel transport of a spinor along a given link and ba
kdoes not 
hange the spinor. We see that this is indeed the 
ase, i.e. we haveUjiUij = 1 if sjisij = �1 : (44)Using a similar 
al
ulation as the one whi
h led to (40) one �nds that in thespinorial representation the loop invariant for an elementary loop around avertex is 12TrU(Lq) = SLq � 
os �q2 ; (45)where �q is the de�
it angle, and SLq is a sign �. The fa
tor one-half inthe argument of the 
osine follows from (42). The total sign of the loop,denoted by SLq , depends on the 
hoi
e of signs sij in (43) and has to be
al
ulated. We require that the signs sij are 
hosen in su
h a way that forea
h elementary loop the sign SLq is positive:SLq = 1 : (46)Note that for q = 6 this requirement is natural, be
ause the plaquette is�at, �6 = 0, and as dis
ussed before for a �at pat
h the parallel transportshould be trivial: U(L6) = 1. Thus indeed we should have SL6 = 1. Also forother q's the requirement 
an be motivated. The geometry of an elementaryplaquette 
orresponds to the geometry of a �at 
one, whi
h has a singularityat the peak. The elementary loop en
ir
les this singularity at some distan
er from the peak. One 
an regularize the singularity by smoothing the peak,i.e. repla
ing it by a di�erentiable surfa
e (see Fig. 8).In doing so, one deforms only a very small region within a distan
e of� around the peak, where � � r. Now imagine that we shrink the loop,
ontinuously de
reasing its radius. Then TrU(r) and �(r) both 
hange
ontinuously with r. In the limit r ! 0, the loop ends up on the top of the
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Fig. 8. The internal geometry of a set of triangles around a vertex is the same asthat around the peak of a 
one: it is �at everywhere ex
ept for a single point wherethe 
urvature is 
on
entrated in a singularity. We 
an determine the sign of anyloop around the 
one if we �rst regularize this singularity by `�attening' the 
one,and �nd S = +1.regularized part of the geometry whi
h is �at. Thus, again S = +1 in thelimit of r ! 0. This already is su�
ient to have positive sign for all valuesof r, be
ause in the 
ourse of 
ontinuous 
hanging, the de�
it angle � was
hanging 
ontinuously and hen
e the sign S 
ould not have jumped betweennegative to positive values without making U dis
ontinuous. In other words,S must keep the value +1 for all r.Be
ause the regularized zone 
an be made arbitrarily small, we assumethat the triangulated latti
e, whi
h 
orresponds to the limit �! 0, inheritsthe property of the regularized geometry: the sign of any elementary loop isSLq = +1 for any q.In order to enfor
e the 
onstraint SLq = +1 for ea
h plaquette, one hasto establish a relation between SLq and the signs of links sji. In analogy to(37), one 
an 
al
ulate the loop invariant in the spinorial representation as:TrU(L) = Tr nYk=1Uik+1ik =Yk sik+1ik � Tr Yk Tik : (47)Comparing this to the result pertinent for the fundamental representation(37), one �nds that an additional produ
t of link signs appears, as expe
ted.But there is also another sour
e of signs hidden in (47). It has its originin the spinorial representation of the turn matri
es T ! T . Surprisingly,and in 
ontrast to the fundamental representation, the produ
t of basi
rotations depends on the position of the frame. More pre
isely, 
al
ulatingthe rotation 
orresponding to the turn taken by the path at ik one gets an
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e 4141additional sign zik : Tik = B(ik)ik+1 [B(ik)ik�1 ℄�1F = zike(�)ik �6 � (48)whi
h was not present in the fundamental representation.The reason for the appearan
e of these new signs is the following: In thespinorial representation, the basi
 rotations are given byBik+1ik = e 12�ik+1ik � ; Bik�1ik = e 12�ik�1ik � ; (49)where �ik+1ik and �ik�1ik are the angles between (eik1; nik+1ik) and(eik1; nik�1ik), respe
tively. Therefore, we haveTik = e 12 (�ik+1ik��ik�1ik+�)� = e 12 (��ik+�)� : (50)By 
onstru
tion, �ik+1ik and �ik�1ik both lie in the range [0; 2�). However,the di�eren
e ��ik = �ik+1ik ��ik�1ik 
an lie outside this range. In general,one has ��ik + � = ��=3 modulo 2�, but 2� 
an be disregarded sin
ee2�� = 1. In the spinorial representation, however, due to the fa
tor 1=2 onehas (��ik + �)=2 = ��=6 modulo �, and this � 
annot be ignored be
ausee�� = �1.One has to 
al
ulate the exponents in (50) exa
tly and to �nd all possiblevalues of ��ik . There are six di�erent 
ases, 
olle
ted in Fig. 9.
i+1

i

i-1

(e)

(a)

(d) (f)

(c)(b)

Fig. 9. The six di�erent possibilities for a path to 
ross a triangle with a markedz-�ag, 
onstru
ted from the two possible dire
tions of the path (left turn or rightturn) and the three possible dire
tions of the �ag. The sign of ��ik is determinedby whether or not the auxiliary line to the right of the path 
rosses the �ag.
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z et al.The �ag in ea
h drawing represents the position of the ve
tor eik1, withrespe
t to whi
h the angles are 
al
ulated. We 
all it the z-�ag. For example,in the drawing (a) one has �ik+1ik 2 [0; 2�=3) and �ik�1ik = �ik+1ik + 4�=3,whi
h yields ��ik = �4�=3 and thus the rotation matrix:Tik = e 12 (�4�=3+�) = e��6 � : (51)In the drawing (b) one has �ik+1ik 2 [2�=3; 4�=4) and �ik�1ik = �ik+1ik �2�=3, so that ��ik = 2�=3 and the rotation matrix isTik = e 12 (2�=3+�)� = e 5�6 � = �e��6 � : (52)The results for all six 
ases (a)�(f) are given in Table I. Inserting them intothe formula for the loop invariant (47) one obtains:TrU(L) =Yk sik+1ik � Tr Yk Tik =Yk sik+1ikzik � Tr Yk e(�)ik �6 � ; (53)where zik is the sign of Tik . Setting:SL = �Yk sik+1ikzik (54)one �nds: TrU(L) = �SL � Tr Yk e(�)ik �6 � : (55)The relation (54) between the loop sign SL, the link signs s, and the z-signs
an be represented graphi
ally in a very intuitive way. The signs zik tellTABLE IThe di�eren
e of angles ��ik and the turning matrix Tik in the spinorial represen-tation for the six 
ases shown in Fig. 9.��ik Tik = e 12 (�ik+1ik��ik�1ik+�) �(a) �4�=3 +e��=6 �(b) +2�=3 �e��=6 �(
) +2�=3 �e��=6 �(d) �2�=3 +e+�=6 �(e) +4�=3 �e+�=6 �(f) �2�=3 +e+�=6 �
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e 4143on whi
h side of the path lives the z-�ag. If one draws an auxiliary line,as in Fig. 9, that runs along the right-hand side of the main path, thenthe sign zik 
an be determined geometri
ally by 
hoosing zik = �1 if theauxiliary line 
rosses the z-�ag and zik = +1 otherwise. Similarly, one 
anintrodu
e a �eld of �ags asso
iated with the oriented links, and 
hoose thesign sji = �1(+1) when the respe
tive s-�ag is (is not) 
rossed when oneis going from i to j. Be
ause for any given link the auxiliary path 
rossesthe s-�ag when going in one dire
tion but not in the other, this 
hoi
e leadsto sjisij = �1 as required by (44). The total sign SL of the loop L is nowgiven by the number of �ags FL that are 
rossed by the auxiliary path:SL = (�1)1+FL : (56)As on the regular latti
e, one 
an use the 
on
ept of small deformations ofloops to prove some topologi
al theorems for the signs of the loops. Thefa
t that ea
h elementary loop has S = +1 implies that two loops L, L0 that
an be transformed into ea
h other by a small deformation always have thesame sign, SL = SL0 , be
ause a small deformation 
hanges the number of�ags 
rossed by the loop by an even number (see Fig. 10).

