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THE ENIGMATIC PISTON�M.J. Renney, M. Ruijgroka and Th.W. RuijgrokbaInstitute of Mathematis, Utreht UniversityP.O. Box 80010, 3508TA Utreht, The NetherlandsbInstitute of Theoretial Physis, Utreht UniversityP.O. Box 8006, 3508TA Utreht, The Netherlands(Reeived September 24, 2001)The use of ensemble theory to desribe systems in thermal equilibrium isjusti�ed by the fat that it explains a large variety of experiments. The the-oretial understanding, as embodied in the work of Boltzmann and Gibbs,is based on the assumption that all mirosopi states with the same energyour with equal a priori probability. E�orts to explain this assumptionor to avoid it by using the mirosopi equations of motion, are doomed tofail, beause of the extreme omplexity of these equations. In the presentpaper, however, we onsider a system for whih this omplexity is reduedto a minimum. It onsists of a �nite one-dimensional tube, �lled with anideal gas, in whih a piston forms an adiabati separation between the twoparts. Analytial and numerial investigation of this system reveals a veryslow approah to a �nal state in whih the piston still performs some non-haoti motion, whih is probably related to the formation of shok fronts.The general question of how muh omplexity is needed for a system toapproah thermal equilibrium is, however, still an open problem.PACS numbers: 05.70.Ln, 05.45.Pq1. The problem1.1. The Boltzmann-Gibbs point of viewA perennial soure of onfused disussions is the paradox that, on theone hand, the equations of motion of a system, onsisting of a large numberof partiles, are invariant under time reversal, whereas, on the other hand, itis lear that all marosopi systems approah an equilibrium state, so thata preferred time diretion seems to exist.� Presented at the XLI Craow Shool of Theoretial Physis, Zakopane, Poland,June 2�11, 2001.y On leave of absene from the Dept. of Applied Sienes, University of Tehnology,Delft, The Netherlands. (4183)



4184 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokAlthough a entury ago the misunderstanding giving rise to this paradox,was leared up by Boltzmann and Gibbs, we believe it worthwhile to repeatthe main line of their argument. In this we follow Uhlenbek and Ford [1℄.For an ideal gas all marosopi properties of the system are deter-mined by the distribution of N points in the �-spae of a single parti-le. This spae is divided into a large number M � N of ells of size!1; � � � ; !M and a marosopi state of the system is then spei�ed by giv-ing the numbers n1; � � � ; nM of points in eah of these ells. The sizes!i are determined by the resolving power of the measuring instruments. Toa given set fn1; � � � ; nMg orresponds a large number of mirosopi states.The volume in � -spae overed by these states is equal toW (n1; � � � ; nM ) = N !n1! � � �nM !!n11 � � �!nMM :The distribution whih maximises this volume is proportional to the respe-tive ell sizes and is given by ni = A!ie�� "i ;where "i is the energy of a partile in ell i and A and � are �xed by therequirement that the total number of partiles and the total energy are givenquantities. For states fn1; � � � ; nMg = fn1 +�n1; � � � ; nM +�nMg lose tothis maximum state, the orresponding volume in � -spae an be alulatedand is found to be equal toW (n) = W (n) e�Nh(�ni=ni)2i :The marosopi states for whih the exponential fator is not smaller thana �xed number between zero and unity, are alled equilibrium states. Theyform a small set in the sense that the numbers �ni=ni are on the averageof the order of 1=pN: Nevertheless, the total of all these states orrespondsto mirosopi states whih over almost all of phase-spae.Therefore, any initial state in phase-spae whih is not an equilibriumstate in the above sense, will, barring exeptional ases, very quikly enterthis equilibrium region, never, or hardly ever, to leave it again.The above onsiderations should not, of ourse, be onsidered as a proofof Boltzmann's ergodi hypothesis, whih says thata mehanial system's trajetory in phase-spae will spend equaltimes in regions of equal phase-spae measure [2℄.Also Gibbs' ensemble theory for systems in whih interations are notnegleted, has no foundation based on Hamilton's equations of motion. Atthis point we want to quote Van Kampen [3℄, who argues that



The Enigmati Piston 4185The introdution of an ensemble, and the related desription interms of probability, annot be justi�ed on a priori ground, butonly by appealing to experiene.If orret, this statement should put a stop to all further researh intothe foundations of equilibrium statistial mehanis. There are, however,other fundamental problems, related to how fast a many-partile systemapproahes equilibrium. There is hope that these problems an be betterunderstood by studying the r�le of haoti dynamis, whih are disussed,among others, by Dorfman [2℄ and by Zaslavsky [4℄.Another way of gaining understanding is to study speial systems inwhih the amount of omplexity is redued to a minimum, so that analytialmethods an be applied.An example of suh a model-system will be studied in the present paper.The model will be desribed in the next setion, in whih we will also disussthe relation with a peuliar, widely known problem in thermodynamis.1.2. Two experimentsAs an introdution we will �rst disuss1.2.1. Rühardt's experiment [5℄This is an experiment for determining the ratio CP=CV of a gas. Theapparatus onsists of a 60 m preision bore glass tube, attahed vertiallyto a 10 litre glass jug. A tightly �tting steel ball of about 10 gram is allowedto fall in the tube. The enlosed volume of gas ats as a ushion, on whihthe ball bounes up and down. Although the osillations are damped byfrition inside the tube, the period of the osillations an still be measured,and from this it is then possible to alulate CP =CV :For the one-dimensional ase we show how the equation of motion for theposition x(t) of the ball an be derived, assuming that the gas under the ballis at all times in thermal equilibrium, desribed by the pressure P (x) andthe temperature T (x) and negleting the frition inside the tube: We alsoassume that the system is thermally isolated from its surroundings. Usingthe thermodynami relations for an ideal gas between energy, pressure andtemperature in an adiabati proessU(x) = 12NkT (x) and P (x) = �dUdx = �12NkdTdx ;and the ideal gas law P (x) = NkT (x)x ;



