Vol. 32 (2001) ACTA PHYSICA POLONICA B No 12

THE ENIGMATIC PISTON*

M.J. RENNET, M. RULJGROK?® AND TH.W. RUIJIGROKP

aInstitute of Mathematics, Utrecht University
P.O. Box 80010, 3508 TA Utrecht, The Netherlands
PInstitute of Theoretical Physics, Utrecht University

P.O. Box 8006, 3508 TA Utrecht, The Netherlands

(Received September 24, 2001)

The use of ensemble theory to describe systems in thermal equilibrium is
justified by the fact that it explains a large variety of experiments. The the-
oretical understanding, as embodied in the work of Boltzmann and Gibbs,
is based on the assumption that all microscopic states with the same energy
occur with equal a priori probability. Efforts to explain this assumption
or to avoid it by using the microscopic equations of motion, are doomed to
fail, because of the extreme complexity of these equations. In the present
paper, however, we consider a system for which this complexity is reduced
to a minimum. It consists of a finite one-dimensional tube, filled with an
ideal gas, in which a piston forms an adiabatic separation between the two
parts. Analytical and numerical investigation of this system reveals a very
slow approach to a final state in which the piston still performs some non-
chaotic motion, which is probably related to the formation of shock fronts.
The general question of how much complexity is needed for a system to
approach thermal equilibrium is, however, still an open problem.

PACS numbers: 05.70.Ln, 05.45.Pq

1. The problem
1.1. The Boltzmann-Gibbs point of view

A perennial source of confused discussions is the paradox that, on the
one hand, the equations of motion of a system, consisting of a large number
of particles, are invariant under time reversal, whereas, on the other hand, it
is clear that all macroscopic systems approach an equilibrium state, so that
a preferred time direction seems to exist.
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Although a century ago the misunderstanding giving rise to this paradox,
was cleared up by Boltzmann and Gibbs, we believe it worthwhile to repeat
the main line of their argument. In this we follow Uhlenbeck and Ford [1].

For an ideal gas all macroscopic properties of the system are deter-
mined by the distribution of N points in the p-space of a single parti-
cle. This space is divided into a large number M < N of cells of size
w1, -+ ,wy and a macroscopic state of the system is then specified by giv-
ing the numbers nq,--- ,nas of points in each of these cells. The sizes
w; are determined by the resolving power of the measuring instruments. To
a given set {n1,--- ,nps} corresponds a large number of microscopic states.
The volume in I'-space covered by these states is equal to

N!
W(nl,... ,nM) = mw?l ...w?/lM_
The distribution which maximises this volume is proportional to the respec-
tive cell sizes and is given by

n; = Awie_ﬂgi,

where ¢; is the energy of a particle in cell 4 and A and g are fixed by the
requirement that the total number of particles and the total energy are given
quantities. For states {ni,--- ,nyp} = {71 + Anq,--- , s + Anps} close to
this maximum state, the corresponding volume in I'-space can be calculated
and is found to be equal to

W(n) = W(w) e~ N{(Ani/mi)")

The macroscopic states for which the exponential factor is not smaller than
a fixed number between zero and unity, are called equilibrium states. They
form a small set in the sense that the numbers An;/m; are on the average
of the order of 1/ V/N. Nevertheless, the total of all these states corresponds
to microscopic states which cover almost all of phase-space.

Therefore, any initial state in phase-space which is not an equilibrium
state in the above sense, will, barring exceptional cases, very quickly enter
this equilibrium region, never, or hardly ever, to leave it again.

The above considerations should not, of course, be considered as a proof
of Boltzmann’s ergodic hypothesis, which says that

a mechanical system’s trajectory in phase-space will spend equal
times in regions of equal phase-space measure [2].

Also Gibbs’ ensemble theory for systems in which interactions are not
neglected, has no foundation based on Hamilton’s equations of motion. At
this point we want to quote Van Kampen [3|, who argues that
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The introduction of an ensemble, and the related description in
terms of probability, cannot be justified on a priori ground, but
only by appealing to experience.

If correct, this statement should put a stop to all further research into
the foundations of equilibrium statistical mechanics. There are, however,
other fundamental problems, related to how fast a many-particle system
approaches equilibrium. There is hope that these problems can be better
understood by studying the role of chaotic dynamics, which are discussed,
among others, by Dorfman [2] and by Zaslavsky [4].

Another way of gaining understanding is to study special systems in
which the amount of complexity is reduced to a minimum, so that analytical
methods can be applied.

An example of such a model-system will be studied in the present paper.
The model will be described in the next section, in which we will also discuss
the relation with a peculiar, widely known problem in thermodynamics.

1.2. Two experiments

As an introduction we will first discuss

1.2.1. Riichardt’s experiment [5]

This is an experiment for determining the ratio Cp/Cy of a gas. The
apparatus consists of a 60 cm precision bore glass tube, attached vertically
to a 10 litre glass jug. A tightly fitting steel ball of about 10 gram is allowed
to fall in the tube. The enclosed volume of gas acts as a cushion, on which
the ball bounces up and down. Although the oscillations are damped by
friction inside the tube, the period of the oscillations can still be measured,
and from this it is then possible to calculate Cp/Cy .