Fig. 10. A small deformation of a loop on a triangulated latti
e.Thus, we see that if all elementary loops on the latti
e have positivesigns, all 
ontra
tible loops have positive signs SL = +1, too. Likewise,one 
an show that all loops belonging to the same homotopy 
lass have thesame sign. In other words, all the topologi
al theorems we found for theregular latti
e hold for the triangulated one as well. The remaining thing is
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z et al.to 
he
k that on a given latti
e an assignment of the link signs sij, ensuringthe positivity of all elementary loops signs, does always exist. That it is sofor any dis
retized orientable 2D manifold in [10, 11℄.7. The Dira
�Wilson operatorWe now have all what is needed to 
onstru
t the fermioni
 a
tion (19).We start by 
asting the formula (24) for the hopping operatorHij = 12 h1� n(i)ji � 
iUij (57)into a form that depends on the �eld of orthogonal frames through the basi
rotations. One 
an use equation (43) to de
ompose the matrix Uij :Uij = sij [B(i)j ℄�1�B(j)i : (58)Likewise, we write the ve
tor n(i)ji in terms of the basi
 rotations. By de�-nition, the basi
 rotations at point i relate the dire
tion ei1 of the frame tothe dire
tions of the links between i and its neighbors j:ei1 = [B(i)j ℄�1n(i)ji : (59)In the spinorial representation (17) one 
an write:n(i)ji � 
 = [B(i)i ℄�1
1B(i)j ; (60)where 
1 = ei1 � 
 is the gamma matrix asso
iated with the �rst dire
tionof the frame. As mentioned before, the gamma matri
es have the samenumeri
al values 
1 = �3, 
2 = �1 in ea
h frame on the triangulation.Inserting everything into (57) we eventually obtain:Hij = sij[B(i)j ℄�1 12 [1� 
1℄�B(j)i (61)whi
h de�nes the hopping term in the Dira
�Wilson operator on the trian-gulated latti
e.To 
al
ulate the basi
 rotations, one has to �nd on ea
h triangle thethree angles between ei1 and the nearest neighbor ve
tors nji; denote themby �(i)j . Ea
h is de�ned in the fundamental range of the rotation group,[0; 2�). Sin
e physi
al quantities 
annot depend on the 
hoi
e of the �eld offrames, we are free to make the most 
onvenient 
hoi
e. Hen
e, we assumethat in ea
h triangle the ve
tor ei1 points to one of the verti
es. This implies
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e 4145that the angles �(i)j 
an take only one of the three possible values � �=3, �or 5�=3 � whi
h in turn makes the basi
 rotation matri
es very simple:B(i)j = e�(i)j2 � =  
(i)j s(i)j�s(i)j 
(i)j ! ; (62)where 
(i)j � 
os �(i)j2 = p32 ; 0;�p32 ; s(i)j � sin �(i)j2 = 12 ; 1 ; 12 (63)for �(i)j = �=3; �; 5�=3, respe
tively. Inserting this expli
it form of the basi
rotations into (61) leads to an extremely simple formula be
ause (1�
1)=2 isa proje
tion matrix, whi
h with our 
hoi
e of 
1 has only one non-vanishingelement. Hen
e: Hij = sij  s(i)j 
(j)i s(i)j s(j)i�
(i)j 
(j)i �
(i)j s(j)i ! : (64)In this form the Dira
�Wilson operator is easy to implement. For ea
h pair ofneighboring triangles j and i we �rst �nd the sign sji and the angles betweenthe z-�ag and the dual link ji and 
al
ulate the appropriate trigonometri
fun
tions. For example, assuming sij = 1 for the link ji in Fig. 7 we have�(j)i = 5�=3, �(i)j = �. Hen
e:Hij = � �p32 120 0 � : (65)The Dira
�Wilson operator is built from blo
ks like the above one, for ea
hpair of indi
es representing neighboring triangles, and from 2 � 2 unit ma-tri
es for ea
h pair of identi
al indi
es. De�ning the adja
en
y matrix fortriangles as: Aij = � 1 if i and j are neighbors0 otherwise (66)one 
an write the Dira
�Wilson operator as:Dij = �KAijHij + Æij1 : (67)What are the properties of the Dira
�Wilson operator in this form? Considerthe 
harge 
onjugation transformation: !  
 = C � T ; � ! � 
 = � TC�1 ; (68)
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TC = �
 ; CT = �C : (69)One 
an 
he
k that the hopping operator (61) transforms as:CHTijC�1 = Hji : (70)In two dimensions we 
an 
hoose the standard antisymmetri
 matrix " asthe 
harge 
onjugation matrix, C = ". It is 
onvenient to use two di�erentversions of ", one with lower indi
es "�� and one with upper indi
es "�� , butwith the same numeri
al values:"12 = "12 = 1 ; "�
"
� = �Æ�� : (71)One 
an treat " as a simple
ti
 form to raise or lower the spinorial indi
es:( 
)� = "�� � ; ( 
)� =  �"�� : (72)We re
all that in the expli
it index notation, the 
omponents of the spinor� are denoted by  � and those of  by  �. Furthermore, in this notationone 
an write: D��ij = "�
 [Dij ℄�
 : (73)In the impli
it index notation one has to distinguish between di�erent 
ases,namely D for mixed indi
es, "D for only upper indi
es, and D" for only lowerindi
es, by displaying expli
itly the a
tion of ".The fa
t that the hopping operator is 
onstru
ted from a proje
tor im-plies in parti
ular, that:HijHji = 0 ; HijUjiHij = Hij : (74)The 
onsequen
e of the transformation law (70) is that:"Hij" = �HTji (75)and, furthermore, that: ("Dij)T = �"Dji : (76)In index-expli
it notation, this last equation reads:D��ij = �D��ji (77)whi
h means that the matrix D��ij is antisymmetri
 in the double indi
esI = (i�) and J = (j�): DIJ = �DJI .
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ond-quantized theoryQuantum �eld theory of free Dira
 fermions in a 
urved geometri
alba
kground represented by a triangulation T is de�ned by the partitionfun
tion: ZT (K) = Z Yi d2 id2 � ie� �i [Dij ℄�� i� = jDj : (78)The propagator is:h n� �mi = 1ZT (K) Z Yi d2 id2 � i  n� �m e� �i [Dij ℄�� i� = [D�1nm℄�� : (79)It transforms under a lo
al 
hange of frames ei ! e0i = Riei as follows:h n� �mi ! 
 0n� 0�m� = [Rn℄�� [R�1m ℄�� D n� �mE : (80)Let us further explore the 
onsequen
es of the symmetry with respe
t to the
harge 
onjugation that is en
oded in the transformation law (70). Introdu
etwo families of Majorana fermions:�1 = 12( 
 +  ) ; ��1 = 12( � 
 + � ) ;�2 = 12i ( 
 �  ) ; ��2 = � 12i( � 
 � � ) : (81)They are 
harge self-
onjugate: �1
 = �1 and �2
 = �2. This means thatthe 
omponents of �1 are not independent, likewise for �2. The 
omponentsare related: �� = ��"�� (82)as 
an be seen from (72). We skipped the family index 1; 2 in the lastformula.It is 
onvenient to express the Dira
�Wilson a
tion in terms of the Ma-jorana families �1 and �2. Indeed, using equation (70) one �nds that thetwo families de
ouple:S( � ; ) = 12Xi � i i �KXhiji � iHij j = S(�1) + S(�2) ; (83)where S(�) = 12Xi ��i�i �KXhiji ��iHij�j : (84)
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z et al.The two a
tions S( � ; ) and S(�) appear identi
al to ea
h other, but theydi�er in the number of degrees of freedom; in the latter 
ase, �� is uniquelydetermined by �. By 
hanging the variables in the integration measure of(78) one 
an rewrite the partition fun
tion as a produ
t of two identi
alfa
tors: ZT (K) = Z Yi d2�1id2�2i e�S(�1)�S(�2) = [ZT (K)℄2 ; (85)where ZT (K) is the partition fun
tion for a single Majorana family:ZT (K) = Z Yi d2�i e� 12 Pi ��i�i+KPhiji ��iHij�j= Z Yi d2�ie��i�D��ij �i� = Pfa�["D℄ : (86)Here, "D is the antisymmetri
 matrix (77), whi
h implies that the squareof the Pfa�an is equal to the determinant of "D, whi
h is in turn equalto the determinant of D. We 
an 
al
ulate the partition fun
tion for theMajorana fermions using the hopping parameter expansion. This leads to ageometri
al interpretation of the model, as will be seen in the next se
tion.9. Fermioni
 loopsTo �nd the hopping parameter expansion of ZT (K) let us �rst split theintegrand into two parts:ZT (K) = Z Yi �d2�i e� 12 ��i�i� Yhiji �1 +K ��iHij�j� : (87)The �rst part is a produ
t of independent one-point integrations with anexponential measure, whereas the se
ond is a produ
t over all oriented linksthat 
onne
t neighboring points. Sin
e we know from equations (70) and(75) that for Majorana fermions:��jHji�i = ��iHij�j ; (88)it is 
onvenient to rewrite the produ
t in (87) as a produ
t over non-orientedlinks (ij): ZT (K) = Z Yi �d2�i e� 12 ��i�i� Y(ij) �1 + 2K ��iHij�j� : (89)
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e 4149To do this, we have to require that terms like ��iHij�j ��jHji�i do not o