4186 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokwe see that the temperature should satisfydTdx = �2T (x)x :The solution of this equation isT (x) = T (x0)�x0x �2 ;where x0 is the position of the ball at time t = 0: The equation of motionof the ball beomesMd2xdt2 = �Mg + P (x) = �dVdxwith V (x) = Mgx+ 12NkT (x0)�x0x �2 :The onstant pressure from the outside has been inluded in the term �Mg.This equation desribes an osillatory motion between x� and x+, with aperiod equal to T = p2M x+Zx� dxpV (x�)� V (x) :The alulation an be repeated for the three-dimensional ase, and theresulting period turns out to be in good agreement with the experimentalvalue.At this point we want to remark that the undamped periodi motion ofthe ball is a result of the existene of a veloity independent potential. Thereis, however, reason to doubt that the true motion of the ball is periodi. Inorder to show the evidene for this doubt, we have performed a numerialalulation of the motion of the ball for the ase where the gas is replaedby a single partile of mass m = 0:2M , whih bounes elastially betweenthe ball and the bottom of the jug, onserving energy and momentum oneah ollision with the ball. When plotting the position and the veloity ofthe ball at eah moment this partile hits the bottom, we obtain the pitureshown in �gure 1. This Poinaré-setion of four orbits illustrates the fatthat a large portion of the total phase-spae is �lled by a single orbit. Eahof the three other orbits desribes a quasi periodi motion of the system. Fora mass ratio m=M = 0:465 the region ontaining quasi periodi orbits haspratially shrunk to zero and all of phase-spae is �lled by a single orbit.Therefore, in this ase the system is ergodi and the miroanonial ensemblean be used to alulate the veloity distribution f(v) of the partile. The



The Enigmati Piston 4187result f(v) � (v2max � v2)3=2 is in omplete agreement with the distributionobtained by monitoring the partile veloity over a large number of ollisionsin a numerial simulation. During this time the motion of the ball is veryerrati. It is, therefore, not unreasonable to expet that, if the single partileis replaed by a large number of gas partiles, but with a total mass whihis not hanged, the motion of the ball will turn out still to be very errati.Later it will turn out that this is indeed the ase. This is di�erent from thesmooth behaviour whih was found while analysing Rühardt's experiment.However, the same errati behaviour is also expeted for the gas moleules,whih supports the assumption of thermodynami equilibrium made in dis-ussing Rühardt's experiment. This assumption led to a smooth periodimotion of the ball. We, therefore, have arrived at a paradoxial situation.One of the purposes of the present paper is to explain the origin of thisparadox.
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Fig. 1. Phase plot of the ball for m=M = 0:2.It is related to a similar problem, about whih in reent times quite a fewpubliations have appeared, and whih we will all the problem of Callen'spiston.1.2.2. Callen's experimentIn his book on thermodynamis [6℄ Callen alls attention to a situationwhih he denotes as a �uniquely deliate problem�. The Gedankenexperimentis skethed in �gure 2. Two gases are separated by a movable adiabatipiston. In equilibrium the pressures and temperatures on the left will beequal to those on the right, and the equations of state will then determinethe position of the piston.



4188 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrok
Fig. 2. Callen's piston.Callen noties, however, that thermodynamis only predits the orretmehanial equilibrium, P1 = P2; but that other parameters are largelyundetermined. For instane, temperatures and volumes of the two ompart-ments depend on the details of the visous proesses by whih the pistondissipates its kineti energy, but these proesses do not belong to the realmof thermodynamis.The problem whih therefore arises, may be illustrated for the ase of onedimensional ideal gases, although visosity is absent there. At time t = 0when the piston is released in the position x0 with zero veloity, the internalenergies, temperatures, pressures and volumes of the two gases are given.Under the assumption that the gases stay in thermal equilibrium during themotion of the piston, the ideal gas laws then determine the values of thesequantities at later times. In partiular the pressures beomeP1(x) = P1(x0)�x0x �3 and P2(x) = P2(x0)�L� x0L� x �3 :The motion of the piston then follows fromMd2xdt2 = P1(x)� P2(x) :From this it an be shown that the piston is only in a stable position whenfrom the outset the pressures are equal and the temperatures are hosen suhthat P1 = N1kT1x0 = N2kT2L�x0 = P2: Only for equal densities the temperaturesto the left and to the right will be equal. It, therefore, shows, and thiswas Callen's main observation, that thermodynamis is not su�ient tounderstand why in general only that state is realised for whih not just thepressures, but also the temperatures of the two gases are equal.All non stationary solutions of the equation of motion are undampedperiodi osillations around the pointx = x = L1 +  with  = �P2(x0)P1(x0)�1=3 L� x0x0 :



The Enigmati Piston 4189For small amplitudes we �nd that the square of the frequeny is equal to!2 = 3N1kT1(x)M Lx2(L� x) : (1)As in the ase of Rühardt's experiment, we see no tendeny of the system toapproah equilibrium. The piston, as well as the temperatures and pressures,keep osillating. Also adding dissipation terms to the equations of motionof the gas and of the piston does not help, beause the �nal position of thepiston, and therefore the temperatures, turn out to depend on the piston'sinitial position.An appeal to ensemble theory does not improve the situation. Distribut-ing the total energy E as the sum of E1 and E2 over the two gases andonsidering the position x of the piston as an external parameter, we analulate the entropy, i.e., the logarithm of the miroanonial partitionfuntion Z(E1; x) by standard methods:lnZ(E1; x) = N12 lnE1 + N22 ln(E �E1) +N1 lnx+N2 ln(L� x) + � � � ;where we have omitted terms whih are independent of E1 and x. By on-sidering E1 and x as independent variables we easily f ind the values of E1and x for whih lnZ(E1; x) reahes its maximum. This ours when E1 andx satisfy the equationsN1E1 = N2E �E2 and N1x = N2L� x ;whih amounts to saying that in equilibrium the pressures and the temper-atures will be equal. This seems to solve the problem of the indeterminayof the temperatures.However, the variables E1 and x are not independent, beause, due tothe adiabati onstraint, the relationsdE1 = �P1dx and d(E �E1) = �P2 d(L� x)exist, where P1 = 2E1x and P2 = 2(E�E1)L�x : From these only the equalityof the pressures an be dedued; separate onlusions on temperatures andvolumes annot be drawn. This is in agreement with the fat that under theadiabati onstraint d lnZ = 0 identially, as in Callen's demonstration.The ontroversies around Callen's piston have been disussed by Curzonand Le� [7℄, who also give referenes to older literature. Gruber [9℄ disussesmore reent developments.