For the one-dimensional case we show how the equation of motion for the
position z(t) of the ball can be derived, assuming that the gas under the ball
is at all times in thermal equilibrium, described by the pressure P(z) and
the temperature 7T'(z) and neglecting the friction inside the tube. We also
assume that the system is thermally isolated from its surroundings. Using
the thermodynamic relations for an ideal gas between energy, pressure and
temperature in an adiabatic process

d 1 __dT
v_ NE

1
U(z) = =NkT(z) and P(z) = —— =Nk,

2

and the ideal gas law
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we see that the temperature should satisfy

dT T(zx)
—_— =2 .
dz T

The solution of this equation is

2
T(z) = T(wo) (2)
x

where zg is the position of the ball at time ¢ = 0. The equation of motion
of the ball becomes

d’x dv

M— = —Mg+ P(x) = ——

2 9+ P =—4

with

V(z) = Mgz + %NkT(mo) (%)2 .

The constant pressure from the outside has been included in the term —Mg.
This equation describes an oscillatory motion between z_ and z,, with a
period equal to

dx
VV(ze) = V(z)

The calculation can be repeated for the three-dimensional case, and the
resulting period turns out to be in good agreement with the experimental
value.

At this point we want to remark that the undamped periodic motion of
the ball is a result of the existence of a velocity independent potential. There
is, however, reason to doubt that the true motion of the ball is periodic. In
order to show the evidence for this doubt, we have performed a numerical
calculation of the motion of the ball for the case where the gas is replaced
by a single particle of mass m = 0.2 M, which bounces elastically between
the ball and the bottom of the jug, conserving energy and momentum on
each collision with the ball. When plotting the position and the velocity of
the ball at each moment this particle hits the bottom, we obtain the picture
shown in figure 1. This Poincaré-section of four orbits illustrates the fact
that a large portion of the total phase-space is filled by a single orbit. Each
of the three other orbits describes a quasi periodic motion of the system. For
a mass ratio m/M = 0.465 the region containing quasi periodic orbits has
practically shrunk to zero and all of phase-space is filled by a single orbit.
Therefore, in this case the system is ergodic and the microcanonical ensemble
can be used to calculate the velocity distribution f(v) of the particle. The

T4
7':\/2M/
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result f(v) ~ (v2,. — v2)%/? is in complete agreement with the distribution
obtained by monitoring the particle velocity over a large number of collisions
in a numerical simulation. During this time the motion of the ball is very
erratic. It is, therefore, not unreasonable to expect that, if the single particle
is replaced by a large number of gas particles, but with a total mass which
is not changed, the motion of the ball will turn out still to be very erratic.
Later it will turn out that this is indeed the case. This is different from the
smooth behaviour which was found while analysing Riichardt’s experiment.
However, the same erratic behaviour is also expected for the gas molecules,
which supports the assumption of thermodynamic equilibrium made in dis-
cussing Riichardt’s experiment. This assumption led to a smooth periodic
motion of the ball. We, therefore, have arrived at a paradoxical situation.
One of the purposes of the present paper is to explain the origin of this
paradox.

0 0.2 0.4 0.6 0.8 1

Fig. 1. Phase plot of the ball for m/M = 0.2.

It is related to a similar problem, about which in recent times quite a few
publications have appeared, and which we will call the problem of Callen’s
piston.

1.2.2. Callen’s experiment

In his book on thermodynamics [6] Callen calls attention to a situation
which he denotes as a “uniquely delicate problem”. The Gedankenexperiment
is sketched in figure 2. Two gases are separated by a movable adiabatic
piston. In equilibrium the pressures and temperatures on the left will be
equal to those on the right, and the equations of state will then determine
the position of the piston.



4188 M.J. RENNE, M. RuniGrOK, TH.W. RUIJGROK

P1 T1 P2 T2

N1 m1 N2 m2

0 X(t) L

Fig.2. Callen’s piston.

Callen notices, however, that thermodynamics only predicts the correct
mechanical equilibrium, P, = P, but that other parameters are largely
undetermined. For instance, temperatures and volumes of the two compart-
ments depend on the details of the viscous processes by which the piston
dissipates its kinetic energy, but these processes do not belong to the realm
of thermodynamics.

The problem which therefore arises, may be illustrated for the case of one
dimensional ideal gases, although viscosity is absent there. At time ¢ = 0
when the piston is released in the position xg with zero velocity, the internal
energies, temperatures, pressures and volumes of the two gases are given.
Under the assumption that the gases stay in thermal equilibrium during the
motion of the piston, the ideal gas laws then determine the values of these
quantities at later times. In particular the pressures become

Py(z) = Py(z0) (%)3 and pQ(I):p2($O)<IL—_ZO>3

The motion of the piston then follows from

d’z
dt?
From this it can be shown that the piston is only in a stable position when
from the outset the pressures are equal and the temperatures are chosen such
that P, = & 1le = NQkTQ = P,. Only for equal densities the temperatures
to the left and to the rlght will be equal. It, therefore, shows, and this
was Callen’s main observation, that thermodynamics is not sufficient to
understand why in general only that state is realised for which not just the
pressures, but also the temperatures of the two gases are equal.
All non stationary solutions of the equation of motion are undamped
periodic oscillations around the point

= Pl(.’L‘) - PQ(.’L‘) .