urin the expansion. A
tually, they vanish be
ause of (74).The only non-vanishing integrals relevant to our problem are:Z d2� e� 12 ��� � 1 = 1 (90)and Z d2� e� 12 ��� � (� � ��) = 1 : (91)These rules are used to 
al
ulate the integral of ea
h term in the expansion:Y(ij)(1 + 2K ��iHij�j) = 1 + 2KX(ij) ��iHij�j+(2K)2 X(ij);(kl) ��iHij�j � ��kHkl�l + : : : : (92)Consider the quadrati
 term on the right hand side. If j = k then, a

ordingto (91), the integration over �j yields:X(ij);(jl) ��iHij�j � ��jHjl�l = X(ij);(jl) ��i(HijHjl)�l : (93)Otherwise, if j 6= k, the integral vanishes. In general, one observes thatthe 
ontribution of a term in the expansion (92) is non-vanishing only whenall neighboring �elds �j � �k belong to the same point. Integration of theseterms over all �elds gives:��j1Hj1j2Hj2j3 � � � Hjn�1jn�jn ; (94)where all ji in the 
hain are di�erent. For the �nal integration to yieldsomething non-vanishing one must have j1 = jn. Finally:C(L) = �TrHj1j2Hj2j3 � � � Hjn�1j1 : (95)This 
ontribution 
an be graphi
ally represented by a 
losed loopL = (j1; j2; : : : ; jn�1; j1) of length n. On the other hand, integration over a�eld �k asso
iated with a vertex k that does not lie on any loop 
ontributesa fa
tor of 1 (90).In summary, all terms of the expansion that survive the integration (89)
an be represented graphi
ally as diagrams 
onsisting of 
losed loops. Theseloops do not ba
k-tra
k or tou
h ea
h other. A 
on�guration 
onsisting of lloops L1; L2; : : : ; Ll with total length n = n1 + : : : + nl 
ontributes a term
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tion.One 
an 
al
ulate the 
ontribution C(L) of a single loop L in a waysimilar to that used to obtain the loop invariant (47), i.e. by extra
ting thetotal sign of the loop (54) and expressing the remaining produ
t in terms ofturns at the verti
es (48). The result is:C(L) = �Tr Yk Hik+1;ik = SL � Tr Yk Tik 12(1� 
1) : (97)The di�eren
e between this expression and the one for the loop invariant (53)is that now in addition to the turn matrix a proje
tion operator appears inthe produ
t. Inserting the expli
it form of the turn matrix Ti = e���=6 andof the proje
tor (1� 
1)=2 = (1� �3)=2, one obtains:C(L) = SL p32 !n : (98)This is again similar to the result found for the loop invariant (55), butwith two di�eren
es. First, one now has SL instead of �SL. Se
ond, inthe 
al
ulation of the loop invariant the turn angles enter the result with asign � depending on whether the path turns left or right, whereas here theproje
tor leaves only the 
osines of the rotation matrix, whi
h depend onthe absolute value of the turn angle. Thus, ea
h turn 
ontributes a fa
tor+p3=2 independently of its dire
tion. Sin
e a loop makes a turn at ea
hvertex, the number of turns in a loop is simply equal to the loop length,whi
h gives (98).