4190 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokThe above onsiderations show that on the basis of pure thermodynamitheory it annot be understood why also the temperatures on both sides ofthe adiabati piston should beome equal. An important assumption hasbeen, however, that during the proess the system went through a seriesof states whih were always equilibrium states. This assumption will bequestioned in the present paper by developing a model whih is loser tokineti theory. Other models of this type have been disussed in the reentliterature [8-15℄. A omparison with our work will, however, be postponeduntil the last setion. 2. The ontinuum limitOur goal is to derive a marosopi desription of the behaviour of thegas and of the piston, in the limit where N1 and N2 tend to in�nity. Thisan, however, not be the usual thermodynami limit, in whih simultane-ously the size of the system grows indef initely, while the partile masses arekept onstant. In this ase the orrelations between reollisions, whih areessential for the establishment of equilibrium, would be lost.Instead we now onsider the ase in whih the size L of the ontainer is�xed and the masses N1m1 and N2m2 of the gas to the left and to the rightare omparable to the mass M of the piston. This piston mass, as well asthe total energy, will also be kept �xed when N = N1+N2 !1: The massof the gas partiles will tend to zero, however.This is alled the ontinuum limit. It an be formally haraterised bytaking Boltzmann's onstant k ! 0: As was explained in great detail byCompagner [16℄, this is the proper limit for the desription of a thermody-nami system when marosopi dependenies on spae and time are present.All mirosopi �utuations are suppressed.At any time the state of the system is given by speifying the positionX(t) and the veloity V (t) = dX(t)dt of the piston and also the oordinatesand veloities of the gas moleules. Sine, however, the number of moleulesgoes to in�nity and sine these moleules have no mutual interation, thestate of the gas is atually ompletely desribed by two distribution funtionsf1(x; v; t) and f2(x; v; t): Here f1(x; v; t) dx dv is the fration of all moleuleson the left in the volume element (x; x+dx); (v; v+dv); with 0 < x < X(t):In the same way is f2(x; v; t) dx dv the fration of all moleules on the rightin the volume element (x; x + dx); (v; v + dv); with X(t) < x < L: Thesefuntions are, therefore, normalised asX(t)Z0 dx 1Z�1 f1(x; v; t) dv = 1 and LZX(t) dx 1Z�1 f2(x; v; t) dv = 1 :



The Enigmati Piston 4191The fat that they do not hange beause of ollisions, but only beauseof the free streaming of the gas, implies that they satisfy the ontinuityequations�f1(x; v; t)�t + v�f1(x; v; t)�x = 0 for 0 < x < X(t) and all v and t (2)and�f2(x; v; t)�t + v�f2(x; v; t)�x = 0 for X(t) < x < L and all v and t : (3)In a ollision with one of the walls the partile veloity will be reversed:v ! �v; whereas in a ollision with the piston the veloity of the (massless)partile will be transformed like v ! 2V (t) � v: The boundary values off1(x; v; t) and f2(x; v; t), therefore, have to satisfy the following onditionsfor x = 0 : f1(0;�v; t) = f1(0; v; t) for all v and t ;for x = L : f2(L;�v; t) = f2(L; v; t) for all v and t (4)and for x = X(t) : fi(X(t); 2V (t)� v; t) = fi(X(t); v; t) ;for all v and t and i = 1; 2 :The latter ondition an also be written asfor x = X(t) : fi(X(t); V (t)� v; t) = fi(X(t); V (t) + v; t)for all v and t and i = 1; 2 : (5)For given initial distributions f1(x; v; 0) and f2(x; v; 0) on the intervals0 < x < X(0) and X(0) < x < L and for all v, and assuming that X(t) isa known funtion of t, equations (2) and (3), together with the boundaryonditions (4) and (5), should be su�ient to alulate the distributions atlater times. It will turn out that the solution of these equations is far fromtrivial, and the main part of this paper is, therefore, devoted to the studyof this problem.First of all we want to onvine ourselves that the number of partilesin eah of the two ompartments is onserved, or in terms of the ontinuumlimit, that the total amount of �uid on eah side does not vary in time. For



4192 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokthat purpose we alulate the integralddt X(t)Z0 dx 1Z�1 f1(x; v; t) dv= V 1Z�1 f1(X(t); v; t) dv + X(t)Z0 dx 1Z�1 �f1(x; v; t)�t dv= V 1Z�1 f1(X(t); v; t) dv + X(t)Z0 dx 1Z�1 (�v �f1(x; v; t)�x )dv= V 1Z�1 f1(X(t); v; t) dv � 1Z�1 vf1(X(t); v; t) dv + 1Z�1 vf1(0; v; t) dv : (6)The third integral on the right hand side vanishes beause of Eq. (4). Theseond integral an be written as1Z�1 vf1(X(t); v; t) dv= 1Z�1 (V + v) f1(X(t); V + v; t) dv= 1Z�1 (V � v) f1(X(t); V + v; t) dv ; (7)in whih Eq. (5) was invoked. Taking half the sum of the last two integralsin Eq. (7) gives1Z�1 vf1(X(t); v; t) dv = V 1Z�1 f1(X(t); V + v; t) dv= V 1Z�1 f1(X(t); v; t) dv :Substitution into Eq. (6) then shows that the sum of the integrals in theright-hand side of this equation is equal to zero, so that the onservationlaw has indeed been established. The same proof holds for f2(x; v; t):



The Enigmati Piston 4193With similar manipulations we an show that for an arbitrary fun-tion H, e.g. H = f1 log f1, the integral R X(t)0 dx R1�1H[f1(x; v; t)℄ dv is on-stant in time.The total momentum of the system is not onserved, beause the wallsat x = 0 and x = L exert a fore on the gas. However, for ollisions withthe piston momentum onservation does hold. From this we an determinethe fore on the piston, by alulating the momentum transfer per unit timefrom the gas to the piston. Sine for eah ollision this loss of momentumis equal to mi(v � v0) = 2mi(v � V (t)) � for mi � M � the momentumtransfer in the time dt from the gas on the left to the piston is equal to(momentum transfer in dt) = N1 1ZV (t) dv X(t)ZX(t)�(v�V (t))dt2m1(v�V (t))f1(x; v; t)dx :From this follows the fore on the piston due to the �rst gasF1(t) = 2N1m1 1ZV (t) (v � V (t))2f1(X(t); v; t) dv : (8)The fore due to the seond gas beomesF2(t) = 2N2m2 V (t)Z�1 (V (t)� v)2f2(X(t); v; t) dv : (9)Using Eq. (5) these integrals an be written as integrals over the wholev-axis, so the equation of motion for the piston beomesM d2X(t)dt2 = F1(t)� F2(t)= 1Z�1 (v � V (t))2 [N1m1f1(X(t); v; t) �N2m2f2(X(t); v; t)℄ dv : (10)Together with (2)�(5) we now have a losed set of equations for the desrip-tion of the system in the ontinuum limit. (Remember that �1 = N1m1M and�2 = N2m2M are �nite dimensionless numbers, whih remain onstant whenN1; N2 !1:)