PQ(iE()) 1/3 L — Zo
Zo

L
r=7T=-—— with =
¥ 7 <P1(x0)

1+
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For small amplitudes we find that the square of the frequency is equal to

w2 — 3N1]€T1(f) _ L . (1)

M 7?(L — )
As in the case of Riichardt’s experiment, we see no tendency of the system to
approach equilibrium. The piston, as well as the temperatures and pressures,
keep oscillating. Also adding dissipation terms to the equations of motion
of the gas and of the piston does not help, because the final position of the
piston, and therefore the temperatures, turn out to depend on the piston’s
initial position.

An appeal to ensemble theory does not improve the situation. Distribut-
ing the total energy F as the sum of E; and Fy over the two gases and
considering the position z of the piston as an external parameter, we can
calculate the entropy, i.e., the logarithm of the microcanonical partition
function Z(E1,z) by standard methods:

N N.
InZ(E,,z) = 71111151 + 72111(E—E1) +NilInz+ Noln(L —z)+--- ,

where we have omitted terms which are independent of F; and xz. By con-
sidering £ and z as independent variables we easily find the values of F;
and z for which In Z(F4, ) reaches its maximum. This occurs when E; and
x satisfy the equations

Ny Ny Ny Ny

== d —_—
B, E—-E, M LT IL_z

which amounts to saying that in equilibrium the pressures and the temper-
atures will be equal. This seems to solve the problem of the indeterminacy
of the temperatures.

However, the variables Fq and z are not independent, because, due to
the adiabatic constraint, the relations

dEl = —Pld.’L‘ and d(E — El) = _P2 d(L — .’L‘)

exist, where P, = % and P, = % From these only the equality

of the pressures can be deduced; separate conclusions on temperatures and

volumes cannot be drawn. This is in agreement with the fact that under the
adiabatic constraint d In Z = 0 identically, as in Callen’s demonstration.

The controversies around Callen’s piston have been discussed by Curzon

and Leff [7], who also give references to older literature. Gruber [9] discusses
more recent developments.
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The above considerations show that on the basis of pure thermodynamic
theory it cannot be understood why also the temperatures on both sides of
the adiabatic piston should become equal. An important assumption has
been, however, that during the process the system went through a series
of states which were always equilibrium states. This assumption will be
questioned in the present paper by developing a model which is closer to
kinetic theory. Other models of this type have been discussed in the recent
literature [8-15]. A comparison with our work will, however, be postponed
until the last section.

2. The continuum limit

Our goal is to derive a macroscopic description of the behaviour of the
gas and of the piston, in the limit where N7 and Ns tend to infinity. This
can, however, not be the usual thermodynamic limit, in which simultane-
ously the size of the system grows indefinitely, while the particle masses are
kept constant. In this case the correlations between recollisions, which are
essential for the establishment of equilibrium, would be lost.

Instead we now consider the case in which the size L of the container is
fixed and the masses Nymi and Nomg of the gas to the left and to the right
are comparable to the mass M of the piston. This piston mass, as well as
the total energy, will also be kept fixed when N = Nj + Ny — oo. The mass
of the gas particles will tend to zero, however.

This is called the continuum limit. It can be formally characterised by
taking Boltzmann’s constant & — 0. As was explained in great detail by
Compagner [16], this is the proper limit for the description of a thermody-
namic system when macroscopic dependencies on space and time are present.
All microscopic fluctuations are suppressed.

At any time the state of the system is given by specifying the position
X (t) and the velocity V() = d)figt) of the piston and also the coordinates
and velocities of the gas molecules. Since, however, the number of molecules
goes to infinity and since these molecules have no mutual interaction, the
state of the gas is actually completely described by two distribution functions
fi(z,v,t) and fo(x,v,t). Here fi(z,v,t) dz dv is the fraction of all molecules
on the left in the volume element (z,z +dx), (v,v+dv), with 0 < z < X(¢).
In the same way is fo(x,v,t) dx dv the fraction of all molecules on the right
in the volume element (z,z + dx), (v,v + dv), with X () < 2 < L. These
functions are, therefore, normalised as

X (t) L ()

/dxfm,v,t)dvzl wit [ o [ pteoa-1

0 X (1)
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The fact that they do not change because of collisions, but only because
of the free streaming of the gas, implies that they satisfy the continuity
equations

Ofi(z,v,t) +U@f1(m,v,t)

5 5 =0 for 0<z<X(t) andallvandt (2)

and

Ofa(z,v,1) n Uafg(x,v,t)

o o =0 for X({) <z <L andallvandt. (3)

In a collision with one of the walls the particle velocity will be reversed:
v — —v, whereas in a collision with the piston the velocity of the (massless)
particle will be transformed like v — 2V (¢) — v. The boundary values of
fi(z,v,t) and fo(x,v,t), therefore, have to satisfy the following conditions

forx = 0: f1(0,—v,t) = f1(0,v,¢t) for all v and ¢,
forz = L: fo(L,—v,t) = fo(L,v,t) for all v and ¢ (4)

and

for z=X(t): [fi(X(t),2V(t) —v,t) = fi(X(t),v,1),
for allvand tand i=1,2.