Fig. 11. A 
on�guration of fermioni
 loops.
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ontribution of a loop
on�guration of total length n is:Stotal � �p3K�n ; (99)where Stotal =YL SL : (100)On a latti
e with spheri
al topology all loops L have a positive sign SL = 1and therefore Stotal = 1 for ea
h loop 
on�guration.On a torus, the sign of the 
ontribution depends on the spin stru
ture.Assuming periodi
 boundary 
onditions in both dire
tions (++), all loopsfrom any non-trivial homology 
lasses, 
ontra
tible or not, have SL = 1,and again Stotal = 1 for any loop 
on�guration. The standard notationis used here: the spin stru
ture is referred to by the signs of independent
lasses of non-
ontra
tible loops. On the torus there are two 
lasses andtherefore four possibilities (ss0), with s; s0 = �. Plus/minus 
orrespondsto periodi
/antiperiodi
 boundary 
ondition for spinors transported alongloops in this 
lass. With anti-periodi
 boundary 
onditions in any dire
tion� (+�), (�+), or (��) � any non-
ontra
tible loop 
ir
ling the latti
e inthis dire
tion has a negative sign SL = �1. Thus, all of these three 
ases 
anprodu
e unwanted 
on�gurations with a negative 
ontribution to the parti-tion fun
tion. More generally, any 
on�guration that has an odd number ofnon-
ontra
tible loops 
ir
ling the latti
e in an anti-periodi
 dire
tion has anegative total sign Stotal = �1.Yet another possible 
hoi
e of boundary 
onditions imposes summationover all spin stru
tures � (++), (+�), (�+), and (��) � in the partitionfun
tion. This operation is 
alled GSO proje
tion, and in many 
ases seemsto be the most physi
al 
hoi
e. Negative 
ontributions are not a problemin this 
ase: a 
on�guration with an odd numbers of loops in one of thenon-trivial homotopy 
lasses, say in the �rst 
lass of non-
ontra
tible loops,has Stotal = 1 for (++) and (+�), but Stotal = �1 for (�+) and (��). Thesummation over all 
ases yields zero. More generally all `bad' 
ontributionsto the partition fun
tion 
an
el out in the GSO proje
tion.Con�gurations with an odd number of non-
ontra
tible loops in at leastone dire
tion 
annot 
orrespond to Ising model domain wall 
on�gurations,be
ause only an even number of these domain walls is 
rossed when one isperforming a round trip on the latti
e (see Fig. 12). From this point of view,the loop 
an
ellation in GSO proje
tion is very physi
al. Before dis
ussingthis point in more detail, a more 
areful look at the properties of the loopsigns is needed.
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Fig. 12. Domain walls versus loops on a torus. A non-
ontra
tible loop on a torus,like for instan
e the upper 
urve in the �gure, 
annot be a part of the domainwall 
on�guration of Ising spins unless there is a partner 
urve in the same 
lass ofloops in this 
on�guration, like for example the lower one. In general, domain-wall
on�gurations of 2D Ising model have an even number of loops in ea
h non-trivial
lass of non-
ontra
tible loops.10. The GSO proje
tionAs dis
ussed in the pre
eding se
tions, the global properties of the Dira
�Wilson operator on a two-dimensional 
ompa
t manifold are 
losely relatedto the signs of the fermioni
 loops. Self-
onsisten
y requires a positive signfor all elementary fermioni
 loops, and this in turn implies a positive signfor all 
ontra
tible loops. Non-
ontra
tible loops, on the other hand, arenot subje
t to this restri
tion. In fa
t, it is the ensemble of signs of allindependent non-
ontra
tible loops that de�nes the spin stru
ture of themanifold.In this se
tion, it will be shown that the sign of any loop on the latti
e isuniquely determined by the signs of a minimal number of independent non-
ontra
tible loops. Stated di�erently: the signs of all loops on the manifoldare 
ompletely en
oded in the manifold's spin stru
ture.So far, we dis
ussed the loops without self-
rossings only, for the simplereason that on a triangulation no other loops o

ur in the hopping parameterexpansion of the Majorana�Dira
�Wilson fermions. On the other hand, wealready en
ountered self-
rossing impli
itly in the 
al
ulation of the invari-ants TrU(C) (47), sin
e they 
an be de�ned on loops of any kind, in
ludingthe self-
rossing ones3.3 It is 
onvenient to think of a self-
rossing on a latti
e not as a meeting at exa
tlyone vertex, but rather as a sort of smeared overlapping that may o

upy one or morelinks of the latti
e. In parti
ular, on a latti
e with only verti
es of order three, thereare no exa
t one-vertex self-
rossings; the most lo
alized ones still o