4194 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokAlso the total energyE = 12M V 2(t) + 12N1m1 X(t)Z0 dx 1Z�1 v2f1(x; v; t) dv+12N2m2 LZX(t) dx 1Z�1 v2f2(x; v; t) dvis onserved. This an be proved with the same method as above. If inaddition we use the equation of motion of the piston and the fat that1Z�1 (v � V (t))n fi(X(t); v; t) dv = 0 for odd n ; (11)it is easy to show that indeed dEdt = 0:3. An AnsatzAs an approximate solution of Eqs (2)�(5) we propose Maxwell distribu-tions, shifted in veloity and with time dependent parameters f1(x; v; t) 'fM1 (x; v; t) and f2(x; v; t) ' fM2 (x; v; t) withfM1 (x; v; t) = 1X(t)rm1�1(t)2� exp�12m1�1(t)�v � xX(t)V (t)�2for 0 � x � X(t)andfM2 (x; v; t) = 1L�X(t)rm2 �2(t)2� exp�12m2 �2(t)�v � L� xL�X(t)V (t)�2for X(t) � x � L :These same funtions were used by Huang [17℄ as an approximate solution ofBoltzmann's transport equation. They are properly normalised and satisfythe boundary onditions (4) and (5). Furthermore, these distributions giverise to uniform normalised spatial densities and linear spatial pro�les for the



The Enigmati Piston 4195loal marosopi gas veloities:�M1 (x; t) � 1Z�1 fM1 (x; v; t) dv = 1X(t) ;wM1 (x; t) � 1�M1 (x; t) 1Z�1 v fM1 (x; v; t) dv = xX(t)V (t) :Likewise for the other ompartment:�M2 (x; t) = 1L�X(t) and wM2 (x; t) = L� xL�X(t)V (t) :In order to determine the time dependene of the reiproal temperatures�1(t) and �2(t) we �rst alulate the energy ontent of both gases:E1(t) = 12N1m1 X(t)Z0 dx 1Z�1 v2fM1 (x; v; t) dv = N12�1(t) + 16N1m1V 2(t) ;E2(t) = 12N2m2 LZX(t) dx 1Z�1 v2fM2 (x; v; t) dv = N22�2(t) + 16N2m2V 2(t) :Both expressions ontain a ontribution from the loal marosopi veloity,whih for the �rst gas is12N1m1 X(t)Z0 �M1 (x; t) (wM1 (x; t))2 dx = 16N1m1V 2(t) ;and one from the internal energy. The equation of motion (10) for the pistontakes the form M d2X(t)dt2 = N1�1(t)X(t) � N2�2(t) (L�X(t)) ; (12)from whih the time evolution of the total energy follows:dEdt = ddt �12M V 2(t) +E1(t) +E2(t)�= 13N1m1V (t)dVdt + N1V (t)�1(t)X(t) � N12�21(t) d�1dt+13N2m2V (t)dVdt � N2V (t)�2(t) (L�X(t)) � N22�22(t) d�2dt :



4196 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokSine we insist on energy onservation, also for the approximate solutions,we hoose the time dependene of the temperatures suh that they obey theequations dT1dt + 2V (t)X(t)T1(t) + m13 k dV 2(t)dt = 0 (13)and dT2dt � 2 V (t)L�X(t)T2(t) + m23 k dV 2(t)dt = 0 : (14)Notie that Boltzmann's onstant only appears in the ombinations mik ;whih attain de�nite values in the ontinuum limit. Using these equationswe an derive the equations whih should be satis�ed by the distributionsfM1 (x; v; t) and fM2 (x; v; t) :� ��t + v ��x� fM1 (x; v; t) = C1(x; v; t) fM1 (x; v; t) for 0 < x < X(t)and� ��t + v ��x� fM2 (x; v; t) = C2(x; v; t) fM2 (x; v; t) for X(t) < x < L ;with C1(x; v; t) and C2(x; v; t) de�ned byC1(x; v; t) = m1�1(t)dV (t)dt� �13V (t) + �v � wM1 (x; t)� xX(t) � 13m1�1(t) �v � wM1 (x; t)�2 V (t)�andC2(x; v; t) = m2�2(t)dV (t)dt� �13V (t) + �v � wM2 (x; t)� L� xL�X(t) � 13m2�2(t) �v � wM2 (x; t)�2 V (t)� :Clearly, the shifted Maxwell distributions in general only give an approxi-mate solution of equations (2) and (3). They beome exat when the mole-ular masses or the piston's aeleration beome small. In order to eluidatethis point we rewrite the equations in dimensionless variables, whih willalso be used in the setions on hydrodynamis and on simulations.As units of length, veloity, time and temperature we takeL; V0�r2 EM ; t0� LV0 and T0 � 2 ENk ; respetively, where N=N1 +N2



The Enigmati Piston 4197is the total number of gas moleules (this number tends to inf inity in theontinuum limit, but the produt Nk stays f inite). The unit of veloity isequal to the veloity of the piston if it would arry all energy of the systemand the moleules were at rest. In terms of these units we de�nex = yL; v = ev V0; Ni = niN; Nimi = �iM; LV0fMi � hMi (y; ev; �) ;t = �t0; X(t) = x(�)L; V (t) = eV (�)V0; Ti(t) = ui(�)T0 ;t0Ci = Di(y; ev; �) :Inserting these quantities into the shifted Maxwell distributions we �ndhM1 (y; ev; �) = 1x(�)r �12�n1u1(�) exp� �12n1u1(�) �ev � yx(�) eV (�)�2for 0 � y � x(�) (15)andhM2 (y; ev; �) = 11� x(�)r �22�n2u2(�) exp� �22n2u2(�) �ev � 1� y1� x(�) eV (�)�2for x(�) � y � 1 : (16)The distributions hM1 (y; ev; �) and hM2 (y; ev; �) are normalised to unity andsatisfy the equations�hM1 (y; ev; �)�� + ev�hM1 (y; ev; �)�y = D1(y; ev; �)hM1 (y; ev; �) for 0 � y � x(�)and�hM2 (y; ev; �)�� + ev�hM2 (y; ev; �)�y = D2(y; ev; �)hM2 (y; ev; �) for x(�) � y � 1 ;in whihD1(y; ev; �) = �1n1u1(�) d eV (�)d��"13 eV (�) +�ev � yx(�) eV (�)� yx(�) � 13 �1n1u1(�) �ev � yx(�) eV (�)�2 eV (�)#andD2(y; ev; �) = �2n2u2(�) d eV (�)d� �13 eV (�) +�ev � 1� y1� x(�) eV (�)� 1� y1� x(�)�13 �2n2u2(�) �ev � 1� y1� x(�) eV (�)�2 eV (�)# :