The latter condition can also be written as

for z=X(t): [fi(X@),V(t)—0,t)=fi(X(®),V(t)+v,t)
for allvand tand i=1,2. (5)

For given initial distributions fi(x,v,0) and fo(x,v,0) on the intervals
0 <z < X(0) and X(0) < < L and for all v, and assuming that X (¢) is
a known function of ¢, equations (2) and (3), together with the boundary
conditions (4) and (5), should be sufficient to calculate the distributions at
later times. It will turn out that the solution of these equations is far from
trivial, and the main part of this paper is, therefore, devoted to the study
of this problem.

First of all we want to convince ourselves that the number of particles
in each of the two compartments is conserved, or in terms of the continuum
limit, that the total amount of fluid on each side does not vary in time. For
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that purpose we calculate the integral

() o
dz / fi(z,v,t)dv
(1)

:V/fl( ,v,tdv+/d / afl‘“t
(t)

:V/fl( ,v,tdv+/dm/ afl"”t))d

b

|
8

8
b

e 0
:V/fl(X(t),U,t)dU— /Uf1( (t),v,t)dv—i—/Ufl(O,v,t)dv. (6)

The third integral on the right hand side vanishes because of Eq. (4). The
second integral can be written as

oo

/vfl(X(t),v,t) dv

— 00
o.¢]

_ / (V 4+ v) (X (0),V + v, ) do

—00
o.¢]

= [ V=0 AV 4ot do, ©
—00
in which Eq. (5) was invoked. Taking half the sum of the last two integrals
in Eq. (7) gives
o.¢] o.¢]
/vfl(X(t),v,t)dv = V/f1 ),V +wv,t)dv

— 00

_y / FUX (), 0.8) do

Substitution into Eq. (6) then shows that the sum of the integrals in the
right-hand side of this equation is equal to zero, so that the conservation
law has indeed been established. The same proof holds for fs(x,v,t).
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With similar manipulations we can show that for an arbitrary func-
tion H, e.g. H = f1log f1, the integral fOX(t) dz [0 H|[f1(z,v,t)]dv is con-
stant in time.

The total momentum of the system is not conserved, because the walls
at £ = 0 and = L exert a force on the gas. However, for collisions with
the piston momentum conservation does hold. From this we can determine
the force on the piston, by calculating the momentum transfer per unit time
from the gas to the piston. Since for each collision this loss of momentum
is equal to m;(v —v') = 2m;(v — V(t)) — for m; « M — the momentum
transfer in the time dt from the gas on the left to the piston is equal to

00 X(t)
(momentum transfer in dt) = Nl/ dv / 2mi(v =V (t)) fi(z,v,t)dz.
V() X(t)=(v—V(1))dt

From this follows the force on the piston due to the first gas

o

Fi(t) = 2Nym; / (v = V() f1(X(t),v,t)dv. (8)
V(1)

The force due to the second gas becomes

V(o
Fy(t) = 2Nyms / (V(8) = 0)2fo (X (£), v, £) dv . ()

— 00

Using Eq. (5) these integrals can be written as integrals over the whole
v-axis, so the equation of motion for the piston becomes

2
w0 g - m
= / (v — V(t))2 [Ny f1(X(t),v,t) — Nomafo(X(t),v,t)] dv. (10)

Together with (2)—(5) we now have a closed set of equations for the descrip-

tion of the system in the continuum limit. (Remember that yq = 2424 and

o = Njg” are finite dimensionless numbers, which remain constant when
Nl, N2 — OO)
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Also the total energy

X(t) o

1 1
E = §MV2(t)+§N1m1 / dm/vgfl(m,v,t)dv

— 00

0
] L 00
+§N2m2 / d$/U2f2($,U,t)dU
X(t) —oo

is conserved. This can be proved with the same method as above. If in
addition we use the equation of motion of the piston and the fact that

/ (v=V(@)" fi(X(t),v,t)dv =0 for odd n, (11)

—0o0

it is easy to show that indeed % = 0.

3. An Ansatz

As an approximate solution of Eqs (2)—(5) we propose Maxwell distribu-
tions, shifted in velocity and with time dependent parameters fi(z,v,t) ~
fM(z,v,t) and fo(z,v,t) ~ fM(z,v,t) with

2
7,0.8) = s o exp — g (1) (= 2V )

for 0 <z < X(t)

and

2
100 = | e exp —gma palt) (- £V 0)

for X(t) <z < L.

These same functions were used by Huang [17] as an approximate solution of
Boltzmann’s transport equation. They are properly normalised and satisfy
the boundary conditions (4) and (5). Furthermore, these distributions give
rise to uniform normalised spatial densities and linear spatial profiles for the
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local macroscopic gas velocities:

et = [ Ao = .

. 1 oz
wM (z,t) = m/vffw(x,v,t)dv—mV(t).

—00

Likewise for the other compartment:

oM (z,t) = L%X(t) and  wd(z,t) = I,L—i;(ft)v( ).