upy at leastone link.
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ompleteness, we shall nowdis
uss the signs and topologi
al properties of loops in a general 
ontext,and restri
t them to self-avoiding loops only when ne
essary. We requirethe sign of a loop to be a property of its homotopy, whi
h means that wehave to modify the de�nition of the sign (56) to:SL = (�1)1+FL+CLL ; (101)where CLL is the number of self-
rossings of the loop L. Of 
ourse, for any
ontra
tible loop this must still result in a positive sign, independently of thenumber of self-
rossings. A few examples of 
ontra
tible loops with variousnumbers of self-
rossings are shown in Fig. 13. It is easy to verify that theauxiliary line running along the right hand side of the loop 
rosses an oddnumber of �ags in the �rst two 
ases and an even number of �ags in the lasttwo.
Fig. 13. Examples of 
ontra
tible loops with and without self-
rossings on a squarelatti
e. The numbers of 
rossed �ags and self-
rossings are F1 = 9, C1 = 0 for the�rst example; F2 = 9, C2 = 0 for the se
ond (the �ag in the 
enter of the �gureis 
rossed twi
e!); F3 = 8, C3 = 1 for the third; and F3 = 12, C3 = 1 for the lastone. The result is a positive sign in all 
ases. Note that in the last three examples,the �ag at the vertex in the 
enter, where four links of the loop meet, is 
rossed aneven number of times by the auxiliary line.Let us now return to the operation that we 
alled a 'small deforma-tion'. So far, we have 
onsidered only deformations that do not indu
eself-
rossings (see for example Fig. 10). These deformations will be 
alledeven. It is 
onvenient to introdu
e also an odd version of a small deforma-tion, where an elementary plaquette is again used to deform the loop, butwith a a self-
rossing like in Fig. 14. The two kinds of small deformationsdi�er by the orientation of the plaquette that is used to deform the loop.Neither kind 
hanges the overall sign of the deformed loop.One 
an introdu
e equivalen
e 
lasses of loops that 
an be obtained fromea
h other by a sequen
e of small deformations. A 
lass of loops equivalentto a loop A will be denoted by [A℄. Inside this 
lass, [A℄even denotes thesub-
lass of loops that 
an be obtained from [A℄ by a sequen
e of an evennumber of small deformations.
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Fig. 14. Even and odd versions of a `small deformation'. In the upper �gure, thetwo loops 
ontain a 
ommon link of opposite orientation, 
ausing the two versionsof the link to `
an
el out' in the resulting deformed loop. In the lower �gure, the
ommon link has the same orientation in both loops, 
ausing it to appear twi
e inthe deformed loop and thus introdu
ing a self-
rossing.Let us de�ne the loop merging operation, that a
ts on a set of equivalen
e
lasses of loops. Take two loops A 2 [A℄ and B 2 [B℄, and deform both ofthem smoothly until they have a 
ommon link. If this 
ommon link hasan opposite orientation in both loops, erase it and form a loop out of theremaining links. Otherwise, leave the link as it is and join A and B by aself-
rossing (see Fig. 15). The resulting loop belongs, by de�nition, to anew equivalen
e 
lass of loops [A �B℄.
 

 

PSfrag repla
ements AA BB A �B
A �B

Fig. 15. The loop merging operation. Two loops A 2 [A℄ and B 2 [B℄ are smoothlydeformed until they share a link. They are then joined either by erasing the link orby a self-
rossing, depending on the link's relative orientation in both loops. Theresulting loop belongs to a new 
lass of loops [A � B℄.
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t of loop 
lasses de�ned in this way has a unity element inthe 
lass of 
ontra
tible loops [E℄, for whi
h [A �E℄ = [E �A℄ = [A℄. Countingthe number of 
rossed �ags before and after the loop merging (steps 2 and3 in Fig. 15), one �nds:F[A�B℄ mod 2= F[A℄ + F[B℄ + 1 + CAB ; (102)where CAB is the number of 
rossings of the loops A and B. The equationimplies the law of sign 
omposition:S[A�B℄ = S[A℄ S[B℄ : (103)Indeed, in the upper drawing in Fig. 15 the loop merging does not intro-du
e any additional self-
rossing, CAB = 0, and the number of 
rossed �ags
hanges by 1 modulo 2, whereas in the lower �gure one additional self-
rossing appears, CAB = 1, and the number of 
rossed �ags 
hanges by 0modulo 2, i.e. it remaines unaltered. The fa
tors 
oming from the �ag 
ountand from the number of additional self-
rossings 
ompensate ea
h other, andthe above simple 
omposition law (103) follows.Thus, the set of equivalen
e 
lasses of loops forms a group with respe
tto the loop merging operation. On a two-dimensional 
ompa
t manifold,this group 
ontains a minimal set of independent 
lasses of non-
ontra
tibleloops [Hi℄, i = 1; : : : ; 2g, where g is the genus of the manifold (see Fig. 16).PSfrag repla
ements
H1H2 H3H4 H2g�1H2gFig. 16. Independent 
lasses of non-
ontra
tible loops on a 2d manifold withgenus g.This minimal set has the ni
e feature that all other 
lasses 
an be 
reatedfrom [E℄, [Hi℄, and their inverses [Hi℄�1 by use of the loop merging operation.In other words, one 
an de
ompose any loop in terms of [E℄ and [Hi℄, andthen use equation (103) to 
al
ulate the sign of this loop as a produ
t ofsigns of the Hi.Let us illustrate this with a few examples. For simpli
ity, denote thesigns of the 
lasses in the minimal set with Si � S[Hi℄ = S[Hi℄�1 .Consider �rst a loop whi
h goes around a torus in two distin
t homotopydire
tions simultaneously. Su
h a loop 
an be obtained by loop merging ofthe 
lasses [H1℄ and [H2℄, as shown in Fig. 17. Note that the loops shownin the �gure do not self-
ross; nor does the resulting loop H1 � H2. This
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Fig. 17. Loop merging on a torus. Take two loops from the 
lasses [H1℄ and [H2℄and smoothly deform them until they share a link, then merge them. The resultingloop [H1 �H2℄ 
ir
les the torus in both dire
tions [H1℄ and [H2℄ simultaneously. Itssign is the produ
t S1 � S2.might seem surprising at �rst, given that the loop merging itself introdu
esa 
rossing, CH1H2 = 1. But indeed one 
an see that the original loops, even ifnot self-
rossing, do 
ross ea
h other. In general, any loop from [H1℄ always
rosses any loop from [H2℄ an odd number of times. In the resulting mergedloop, these 
rossings be
ome self-
rossings, so that the produ
t has an evennumber of self-
rossings overall. This in turn means it 
an be deformed bya sequen
e of an even number of small deformations to a non-self-
rossingloop.As a general de�nition, one 
an state that a 
lass [A℄ 
rosses a 
lass [B℄if the number of 
rossings between any two representatives A and B is odd.By this de�nition, the 
lasses [H1℄ and [H2℄ 
ross ea
h other, as do any twoof the 
lasses [H2i�1℄ and [H2i℄ shown in Fig. 16. This 
on
ept will be usefulin a while in the 
ontext of the GSO proje
tion.Another example of loop merging is shown in Fig. 18. The loop C inthe lower drawing is obtained by merging H1 and H3, so its sign 
an be
al
ulated as the produ
t SC = SH1SH3 .Let us apply the sign 
omposition law to the 
al
ulation of the partitionfun
tion of Majorana fermions (89). In the hopping expansion, one generatesnon-self-
rossing loops only. Denote the number of loops from a given 
lassS[C℄ on a 
on�guration by N[C℄. Then the total sign of this 
on�guration
an be written as: Stotal =Y[C℄ �S[C℄�N[C℄ : (104)
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PSfrag repla
ements H1 H3C
Fig. 18. Loop merging on a double torus. The sign of the loop in the lower �gure
an be 
al
ulated by observing that it 
an be 
reated by a merging of the loopsdrawn in the upper �gure. This 
an be done by �rst deforming the two loopsuntil they have a 
ommon link, then erasing this link, and smoothly deforming theremaining loop.After GSO proje
tion:ZGSO = 122g Xf(�)1;:::;2ggZ((�)1;(�)2;:::;(�)2g) ; (105)the total 
ontribution of the 
on�guration is proportional toWGSO �Y[C℄ 12 �1 + (�1)N[C℄� : (106)To see this, note �rst of all that the sum over the signs Si of the 
lasses[Hi℄ 
an be repla
ed by a sum over the signs S[C℄ of the 
lasses [C℄ presentin the 
on�guration, sin
e all these loops do not 
ross and are independentfrom ea
h other. Summing over all signs S[C℄ means that ea
h loop of ea
hnon-trivial 
lass [C℄ o