4198 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokSine in most disussions of this problem n1 � 1 � n2 ' 12 , we see thathM1 (y; ev; �) and hM2 (y; ev; �) desribe free streaming �uids when the temper-atures u1(�) and u2(�) are not too low and the relative �uid masses �1 and�2 or the aeleration of the piston are small.Let us now turn to the solutions of Eqs (12), (13) and (14), whih we�rst write in dimensionless form. In order to make ontat with the thermo-dynami desription in Setion 1.2, we will use the dimensionless pressuresP1(�) and P2(�) instead of the temperatures u1(�) and u2(�):eP1(�) = n1u1(�)x(�) and eP2(�) = n2u2(�)1� x(�) : (17)Eqs (12)�(14) then readd2x(�)d�2 = eP1(�)� eP2(�) ;d eP1(�)d� = � 1x(�) h1 eP1(�)� �1 eP2(�)i dx(�)d� ;d eP2(�)d� = 11� x(�) h2 eP2(�)� �2 eP1(�)i dx(�)d� ; (18)in whih �i = 23�i and i = 3 + �i, i = 1; 2:Eliminating � by the substitution d� = dx=eV we �nally get for thepressure equations d eP1(x)dx = �1x h1 eP1(x)� �1 eP2(x)iand d eP2(x)dx = 11� x h2 eP2(x)� �2 eP1(x)i :The exat solution in terms of hypergeometri funtions an be given, butis rather uninformative and will not be exhibited here. Sine the velo-ity eV does not appear in this solution the piston will perform a periodimotion without damping. One integration onstant is the energy, whih indimensionless units is equal toE12MV 20 = 1 = �1 + 12�1 + 12�2��dx(�)d� �2 + x eP1(x) + (1� x) eP2(x) :



The Enigmati Piston 4199From this an expression for the period of the piston's motion an easily bederived T =p2(2 + �1 + �2) x+Zx� dxq1� x eP1(x)� (1� x) eP2(x) ;in whih x� and x+ are the turning points.For the speial ase of massless gases, i.e. �1 = �2 = 0, the solutionan be given in terms of elementary funtions. If, moreover, we onsideronly osillations of small amplitudes the frequeny beomes equal to thefrequeny alulated by the thermodynami method and given by Eq. (1),whih reads in saled variablese!2 � !2t20 = 3n1u1(x)x2(1� x) ;x now being the saled equilibrium point.The onlusion of this setion is that for small values of �1 and �2 theshifted Maxwell distributions probably give a good approximation to theexat distributions. It is, however, still not lear whether and how thesefuntions, when started from arbitrary values, will be approahed for largetimes. The perpetual osillatory behaviour of the pressures and tempera-tures is in on�it with the preditions of ensemble theory. It remains to beseen whether this on�it is due to the approximations and will disappearin an exat solution, or whether it is a property of the speial system we areonsidering here. 4. The hydrodynami desription4.1. The general equationsDespite their simple appearane equations (2) and (3), together with theboundary onditions (4) and (5), are hard to solve exatly. A less ambitioustask, in whih we abandon the idea to alulate the full distribution fun-tions, is to try and �nd solutions for the hydrodynami equations. As showne.g. by Huang [17℄, these an be derived from Eqs (2)�(5). To this end wede�nethe normalised spatial densities (i = 1; 2) :�i(x; t) = 1Z�1 fi(x; v; t) dv; X(t)Z0 �1(x; t) dx = 1; LZX(t) �2(x; t) dx = 1 ;



4200 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokthe loal veloities:wi(x; t) = 1�i(x; t) 1Z�1 v fi(x; v; t) dv ;the loal temperatures:Ti(x; t) = mik 1�i(x; t) 1Z�1 (v � wi(x; t))2 fi(x; v; t) dv ;and the loal heat �uxes:qi(x; t) = 12miNi 1Z�1 (v � wi(x; t))3 fi(x; v; t) dv :The loal pressures are related to the loal spatial densities and temperaturesby the ideal gas law ePi(x; t) = Ni �i(x; t) kTi(x; t) :The boundary onditions (4) and (5) impose boundary onditions on someof these quantities:w1(0; t) = w2(L; t) = 0 and w1(X(t); t) = w2(X(t); t) = V (t)and q1(0; t) = q2(L; t) = 0 and q1(X(t); t) = q2(X(t); t) = 0 ; (19)the latter equality following from Eq. (11).The equation of motion for the piston (10) then takes the formM d2X(t)dt2 = P1(X(t); t) � P2(X(t); t) : (20)From Eqs (2)�(5) one easily derives the standard onservation laws:the ontinuity equation:��i(x; t)�t + ��x (�i(x; t)wi(x; t)) = 0 ;



The Enigmati Piston 4201momentum onservation:�i(x; t) � ��t + wi(x; t) ��x�wi(x; t) = � 1Nimi �Pi(x; t)�x ;energy onservation:�i(x; t)� ��t+wi(x; t) ��x�Ti(x; t)=� 2Ni k��qi(x; t)�x +Pi(x; t)�wi(x; t)�x � :In order to assess the relative importane of the various terms in theseexpressions we write them in dimensionless form, using the units of Setion 3.The distribution funtions are replaed by hi(y; ev; �) = LV0 fi(x; v; t), whihare normalised asx(�)Z0 dy 1Z�1 h1(y; ev; �) dev = 1 and 1Zx(�) dy 1Z�1 h2(y; ev; �) dev = 1 :In addition we introduethe saled loal densities:�i(x; t) = 1L e�i(y; �); so that e�i(y; �) = 1Z�1 hi(y; ev; �) dev ;the saled loal veloities:wi(x; t) = V0 ewi(y; �) so that ewi(y; �) = 1e�i(y; �) 1Z�1 ev hi(y; ev; �) dev ;the saled loal temperatures: Ti(x; t) = T0 ui(y; �) so thatui(y; �) = �ini e�i(y; �) 1Z�1 (ev � ewi(y; �))2 hi(y; ev; �) dev ;the saled loal pressures:Pi(x; t) = M V 20L ePi(y; �) so that ePi(y; �) = nie�i(y; �)ui(y; �) ;