In order to determine the time dependence of the reciprocal temperatures
B1(t) and Bo(t) we first calculate the energy content of both gases:

X(t) 00
1 N 1
Ei(t) = §N1m1 / dzx / V2 fM (z 0, t) do = 251@) + 6N1m1V2(t),
0 -0

L o0
1 Ny 1
Eg(t) = §N2m2 / dr / U2f2]w($,1),t) dv = 2[82(t) =+ ENQmQVQ(t) .
X(t) -0
Both expressions contain a contribution from the local macroscopic velocity,

which for the first gas is

X(
1 1
g [ o) (i o 0 ds = LN V20,
0

and one from the internal energy. The equation of motion (10) for the piston

takes the form
d2X(t) _ Ny B Ny (12)
> B X(E)  Ba(t) (L—X(1)

from which the time evolution of the total energy follows:

M

v d lMV2(t)+E1(t)+E2(t)

dt  dt |2
_1 v NV(E) N dpy
= gNmVt)o Bi(t) X(t)  2B2(t) di

av NoV (1) Ny dps

1
VO T BT -X0) e d
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Since we insist on energy conservation, also for the approximate solutions,
we choose the time dependence of the temperatures such that they obey the
equations

dTy V(1) my dV>(t)

@ X W+ =0 (13)
and

dT V(t) my dV3(t)

dt2—2L_X(t)T2(t)+3—; - =0. (14)

Notice that Boltzmann’s constant only appears in the combinations 7%,

which attain definite values in the continuum limit. Using these equations
we can derive the equations which should be satisfied by the distributions
fM(z,v,t) and fM(z,0,t):

0 0
<E +U(9_m) M (x,0,t) = Cy(z,0,t) f(x,0,t) for 0<z<X(t)
and

<% +U8£) M (z,0,t) = Cy(z,v,t) fH (z,0,t) for X(t) <z <L,
x

with C, (z,v,t) and Cy(z,v,t) defined by
Ci(z,v,t) = mlﬁl(t)d‘;—it)
x [%V(t) + (v —wM(z,1)) Xi(t) = %mlﬁl () (v —wl (z,1))” V(t)]
and
Co(x,v,t) = m@(t)‘%—f)
X [%V(t) + (v — wd (z,1)) LL%XZ) — %mgﬁg(t) (v —wd(2,t))” V(t)] -

Clearly, the shifted Maxwell distributions in general only give an approxi-
mate solution of equations (2) and (3). They become exact when the molec-
ular masses or the piston’s acceleration become small. In order to elucidate
this point we rewrite the equations in dimensionless variables, which will
also be used in the sections on hydrodynamics and on simulations.

As units of length, velocity, time and temperature we take

| B L E
L, Vy= QM’ tOEVO and Ty = 2N—k’ respectively, where N =N; 4+ Ny
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is the total number of gas molecules (this number tends to infinity in the
continuum limit, but the product Nk stays finite). The unit of velocity is
equal to the velocity of the piston if it would carry all energy of the system
and the molecules were at rest. In terms of these units we define

z=yL, v=vVy, N;=n;N, Nym;=pu;M, LVOfiMEhZM(y,ﬁ,T),

t=r71tg, X(t)==(r)L, V(@) =V(n)Vo, Ti(t)=ui(1)Tp,
t0C; = Di(y,v, 7).

Inserting these quantities into the shifted Maxwell distributions we find

Mo o~ _ 1 M1 exD — ! T — Y v T ’
b (y,0,7) = z(1)\ 2rniu (1) P 2nquq (1) < z(7) 4 ))
for 0 <y < z(r) (15)
and

Mo o~ 1 2 oxpy — 12 5 l-y & r ’
hy' (y,0,7) = 1 —xz(7)\ 2mnous(7) P 2n9ua(T) < 1 - I(T)V( )>
forz(r) <y <1. (16)

The distributions h (y,v,7) and hd!(y,v,7) are normalised to unity and
satisfy the equations

onM (y,v,7) N ~0hi(y, 0, 7)

= Di(y,v,7) h{! (y,0,7) for 0 <y < z(7)

or oy
and
Oy :07) | GO W0 T) 5y T, 5,7) for () S y < 1,
or oy
in which
N p dV(r)
Di(y.v,7) = nlull(T) dr
1~ -~ Y = Y L m ~ Y 5 2
<370+ (- -570)) S - L (5 L) T
and
N pe  dV(r) [1~ L 1-y = l1—y
Doy 0m) = onm ar [§V(T)+ <“_ T—an)" )) 1= a(7)
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Since in most discussions of this problem ny = 1 — ng ~ %, we see that

hM (y,v,7) and hd (y,,7) describe free streaming fluids when the temper-
atures uq(7) and us(7) are not too low and the relative fluid masses p1 and
1o or the acceleration of the piston are small.

Let us now turn to the solutions of Eqgs (12), (13) and (14), which we
first write in dimensionless form. In order to make contact with the thermo-
dynamic description in Section 1.2, we will use the dimensionless pressures
Py (1) and Py(7) instead of the temperatures uy(7) and ug(7):

P =" wd B ={0 0
Egs (12)—(14) then read
22 (T ~ ~
T~ By - Botr).
B B - b 0
digﬂ::1—2ﬁ)hﬁa”‘*mﬂﬁﬂdgfx (18)

in which o; = %Mz‘ and v, =3 4+ a4, 1 =1,2.