urs an equal number of times with plus and minussigns, whi
h eventually leads to the last formula. In a sense, the a
tion ofthe GSO proje
tion fa
torizes into a produ
t of independent a
tions for theloops of ea
h non-trivial 
lass on the 
on�guration.The last equation also tells us that all 
on�gurations with an odd numberof loops from any non-trivial 
lass have a vanishing 
ontribution to theGSO proje
tion. Physi
ally, this means that the proje
tion removes all loop
on�gurations whi
h 
annot represent domain wall 
on�gurations.
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onsider now the Ising model with nearest neighbor intera
tions,fo
using on the issue of the exa
tness of the duality transformation betweenthe model de�ned on a triangulation and on its dual graph, respe
tively, andemphasizing the topologi
al aspe
t of the duality. Furthermore, the relationbetween the Ising and the fermioni
 model will be dis
ussed.To distinguish between a triangulation and its dual, we atta
h a star tosymbols referring to the triangulation, while the unstared symbols refer tothe dual latti
e.With this 
onvention, the partition fun
tion of the Ising spins living onthe triangulation reads:
T�(��) = 
 (++)T� (��) = Xf�i�g e��P(i�j�) �i��j� ; (107)where �i� = �1 are spin variables lo
ated at the verti
es i� of the tri-angulation. As we shall see later dis
ussing boundary 
onditions for theIsing model, the partition fun
tion (107) 
orresponds to the partition fun
-tion with the spin stru
ture (++). Therefore we additionally denoted it by
 (++)T� (��) in the last equation.Any spin 
on�guration on the triangulation 
an be graphi
ally repre-sented as a 
on�guration of loops on the dual graph. Namely, for any link
onne
ting two spin variables of opposite sign, �i� = ��j�, one 
an drawthat link's dual as a part of a loop. It is easy to see that the result will beloops surrounding domains of aligned spins (Fig. 19).One 
an 
al
ulate the statisti
al weight of every loop 
on�guration. Forthis purpose, it is 
onvenient to rewrite the partition fun
tion as:
T�(��) = e3=2N�� Xf�i�g e��P(i�j�)(�i��j��1) (108)whi
h 
an be obtained from (107) by subtra
ting unity from the link in-tera
tion energy. Sin
e we 
onsider triangulations without boundaries, thenumbers of links and dual links are equal, NL = NL� , and related to thenumber, N , of triangles by NL = 3=2N . The subtra
tion of unity in ea
hintera
tion term is 
ompensated by adding an appropriate 
onstant fa
tor infront of the sum in (108). The 
ontribution to the sum of a term (�i��j��1)is 0 if �i� = �j� , and 2 if �i� 6= �j� . Thus, the sum in the exponent gives twi
ethe number of domain wall links (denoted as bold links in Fig. 19), whi
h isequal to the total length n of all loops on the 
on�guration. Therefore:
T�(��) = 2 e3=2N��XfLg e�2��n ; (109)
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Fig. 19. Ising spins on the triangulated latti
e, and the 
orresponding domain wallsdrawn as loops on the dual graph.where the sum runs over all loop 
on�gurations on the dual graph (whi
h areidenti
al to the loop 
on�gurations of the fermioni
 model dis
ussed in theprevious se
tion). The additional fa
tor of 2 in front of the sum re�e
ts thefa
t that ea
h loop 
on�guration represents two distin
t spin 
on�gurationswhi
h 
an be obtained from ea
h other by a simultaneous �ip of all spins�i� ! ��i� .For a non-spheri
al topology, some attention has to be paid to non-
ontra
tible loops. Consider on
e more a toroidal triangulation. A 
on�gu-ration with an odd number of non-
ontra
tible loops does not form a domainwall 
on�guration of the Ising model and therefore does not appear in (109).The same is true of the fermioni
 model if we perform the GSO proje
tion.Therefore the equivalen
e between the models is exa
t:ZGSOT (K) = 2 e�3=2N�� � 
T�(��) ; (110)if we set p3K = e�2�� ; (111)as 
an be seen by 
omparing (99) and (109). This statement holds foran arbitrary triangulation of a two-dimensional orientable manifold withoutboundary.Consider now the Ising model with spins �i living on the verti
es of thedual latti
e, or equivalently at the 
enters of the triangles of the originalmanifold (in other words, the spins are lo
ated at the same spots as the
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ussed before). The partition fun
tion reads now:
T (�) =Xf�ig e�P(ij) �i�j : (112)Performing the strong 
oupling expansion leads to the formula:
T (�) = 
osh(�)3=2N�Xf�igY(ij) (1 + �i�j tanh(�)) ; (113)in analogy to the hopping parameter expansion (89) in the Majorana �eldtheory. The integration rules for Ising spins:12 X�=� 1 = 1 ; 12 X�=� � = 0 ; 12 X�=� �2 = 1 ; (114)are 
ompletely analogous to those for the fermions (90), (91)4.Thus, 
al
ulating the strong 
oupling expansion, one again �nds a sumover the same loop 
on�gurations:
T (�) = (2 
osh(�))3=2N�XfLg0(tanh �)n : (115)More pre
isely, for a spheri
al latti
e the loop 
on�gurations o

urring inthis sum are identi
al to the domain wall 
on�gurations of the Ising modelde�ned on the triangulation. However, this is not true for topologies ofhigher genus, where 
on�gurations with an odd number of non-
ontra
tibleloops from the same homotopy 
lass o