4202 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokand the saled loal heat �uxes: qi(x; t) = M V 30L eqi(y; �) so thateqi(y; �) = �i2 1Z�1 (ev � ewi(y; �))3hi(y; ev; �) dev :In these units the equations expressing the onservation laws read:�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 : (21)e�i(y; �) � ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i � ePi(y; �)�y= �ni�i ��y (e�i(y; �)ui(y; �)) : (22)e�i(y; �) � ��� + ewi(y; �) ��y�ui(y; �) = � 2ni ��eqi(y; �)�y + ePi(y; �)� ewi(y; �)�y �= ��ini ��y 1Z�1 (ev � ewi(y; �))3hi(y; ev; �) dev � 2 e�i(y; �)ui(y; �)� ewi(y; �)�y : (23)In the new units the total energy is equal to unity. With the saled vari-ables it an be expressed in terms of the saled loal funtions asK +Q = 1;in whih K is the total kineti energy of the piston and of the loalmotions of the �uidK = �dx(�)d� �2+�1 x(�)Z0 e�1(y; �) ew1(y; �)2dy+�2 1Zx(�) e�2(y; �) ew2(y; �)2dy(24)and Q is the total internal energy. This is the kineti energy as mea-sured relative to the loal veloitiesQ = n1 x(�)Z0 e�1(y; �)u1(y; �) dy + n2 1Zx(�) e�2(y; �)u2(y; �) dy : (25)For an ideal one-dimensional gas the relation between pressure, densityand entropy is given by P = � �3eS=v ;



The Enigmati Piston 4203in whih � is some onstant. Therefore, if instead of using the loal tem-perature, we want to use a quantity whih an be interpreted as (a funtionof) the loal entropy, the above relation suggests to de�ne the followingdependent variables s2i = �eSi=vMV 20 L2 :With these funtions the dimensionless pressures an be written asePi(y; �) = nie�i(y; �)ui(y; �) = e�3i (y; �) s2i (y; �) :Eqs (21)�(23) an now be written as�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 ; (26)� ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i e�i ��y �e�3i (y; �)s2i (y; �)� ; (27)� ��� + ewi(y; �) ��y� s2i (y; �) = � 2e�3i �eqi�y : (28)Eqs (26)�(28) form a set of onservation laws, whih put onstraints onthe unknown funtions e�i(y; �); ewi(y; �); si(y; �) and eqi(y; �); but whih arenot su�ient to �x them ompletely.This situation is hanged when we assume that the spatial derivative ofthe heat �ux, whih aording to Eq. (28) is the soure of entropy prodution,an be negleted. In view of the boundary onditions (19) this is equivalentto assuming that eqi(y; �) � 0 for all y and �: For the Ansatz we made inEqs (15) and (16) for the distribution funtions hMi (y; ev; �) this assumptionis satis�ed, beause the heat �uxes eqMi (y; �) are identially zero. If in thegeneral ase we also assume that the heat �ux is the same in all points (thisis alled an ideal �uid), Eq. (28) beomes� ��� + ewi(y; �) ��y� si(y; �) = 0 :This equation shows that si(y; �) is onstant along eah stream line de�nedas the solution y(� ; y0) of dy(� ;y0)d� = ewi(y; �), with y(0; y0) = y0:Together with Eqs (26) and (27) we now have a set of hydrodynamiequations for the initial value problem, from whih for a presribed motionof the piston, the funtions e�i(y; �); ewi(y; �) and si(y; �) an in priniple besolved.The only boundary onditions areew1(0; �) = ew2(1; �) = 0 and ew1(x(�); �) = ew2(x(�); �) = dx(�)d� :



4204 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrok4.2. Speial asesWe now have a omplete set of equations for the funtions e�i(y; �),ewi(y; �) and si(y; �), to whih we add Eq. (20) in saled form for the piston'smotion:�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 ; (29)� ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i e�i ��y �e�3i (y; �)s2i (y; �)� ; (30)� ��� + ewi(y; �) ��y � si(y; �) = 0 ; (31)d2x(�)d�2 = e�31(x(�); �)s21(x(�); �) � e�32(x(�); �) s22(x(�); �) ; (32)together with the boundary onditionsew1(0; �) = ew2(1; �) = 0 and ew1(x(�); �) = ew2(x(�); �) = dx(�)d� : (33)They are nonlinear partial di�erential equations, whih annot be solvedin losed form. Apart from applying numerial methods, we therefore anonly get some insight into the ontent of these equations, by using phys-ially motivated approximations. Some of these will be disussed in thissubsetion.The energy onservation law (24)�(25) an be expressed as�dx(�)d� �2 + �1 x(�)Z0 e�1(y; �) ew1(y; �)2dy + �2 1Zx(�) e�2(y; �) ew2(y; �)2dy+ x(�)Z0 e�31(y; �)s21(y; �) dy + 1Zx(�) e�32(y; �)s22(y; �) dy = 1 :This relation an of ourse also be derived diretly from Eqs (29)�(33).We will now onsider a number of speial ases of these equations.4.2.1. Case 1As a preparation for obtaining a speial solution to these equations weassume that the distribution funtions hi(y; ev; �); whih are needed to al-ulate e�i(y; �); ewi(y; �) and ui(y; �), are given by the shifted distributions



The Enigmati Piston 4205hMi (y; ev; �) of the Ansatz (15) and (16). Using these distributions we obtaine�M1 (y; �) = 1x(�) ; e�M2 (y; �) = 11� x(�) ;ew1(y; �) = yx(�) dx(�)d� ; ew2(y; �) = 1� y1� x(�) dx(�)d� ;u1(y; �) = u1(�) ; u2(y; �) = u2(�) ;while the heat �uxes eqi(y; �) vanish identially, in ompliane with the as-sumption made in the derivation of equations (29)�(33). On substitution ofthe above results in the equation of motion for the piston (32), this equationattains the same form as in (17), (18):d2x(�)d�2 = n1u1(�)x(�) � n2u2(�)1� x(�) : (34)At this point we observe that the spatial uniformity of the densities e�iand of the temperatures ui and the linear interpolation between the wallsand the piston of the loal veloities ewi, valid for all times, is a onsequeneof the speial form of the distribution funtions hMi (y; ev; �); these funtionsonly onstitute exat solutions to the free �ow equations (2) and (3) when�i = 0 (f. the disussion in Setion 3). However, for �i = 0; the samebehaviour also follows from the solutions of Eqs (29) and (31), with Eq. (30)replaed by ni ��y (e�i(y; �)ui(y; �)) = � ePi(y; �)�y = 0and the assumption of uniform initial onditions, without using the speialform of the underlying distribution funtions.Equations (31) turn into equations for u1(�) and u2(�), now both inde-pendent of y:du1(�)d� = �2u1(�)x(�) dx(�)d� and du2(�)d� = 2 u2(�)1� x(�) dx(�)d� :The solutions, written as funtions of the position of the piston, areu1(�) = �x(0)x(�)�2 u1(0) and u2(�) = �1� x(0)1� x(�)�2 u2(0) :