Eliminating 7 by the substitution dr = dz/ V we finally get for the
pressure equations

dpéiix) = —% [71151(30) - alﬁ?(’”)]
and
dﬁ2(ﬂﬁ) 1

T = [’ngg(x) — Py (x)} .
T 1—=z

The exact solution in terms of hypergeometric functions can be given, but
is rather uninformative and will not be exhibited here. Since the veloc-
ity V' does not appear in this solution the piston will perform a periodic
motion without damping. One integration constant is the energy, which in
dimensionless units is equal to

E 1 1 dz(r)\> = ~
—1=(1+4= — P 1 —z)Py(x).
IMvg < +2a1+2a2>< o ) + 2P (z) + (1 — z) P2 ()
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From this an expression for the period of the piston’s motion can easily be
derived

T:\/2(2+a1+a2)/ do

D 1=ahi@) - (1 - 0B

in which x_ and z4 are the turning points.

For the special case of massless gases, i.e. u1 = ps = 0, the solution
can be given in terms of elementary functions. If, moreover, we consider
only oscillations of small amplitudes the frequency becomes equal to the
frequency calculated by the thermodynamic method and given by Eq. (1),
which reads in scaled variables

T now being the scaled equilibrium point.

The conclusion of this section is that for small values of p; and ps the
shifted Maxwell distributions probably give a good approximation to the
exact distributions. It is, however, still not clear whether and how these
functions, when started from arbitrary values, will be approached for large
times. The perpetual oscillatory behaviour of the pressures and tempera-
tures is in conflict with the predictions of ensemble theory. It remains to be
seen whether this conflict is due to the approximations and will disappear
in an exact solution, or whether it is a property of the special system we are
considering here.

4. The hydrodynamic description

4.1. The general equations

Despite their simple appearance equations (2) and (3), together with the
boundary conditions (4) and (5), are hard to solve exactly. A less ambitious
task, in which we abandon the idea to calculate the full distribution func-
tions, is to try and find solutions for the hydrodynamic equations. As shown
e.g. by Huang [17], these can be derived from Eqs (2)—(5). To this end we
define

the normalised spatial densities (i =1,2) :
X(#)

pile.t) = / filew,v,1) do, / pr(st)dr = 1,

0

—

palr,t)dz = 1,

b
=

~
=
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the local velocities:

wi(z,t) = ,Oi(;,t) / v fi(z,v,t)dv,

the local temperatures:

Tiot) = Fors [ 0= ua ) oo,

— 00

and the local heat fluxes:

qi(z, mZN / —w;i(z,1)) fi(z,v,t)dv.

The local pressures are related to the local spatial densities and temperatures
by the ideal gas law

jji(xat) =N; pi(xat) kﬂ(l‘,t) :

The boundary conditions (4) and (5) impose boundary conditions on some
of these quantities:

wi(0,8) = wa(L,t) =0 and  wi(X(2),t) = we(X(£),1) = V(t)

and
q1(0,t) = q2(L,t) =0 and qi(X(t),t) = q2(X(t),t) =0, (19

the latter equality following from Eq. (11).
The equation of motion for the piston (10) then takes the form

d2X( )
dt2

= Pi(X(1),t) — Pa(X(1),1). (20)

From Eqs (2)—(5) one easily derives the standard conservation laws:
the continuity equation:

api(xat) 9 . . _
BT + g (pi(z,t) wi(z,t)) =0,
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momentum conservation:

0 0 1 0Pi(z,t)
i(z,t) | 57 i, 1) 5~ | wilz,t) = — B —
pilz,1) [Bt +wile )&E] wilz, 1) Nym;  Ox

energy conservation:

ow;(x,t)

+P;(x,t) 5

In order to assess the relative importance of the various terms in these
expressions we write them in dimensionless form, using the units of Section 3.
The distribution functions are replaced by h;(y,v,7) = LVy fi(x,v,t), which
are normalised as

w(r)
[
0

In addition we introduce

1 [e'¢)
hi(y,v,7)dv =1 and /dy/hg Yy, 0,7)dv = 1.
x(r) —®

é\g

the scaled local densities:

o

1
ple.t) = 7). sothat pily.r) = [ Bl do,
the scaled local velocities:
1 o0
wilz,t) = Voii(y,7) so that  @i(y,7) = = / ¥ hily, 5, 7) v,
pi(yaT)_oo

the scaled local temperatures:  Tj(z,t) = Tou;(y,7) so that

[ee]
ui(y, 7) = W /('17 — wi(y,7))? hi(y,v,7) dv

the scaled local pressures:

MV

])i(xa t) = sz(ya T) so that é(y’ T) = nzﬁz (ya T) Uj (ya T) s
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and the scaled local heat fluxes:  ¢;(z,t) = MTV‘?(Z(y, 7) so that

o

a/i(yaT) = % /(5_wi(ya7))3hi(ya5a 7—)d5

— 00

In these units the equations expressing the conservation laws read:

7‘%{%’7) + a%('p;-(y,f) @i(y,7)) = 0. (21)
) | 54 1) | ) = = T
T, 0 .
= —Ea—yfpi(yﬁ)w(yﬁ)) - (22)
pi(y, ) [%4—@(%7)%] ui(y,7) = —n% 76%((;;’ ") +E(ya7)7awi{§z’7)
_ _Z_Za% /(5—@i(y,7))3hi(y,5,7)dﬁ—QE(y,T)ui(y,T)%z’T)- (23)

In the new units the total energy is equal to unity. With the scaled vari-
ables it can be expressed in terms of the scaled local functions as

K+Q=1,

in which K is the total kinetic energy of the piston and of the local
motions of the fluid

a(7)