ur in the strong 
oupling expansion(115). This is why we have put a prime on the sum, to distinguish the set ofthese 
on�gurations from the set of domain walls (109). If we again take thetorus as an example, we see that the sum in (115) also 
ontains 
on�gurationswith a single loop, or with an even number of loops 
ir
ling the torus in theH2-dire
tion. This kind of loop 
on�guration is also produ
ed in the hoppingexpansion of the fermioni
 model if we restri
t it to the spin stru
ture withperiodi
 boundary 
onditions. Thus, in this 
ase we have:Z(++)T (K) = (2 
osh(�))�3=2N� � 
T (�) (116)4 One would see a di�eren
e with the fermion rules on a latti
e with vertex ordersgreater than three, be
ause then one 
ould also have terms like 1=2P�=� �4 = 1,whereas the 
orresponding terms in the Majorana model are zero, R d2� e� 12 ��� ����� = 0. However, in our 
ase the order of the dual latti
e verti
es is three by
onstru
tion.
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e also holds for topologies of higher genus if we 
hoose thisspin stru
ture for the fermioni
 model.As expe
ted, both Ising models are almost dual to ea
h other. The onlydi�eren
e 
omes from topologi
al 
ontributions related to non-
ontra
tibleloops. In fa
t, one 
an make the two models exa
tly equivalent by a sortof a `GSO proje
tion' for the Ising �eld. Contrary to the proje
tion in thefermioni
 model, whi
h appears as a natural option be
ause the model hasseveral possible spin stru
tures, its introdu
tion here is somewhat arti�
ial.Again, take the torus as an example. Originally, we have only one versionof the Ising model, whi
h 
orresponds to the spin stru
ture (++) (107).Now, we attempt to de�ne a model that 
an reprodu
e the three otherstru
tures. Let us start with the spin stru
ture (�+), 
orresponding to ananti-periodi
 boundary 
ondition in the �rst homotopy dire
tion. On thislatti
e, 
hoose a non-
ontra
tible loop 
ir
ling the torus on
e in the se
ondhomotopy dire
tion (see Fig. 20). We 
all this an anti-ferromagneti
 line. Alllinks (ij) that 
ross this line will be 
alled anti-ferromagneti
 and denotedby (ij)�. All other links will be 
alled ferromagneti
 and denoted by (ij)+.We de�ne the partition fun
tion as follows:
 (�+)T (�) =Xf�ig e��P(ij)+ �i�j�P(ij)� �i�j� : (118)In the strong 
oupling expansion, ea
h ferromagneti
 link 
ontributes a fa
-tor +tanh(�), and ea
h anti-ferromagneti
 link, a fa
tor � tanh(�). Ea
h
�
�
�
�

�
�
�
�

i

j

Fig. 20. For the dual Ising model on the torus, de�ne an anti-ferromagneti
 line inthe H2-dire
tion as a non-
ontra
tible loop 
ir
ling the torus in this dire
tion. TheIsing intera
tion for a given link is de�ned as anti-ferromagneti
 or ferromagneti
depending on whether or not it 
rosses the anti-ferromagneti
 line.
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ontra
tible loop in the H1-dire
tion has an odd number of anti-ferro-magneti
 links, so its 
ontribution will be � tanhn(�), whereas ea
h 
on-tra
tible loop and ea
h non-
ontra
tible loop in the H2-dire
tion has aneven number of anti-ferromagneti
 links, thus 
ontributing +tanhn(�). Inother words, this pres
ription gives exa
tly the same sign fa
tors as thoseo

urring for fermioni
 loops on the torus with spin stru
ture (�+). Inthe same manner, one 
an also introdu
e an anti-ferromagneti
 line in theH1-dire
tion, to produ
e a model 
orresponding to a (+�) spin stru
ture.Finally, a model with an anti-ferromagneti
 line in both dire
tions gives usa (��) spin stru
ture.Summing over all four 
ases, one obtains a model with a partition fun
-tion:
GSOT (�) = 14 �
 (++)T (�) + 
 (+�)T (�) + 
 (�+)T (�) + 
 (��)T (�)� ; (119)whi
h is exa
tly dual to the Ising model 
 (++)T� (��) that has its spin variablesde�ned on the verti
es of the triangulation (107), and is equivalent to themodel of Majorana fermions with GSO-proje
tion.For a latti
e size going towards in�nity, the di�eren
e between 
++T (�)and 
GSOT (�) be
omes negligible. As already explained, the di�eren
e 
omesonly from the non-
ontra
tible loops. These loops 
an be regarded as havinga one-dimensional entropy, in the sense that they 
an be ordered by a one-dimensional index that represents their position on the latti
e. Be
auseof this, they be
ome less and less important when the system size grows.Therefore, in the thermodynami
 limit one expe
ts an exa
t duality between(107) and (112) even without extending the model to the spin stru
tures(+�), (�+), and (��). We introdu
ed this extension here to ensure exa
tduality, i.e. a one-to-one map, between the two models even for systems of�nite size.Generalization of this Ising model `GSO 
onstru
tion' to higher genustopologies is straightforward. In order to simulate a spin stru
ture withan antiperiodi
 boundary in a given dire
tion Hi (see Fig. 16), one simplyintrodu
es an anti-ferromagneti
 line in the dire
tion Hj that 
rosses Hi.Altogether, this 
reates 22g di�erent spin stru
tures.12. Two examplesAs a �rst example, 
onsider the Dira
�Wilson a
tion on a regular trian-gulation of the two-dimensional plane (Fig. 21). The fermions live at thetriangle 
enters, on a regular hexagonal latti
e. Be
ause the latti
e is �at,we 
an 
hoose a global frame, i.e. with the same dire
tions e1 and e2 at
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Fig. 21. Fermions on the honey
omb latti
e.ea
h vertex. To �x the signs, we also 
hoose the �ag assignments, whi
h 
anlikewise be done in a translationally invariant way.One 
an easily write down the fermioni
 a
tion for this model. Choosean elementary 
ell as in Fig. 21. It 
onsists of two distin
t sites: A and B.The latti
e 
an be 
onstru
ted by shifting the elementary 
ell by multiplesi1d1 + i2d2 of the fundamental shift ve
tors d1 = n0 + n1, d2 = n0 + n2
onstru
ted from the the link ve
tors:n0 = (0; 1) ; n1 = �p32 ; 12� ; and n2 = ��p32 ; 12� : (120)The 
omponents of the ve
tors n1 and n2 are expressed in the global frame(X;Y ) shown in the �gure. The position of the 
ell is referred to by thedouble integer index i = (i1; i2). With this notation the a
tion is written as:S = �K2 Xi 2Xd=1 � � i+d;A(1 + nd � 
) i;B + � i;B(1� nd � 
) i+d;A��K2 Xi � � i;A(1� n0 � 
) i;B + � i;B(1 + n0 � 
) i;A�+12Xi � � i;A i;A + � i;B i;B� : (121)Sin
e the plane is non-
ompa
t, topologi
al e�e
ts are not relevant. Fromthe dis
ussion in the previous se
tions we know that for Majorana fermionsthe model with this a
tion is equivalent to the Ising model with spin variablesliving at the verti
es and at temperature �� given by (111), and likewise tothe Ising model with spins at the 
enters of the triangles and at tempera-ture � given by (117). The 
riti
al temperature 
orresponds to the 
riti
alhopping parameter, for whi
h the fermions be
ome massless. This 
riti
al
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z et al.value is easily found to be: K
r = 13 ; (122)be
ause ea
h vertex on the dual latti
e, where the fermions are living, hasthree neighbors. Thus, the 
riti
al temperatures for the Ising models is:��
r = �12 ln p33 ; �
r = 12 ln(p3 + 2) ; (123)in agreement with the known results [23℄ .A se
ond example we want to dis
uss shortly here is the dis
retization ofthe Majorana �eld 
oupled to two-dimensional gravity. It is well-known thatthe integration measure over the metri
 �eld on a two-dimensional manifold
an be represented by a sum over all equilateral triangulations. If we dressea
h triangulation in this sum with the fermion �eld, we e�e
tively obtaina theory of Majorana fermions 
oupled to two-dimensional gravity. Thistheory is given by the partition fun
tion:Z(K) =XT ZT (K) (124)with the sum running over all triangulations with a �xed topology. Fornon-spheri
al latti
es, one should sum in addition over spin stru
tures.We 
an use now the equivalen
e between the Majorana�Dira
�Wilsona
tion and the Ising model to substitute, triangulation by triangulation, allterms ZT in the sum. We again obtain an exa
t map between the Ising modeland the model of fermions 
oupled to gravity. The Ising model, however, isexa
tly solvable [24℄; in parti
ular, the 
riti
al temperature is [25℄:�
r = 12 ln 10823 ; ��
r = 12 ln 13185 (125)whi
h means that the Majorana fermions are massless when the hoppingparameter K is: K
r = 1p3e�2��
r = 85p3393 : (126)This, again, is an exa
t result. The equivalen
e of the two models opens thepossibility of studying numeri
ally the properties of the Dira
�Wilson oper-ator 
oupled to gravity. In fa
t, one 
an use the Ising model as a generatorfor triangulations, and then dress the 
on�gurations with lo
al frames and zand s �ags to 
al
ulate D on ea
h of them. Sin
e the Dira
�Wilson operatordepends on the triangulation, one gets a model of dynami
al fermions in-tera
ting with the �u
tuating geometry. Using the Ising model as a Monte
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on�gurations is many orders of magnitude more e�-
ient than a generator referring dire
tly to the fermioni
 a
tion, sin
e usingthe latter requires 
al
ulating the Pfa�an (86) in ea
h single Monte Carlostep, an extremely 
ostly operation in terms of CPU time. One 
an easily