4206 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokThe orresponding pressures are also uniform and are given byeP1(�) = �x(0)x(�)�3 eP1(0) and eP2(�) = �1� x(0)1� x(�)�3 eP2(0) :The �entropies� si turn out to be independent of y and � .Eq. (34) is the same as Eq. (18) when �i = 0 and also as the equation ofmotion obtained in Setion 1.2.2, on the basis of purely thermodynami on-siderations. Therefore, they lead to the same osillatory behaviour withoutdamping of the piston.We might add that the same results are also obtained in a muh moreompliated alulation, in whih the hydrodynami equations are linearisedwith respet to small exursions around the stationary solutions.4.2.2. Case 2We now onsider the ase where in Eqs (29)�(31) it is assumed thatthe �entropy� si(y; �) is a onstant s0 throughout. The remaining equations(29), (30) beome (omitting the tilde and index)���� + w���y + ��w�y = 0and �w�� + �����y + w�w�y = 0 with � = 3s20� :By inorporating a fator p� into � it is seen that there is no loss of gen-erality when we put � = 1: Taking the sum and the di�erene of these twoequations and de�ning u� = �� w, we obtain the equations�u+�� + u+�u+�y = 0 and �u��� � u��u��y = 0 :They an be written asdu+d� = 0 on harateristis y(� ; �) through y(0; �) = � given bydy(� ; �)d� = u+(y; �)anddu�d� = 0 on harateristis y(� ; �) through y(0; �) = � given bydy(� ; �)d� = �u�(y; �) :



The Enigmati Piston 4207On eah of these harateristis the values of u+(y; �) and u�(y; �) are on-stant in time and are, therefore, given by their values at � = 0 and y = �:The harateristis themselves are straight lines with slopes u+(�; 0) and�u�(�; 0):For the ase where w(�; 0) = 0 for all � between � = 0 and � = x (�xed),we have hosen, as an example, the initial density�(�; 0) = 1 + f os ��2x � �0(�) :This also �xes the values of u+(�; 0) = u�(�; 0) = �0(�): The standardproedure for alulating �(y; �) and w(y; �) is as follows:1. Solve ��(y; �) from y = �� � �0(��)�:2. Then �(y; �) and w(y; �) are given by�(y; �) = 12 [�0(�+(y; �)) + �0(��(y; �))℄and w(y; �) = 12 [�0(�+(y; �)) � �0(��(y; �))℄ :At a boundary point y = 0 or y = x only one harateristi passesthrough this point. This is, however, su�ient to determine the value of �at that point, sine w = 0 on the boundary, when x is �xed.A more di�ult problem arises when the equation y = �++ �0(�+)� hastwo solutions for �+: In �gure 3, where in the y-� plane we have drawn thetwo families of harateristis, the dark region indiates where these multiplesolutions our for our hoie of �0(�) with f = 0:9: The tip of this region
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Fig. 3. Two families of harateristis.



4208 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokis the point where for the �rst time the slope of �(y; �) beomes in�nite.Beyond this time the density would beome multiple valued, whih is learlyunaeptable. One way to handle this problem is to allow disontinuous,but single valued solutions, whih desribe shok fronts. Whitham [18℄, inhapters 2 and 6, disusses methods to �nd the shok veloity. However, theyinvolve assumptions about a funtional relation between � and w, whih weare not allowed to make for the system we are onsidering. This is not tosay that shok waves do not appear, as will beome lear in the next setion,where the results of some simulations will be disussed.Applying this tehnique to the situation of a moving piston with uniforminitial onditions and zero gas veloities leads to inonsistenies. Theseare probably due to the assumption of onstant and uniform �entropy�, anassumption whih will be abandoned in the ase onsidered next.4.2.3. Case 3For that purpose we try and bring Eqs (29)�(31) in the so alled �har-ateristi form�. Following Whitham [18℄ we �rst write them as� ��� +A ��y�0� �ws 1A = 0 ; (35)where A(�;w; s) = 0� w � 03��s2 w 2��2s0 0 w 1A :The left-eigenvetors ~l+;~l�;~l0 and eigenvalues +; �; 0 of this matrix areequal to ~l� = �3s2�;� 12�p3�; 1� with � = w � �sr 3�and ~l0 = (0; 0; 1) with 0 = w :The harateristi form is obtained after left-multipliation of Eq. (35) byeah of the eigenvetors. The result ison the harateristis dyd� = + :sd�d� +r�3 dwd� + 23�dsd� = 0 with dd� = ��� + + ��y : (36)



The Enigmati Piston 4209on the harateristis dyd� = � :sd�d� �r�3 dwd� + 23�dsd� = 0 with dd� = ��� + � ��y : (37)on the harateristis dyd� = 0 :dsd� = 0 with dd� = ��� + 0 ��y : (38)Only the last of these equations an be diretly integrated along the hara-teristi dyd� = 0 = w; and s is found to be onstant on that line. An expliitform an of ourse be given only after w(y; �) has been found. The othertwo equations have the form of Pfa�'s problem for three variablesP d�+Q� dw +Rds = 0 with P = s; Q� = �r�3 ; R = 23� :For the integrability of this equation, i.e., for a relation F (�;w; s) = 0 toexist, it is neessary (and su�ient) that the vetor �!V � = (P;Q�; R) satisfythe ondition (see Sneddon [19℄, hapter 1, Setion 5)D� = �!V � � url�!V � = 0 :In the present ase we �nd D� = �13q�3 : Sine this quantity is not equal tozero the Pfa�an problem is not integrable. This is not to say that equations(36)�(38) have no solution. It only means that the solution annot be ob-tained by the method of Riemann invariants, as disussed by Whitham [18℄,Setion 5.3. 5. SimulationsIn this setion we will show the results of a numerial simulation ofCallen's piston with N1 = N2 = 1000 moleules to the left and to the rightand for varying mass ratios �1 = N1m1=M and �2 = N2m2=M . We willrestrit ourselves to the ases where �1 = �2 = �.Figures 4 and 5 show the veloity distribution of the moleules on theleft after 4:000:000 and after 5:000:000 ollisions, respetively. Atually theseare aumulated distributions, meaning that for eah bin on the horizontalveloity axis, the height gives the total time a moleule happened to havea veloity in this bin. Only for v ' 0 there is a persistent and varyingdi�erene with a Maxwellian veloity distribution with equal temperaturesleft and right.