1
dz(m)\ 2 -
K=< d(T)) +u1/p1(y, )W (y, T dy+u2/p2 )W (y, T)*dy
0 z(7)

(24)

and () is the total internal energy. This is the kinetic energy as mea-
sured relative to the local velocities

z(T) 1
Q:nl/ﬁl(ya T)ui(y, 7 dy+n2/p2 Jua(y,7)dy.  (25)
0 z(7)

For an ideal one-dimensional gas the relation between pressure, density

and entropy is given by

P = ﬁp3es/c” ,
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in which & is some constant. Therefore, if instead of using the local tem-
perature, we want to use a quantity which can be interpreted as (a function
of) the local entropy, the above relation suggests to define the following
dependent variables
reSi/co
s = MVELR
With these functions the dimensionless pressures can be written as

]Aji(ya T) = nzﬁz(ya T) Uq (ya T) = ﬁ? (ya T) 322 (ya T) :
Egs (21)-(23) can now be written as

o . 0] - 1 0 ,.
2+l | i) - oy PG @)
3+ T ) = —5 5k (28)

Eqgs (26)—(28) form a set of conservation laws, which put constraints on
the unknown functions p;(y, 7), w; (y, 7), s;(y,7) and g;(y, ), but which are
not sufficient to fix them completely.

This situation is changed when we assume that the spatial derivative of
the heat flux, which according to Eq. (28) is the source of entropy production,
can be neglected. In view of the boundary conditions (19) this is equivalent
to assuming that ¢;(y,7) = 0 for all y and 7. For the Ansatz we made in
Eqgs (15) and (16) for the distribution funtions hM (y, v, 7) this assumption
is satisfied, because the heat fluxes g (y,7) are identically zero. If in the
general case we also assume that the heat flux is the same in all points (this
is called an ideal fluid), Eq. (28) becomes

o 0
8_7' +wz(y77)a_y S’L(yaT) =0.

This equation shows that s;(y, 7) is constant along each stream line defined
as the solution y(7;yg) of w = w;(y, ), with y(0;y0) = yo.

Together with Eqs (26) and (27) we now have a set of hydrodynamic
equations for the initial value problem, from which for a prescribed motion
of the piston, the functions p;(y, 7), w;(y,7) and s;(y,7) can in principle be
solved.

The only boundary conditions are

dx(T) .

w1(0,7) =we(1,7) =0 and wq(x(7),7) = wa(z(7),7) = o
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4.2. Special cases

We now have a complete set of equations for the functions p;(y,7),
wi(y, ) and s;(y, 7), to which we add Eq. (20) in scaled form for the piston’s
motion:

LT 1 2 il 0. 7)) = O, (29

a a1 - 1 9
)| D) = — =2 () L G0
)5 | i) = 0, @1
LlT) _ Biatr). )5t (), 7) — Rhla(r), ) o )
T = Ba(n), )5 (w(n),7) — Ba(r), ) s3a(r)r),(32)

together with the boundary conditions

@1 (0,7) = @a(1,7) =0 and @ (x(r), ) = @a(a(r), ) = dz(:). (33)

They are nonlinear partial differential equations, which cannot be solved
in closed form. Apart from applying numerical methods, we therefore can
only get some insight into the content of these equations, by using phys-
ically motivated approximations. Some of these will be discussed in this
subsection.

The energy conservation law (24)-(25) can be expressed as

a(7)

1
dz (1)) 2 - ~
<%) + m/pl(yﬁ)wl(y, dy+u2/p2 ) Wy, T)*dy
0 z(r)

z(T) 1
~3 —_
+ /m(y, )8t (y, T dy+/p 7)s5(y, T)dy = 1.
0 a(7)

This relation can of course also be derived directly from Eqgs (29)-(33).
We will now consider a number of special cases of these equations.

4.2.1. Case 1

As a preparation for obtaining a special solution to these equations we
assume that the distribution functions h;(y, v, 7), which are needed to cal-
culate p;(y, 7),w;(y,7) and wu;(y, 7), are given by the shifted distributions
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hM(y,,7) of the Ansatz (15) and (16). Using these distributions we obtain

) = o ) = T
Tlnr) = 25T Tr) = o
wily) = (), sy, ) = a(7)

while the heat fluxes g;(y, ) vanish identically, in compliance with the as-
sumption made in the derivation of equations (29)-(33). On substitution of
the above results in the equation of motion for the piston (32), this equation
attains the same form as in (17), (18):

d?z(7) _ nui () maua(T) 34

dr2 (1) 1—az(r)’ (34)

At this point we observe that the spatial uniformity of the densities p;

and of the temperatures u; and the linear interpolation between the walls

and the piston of the local velocities w;, valid for all times, is a consequence

of the special form of the distribution functions hM (y, v, 7); these functions

only constitute exact solutions to the free flow equations (2) and (3) when

i = 0 (¢f. the discussion in Section 3). However, for p; = 0, the same

behaviour also follows from the solutions of Eqs (29) and (31), with Eq. (30)
replaced by

o dPi(y,
ni=— (pi(y, 7) ui(y, 7)) = Oh,T) _ 0
oy dy

and the assumption of uniform initial conditions, without using the special
form of the underlying distribution functions.