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4 0.5

PSfrag repla
ements �
e �

Fig. 22. Comparison of the results for the energy density of Ising �eld 
omputedfrom MC simulations of the Ising model (line) and of the 
orresponding quantityEq. (128) from MC simulations of the fermioni
 model (
rosses). The error barsare smaller than the symbols used.
onvin
e oneself by simulating small systems that the two generators do in-deed produ
e the same results but di�er enormously in algorithm e�
ien
y.In Fig. 22 we 
ompare the average energy of the Ising �eld 
al
ulated in thetwo di�erent ways: (a) dire
tly using the Ising model:e� = � 1N *X(i�j�) �i��j�+T = � 1N ���� ln
T� (127)or (b) using the equivalen
e (110), (111):e� = �32 � 1N �K�� � lnZ�K = �12 �� 12N Xa ��1a �T (128)where �a are eigenvalues of the Dira
�Wilson operator D on the given tri-angulation T . In the derivation of the last formula we made use of therelations: ��K lnZ = *�jDj1=2�K +T = 12 �Tr�D�KD�1�T (129)
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z et al.The two methods yield the same results. Using the tri
k with the Isingmodel as a generator of triangulations one 
an extend the MC simulationsto larger systems in order to investigate the properties of the spe
trum ofthe Dira
�Wilson operator on dynami
al triangulations. The results of theseinvestigations has been presented elsewhere [26℄. Here let us only quote aresult for the �nite size s
aling of the pseudo
riti
al hopping parameterK� de�ned as the value of the hopping parameter for whi
h a mass gap isminimal. By the mass gap we mean the 
enter of mass of the distribution ofthe smallest positive eigenvalue of the Majorana�Dira
�Wilson operator "D.The numeri
al results 
an be well �tted to the �nite size s
aling formula:K� = K1 + aN� ; (130)where K1 = 0:3756(16), and � = 1:03(30), a = �0:9(5). The parameterK1 
orresponds to the 
riti
al value of the hopping parameter in the ther-modynami
 limit. As one 
an see it agrees with the theoreti
al predi
tionK
r = 0:3746 : : : given by the equation (126).13. Con
lusionThe topologi
al properties of a fermion �eld on dis
retized two-dimensio-nal 
ompa
t manifolds were dis
ussed at length. The exa
t equivalen
ebetween the model of Majorana�Wilson fermions and the Ising model wasestablished. An exa
t duality relation for the Ising model on a 
ompa
tmanifold was also found.It would be important to generalize the 
onstru
tion to higher�dimensio-nal simpli
ial manifolds. Having done this, one would then be able to atta
kthe problem of quantum gravity intera
ting with a fermioni
 �eld. So far,it has only been possible to 
ouple integer spin �elds to four-dimensionalsimpli
ial gravity [16,18℄. Su
h a theory is known to have problems with the
ontinuum limit [17℄, whi
h 
ould re�e
t the fa
t that higher-dimensionalgravity does not exist without a proper 
o
ktail of matter �elds 
oupled toit. If this were true, the addition of fermions might perhaps help solvingthese problems.It is straightforward to generalize parts of the 
onstru
tion presentedin this paper to higher dimensions. In parti
ular, one 
an asso
iate withea
h four-dimensional simplex an orthonormal oriented frame and basi
 ro-tations, and out of them one 
an easily build the transition matri
es andspin 
onne
tions. However, the problem of lifting this 
onstru
tion to thehalf-integer representation leads to additional 
ompli
ations.One of the reasons is that the topologi
al problem is by itself more 
om-pli
ated in four dimensions. The question of whether a manifold admits a
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ture, whi
h is equivalent to the question of whether it is possible tode�ne globally a Dira
 operator on it, is in general related to the existen
eof a non-trivial se
ond Sti�el�Witney form [20, 21℄. For two- and three-dimensional manifolds, this redu
es to the orientability question. In fourdimensions, however, there are manifolds, like for example the proje
tivespa
e CP (C2), whi
h are orientable but possess a non-trivial Sti�el�Witneyform, and thus do not admit any spin stru
ture. In an attempt of extendingour 
onstru
tion to a higher dimensional manifold not admitting any spinstru
ture, the topologi
al obstru
tion would manifest itself as the impossi-bility to adjust the lo
al degrees of freedom so as to assign positive signs toall elementary plaquettes.We thank Joa
him Taba
zek for many dis
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