4210 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrok
Fig. 4. Distribution for � = 1:0 and 4 million ollisions.
Fig. 5. Distribution for � = 1:0 and 5 million ollisions.All remaining �gures desribe properties of the piston. The number N ofollisions varies from 1 million to 10 million, whereas � takes values between0:1 and 5:0: In �gures with two pitures the one on the left, to be denoted by(a), refers to the �rst 20:000 ollisions, while the right piture (b) is obtainedfrom the last 20:000 ollisions.Figure 6 shows the orbits of the piston in its X-V phase-spae withN = 1 million. In �gure 7 we have plotted the position of the piston as
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Fig. 6. X-V phase-spae of piston for � = 0:1a funtion of time for N = 10 million and � = 1:0; whereas �gure 8 givesthe phase-spae orbit for this ase. Espeially in �gure 8(b) for the last20:000 ollisions, the appearane of shorter sub-yles an be learly seen.We will all them epiyles. Notie that the horizontal sale in �gure 8(b)is strethed by a fator of about 2:Figure 9 gives the position of the piston, averaged over 20:000 ollisions,as a funtion of time, for the whole period of 10 million ollisions, again with� = 1:0.
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Fig. 8. X-V phase-spae for N = 10 million and � = 1:0.For N = 5 million and � = 5:0 �gure 10 gives again the position of thepiston, while �gure 11 shows the phase orbits. It is seen that the positionapproahes the value 12 , but osillations remain appreiable.The average position of the piston for this ase is shown in �gure 12.Also this average position still shows appreiably irregular behaviour.
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The Enigmati Piston 42136. ConlusionsIn this paper we have presented a new approah to the problem ofCallen's piston, as de�ned in Setion 1.2.2. The question is whether theadiabati piston, when it is moving, will allow heat to pass from one om-partment to the other, thus allowing the temperatures on the left and rightto beome equal. It is generally believed that in a relatively short time thepiston will pass through an osillatory damped motion to a position whihdepends on its initial position. During this time the pressures will equalise,but the temperatures will still be di�erent. In [8℄ this piture was supportedby a theory in whih the momentum exhange in a partile-piston ollisionwas taken into aount, as long as the mass ratio m=M is not exatly equalto zero. In addition, however, it was assumed that the partile densities arealways uniform and that the instantaneous veloity distributions are alwaysunshifted Maxwellian. These assumptions may be harmless, but they areertainly not exatly true. In a muh later stage the piston is then supposedto move toward a �nal position under the in�uene of Brownian fores, whileat the same time the temperatures beome equal.In two papers [9,14℄ on the same subjet, Gruber and Frahebourg deriveequations for the long time behaviour of the system. They show that withdissipation the piston damps out and the temperatures will beome equal.Without damping they �nd that the osillations will go on forever. In orderto derive these results they had to assume that the orrelation between theveloity of the piston and the veloities of the partiles an be negleted.They also assumed that the partile densities left and right are uniform forall times. Our results, derived both from hydrodynami equations and fromnumerial simulations, indiate that these assumptions are inorret.The same unjusti�ed assumption about the absene of orrelations be-tween partile- and piston veloity is used in [10℄ and [11℄: �In the abseneof reollisions the piston always `sees' the unperturbed Maxwell distribu-tions of the arriving �uid partiles, and no orrelations an our betweenits veloity and the preollisional veloity of the �uid partiles.�In [12℄ the same problem is addressed, but now for the speial ase inwhih the mass of the piston and the mass of the moleules are equal. Someinteresting results are derived about the motion of the piston, but it willbe lear that an arbitrary initial veloity distribution will never tend to aMaxwellian distribution, beause there is no momentum transfer in a olli-sion.The authors of [13℄ derive an interesting �nonlinear di�erential equationfor the motion of the massive piston oupled to linear partial di�erentialequations for the evolution of the one partile distribution of the light par-tiles.� In their onluding remarks they admit, however, that they annot



4214 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokanswer the question whether the piston onverges to a stationary state.A more realisti situation is desribed in [15℄ where the gas of Callen'spiston onsists of hard disks. Numerial alulations show that in this ase�the insulating piston qualitatively behaves as expeted � it moves andonduts heat�. As a result the temperatures left and right beome equal.In the present paper we have again studied the one-dimensional idealgas ase. Instead, however, of onsidering the thermodynami limit, wehave taken the ontinuum limit, de�ned in Setion 2. For this limiting asewe used the equations for the single partile distributions to derive a losedset of hydrodynami equations. This was possible by assuming that the gasbehaved as an ideal �uid, meaning that the internal entropy prodution ouldbe negleted. In addition we performed some simulations and ompared theresults with the onlusions that ould be drawn from the hydrodynamiequations.Our main onlusions an be summed up in the following points.1. We �nd an approximate solution for the single partile distributions,whih give Maxwellian veloity distributions. This is in agreementwith numerial simulations, as is shown in �gures 4 and 5. It is notlear, however, how this state is reahed in the ourse of time.2. This approximate solution also shows osillatory behaviour of the po-sition of the piston and of the temperatures to the left and to the right,in agreement with numerial simulations. It does not show a tendenyof the piston to shift its osillation entre towards the midpoint ofthe tube (for equal densities), although this behaviour is observed innumerial simulations.3. The epiyles of the piston movement, whih are notieable in �gures8 and 11, may be aused by the impat of shok fronts in the gas.The existene of shok waves was established in the ontext of thehydrodynami equations of Setion 4, but it remains to be seen whethertheir e�et on the piston an be really understood from a loser studyof these equations oupled to the equation of motion of the piston.4. If so, this will mean that the di�erene between the two temperatureswill keep osillating around zero and therefore that for this ompositesystem, onsidered as one isolated unit, thermodynami equilibriumwill not be reahed for t!1:One of the authors (M.J.R.) thanks the Institute of Theoretial Physisfor its hospitality.
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