Equations (31) turn into equations for u1(7) and us(7), now both inde-
pendent of y:

duy (1) dug(t)  ug(r) da(r)
dr (1) dr and dr _21—117(7) dr

The solutions, written as functions of the position of the piston, are

ui (1) = <%)2u1(0) and  uy(r) = <1_7‘”(0;)2U2(0).
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The corresponding pressures are also uniform and are given by

Pi(7) = <%)3ﬁ1(0) and Py(1) = <%§g)3ﬁ2(0).

The “entropies” s; turn out to be independent of y and 7.

Eq. (34) is the same as Eq. (18) when u; = 0 and also as the equation of
motion obtained in Section 1.2.2; on the basis of purely thermodynamic con-
siderations. Therefore, they lead to the same oscillatory behaviour without
damping of the piston.

We might add that the same results are also obtained in a much more
complicated calculation, in which the hydrodynamic equations are linearised
with respect to small excursions around the stationary solutions.

4.2.2. Case 2

We now consider the case where in Eqs (29)—(31) it is assumed that
the “entropy” s;(y, 7) is a constant so throughout. The remaining equations
(29), (30) become (omitting the tilde and index)

and 5 5 5 )
w p w . 35§
— +tap—t+w—=0 with a=—.
or pay dy 7
By incorporating a factor \/a into p it is seen that there is no loss of gen-
erality when we put a = 1. Taking the sum and the difference of these two

equations and defining u4 = p & w, we obtain the equations

Ouy ouy Ou_ Ou_
— — =0 d ——-u_-——=0
ar "oy nd T Ty
They can be written as
d’U,+ .. :
P 0 on characteristics y(7;€) through y(0;¢) =¢ given by
-
dy(7;
7))
-
and
du_ _ :
== 0 on characteristics y(7;€) through y(0;¢) =¢ given by
-
dy(7; )

TZ—U—(?J,T)-
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On each of these characteristics the values of uy (y,7) and u_(y, ) are con-
stant in time and are, therefore, given by their values at 7 = 0 and y = &.
The characteristics themselves are straight lines with slopes uy(£,0) and
—Uu-— (fa 0) :

For the case where w(&,0) = 0 for all £ between £ = 0 and & = z (fixed),
we have chosen, as an example, the initial density

ml _
% = po(§).

This also fixes the values of u4(£,0) = u_(£,0) = po(€). The standard
procedure for calculating p(y,7) and w(y, 7) is as follows:

p(€,0) =1+ f cos

L. Solve &+(y,7) from y = && & po(€x)7-
2. Then p(y,7) and w(y,7) are given by

p(y,7) = % [po(E4(y, 7)) + po(€—(y,7))]

and
w(y,7) = 5 [po(E+(y, 7)) — po(€—(y,7))] -

At a boundary point y = 0 or y = x only one characteristic passes
through this point. This is, however, sufficient to determine the value of p
at that point, since w = 0 on the boundary, when z is fixed.

A more difficult problem arises when the equation y = &4 + po(€4)7 has
two solutions for £&,. In figure 3, where in the y-7 plane we have drawn the
two families of characteristics, the dark region indicates where these multiple
solutions occur for our choice of po(£) with f = 0.9. The tip of this region

0.2 0.4 0.6 0.8 1Y

Fig. 3. Two families of characteristics.
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is the point where for the first time the slope of p(y,7) becomes infinite.
Beyond this time the density would become multiple valued, which is clearly
unacceptable. One way to handle this problem is to allow discontinuous,
but single valued solutions, which describe shock fronts. Whitham [18], in
chapters 2 and 6, discusses methods to find the shock velocity. However, they
involve assumptions about a functional relation between p and w, which we
are not allowed to make for the system we are considering. This is not to
say that shock waves do not appear, as will become clear in the next section,
where the results of some simulations will be discussed.

Applying this technique to the situation of a moving piston with uniform
initial conditions and zero gas velocities leads to inconsistencies. These
are probably due to the assumption of constant and uniform “entropy”, an
assumption which will be abandoned in the case considered next.

4.2.3. Case 3

For that purpose we try and bring Eqs (29)—(31) in the so called “char-
acteristic form”. Following Whitham [18] we first write them as

B B P
— 4 A =
<aT+ 8y> 1;; 0, (35)
where
w ) 0
A(p,w,s) = | 2ps® w 2p%s
0 0 w

The left-eigenvectors ll, lt, Iy and eigenvalues c,c_,cqg of this matrix are
equal to

- 3s 1 3
ly = <—,:i:—\/3 ,1) with ci:w:i:ps\/j
20" 2p 7

-

lo = (0,0,1) with Cho=w.

and

The characteristic form is obtained after left-multiplication of Eq. (35) by
each of the eigenvectors. The result is

on the characteristics Z—y =cq:
T

dp pdw 2 ds ) d 0 0
Sar T3 T3rar =0 Vit gr=gpteg, s (0
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on the characteristics g—f =c_:

dp  [pdw 2 ds d 0 0

22 42,22 ith — = — e 37
Sar 3 dr + 3P dr W dr 071 te oy (37)
on the characteristics g—f =cp:
ds d 0 0
— =0 ith — = — —. 38
dr W dr Ot tco oy (38)

Only the last of these equations can be directly integrated along the charac-
teristic g—f = ¢p = w, and s is found to be constant on that line. An explicit
form can of course be given only after w(y,7) has been found. The other
two equations have the form of Pfaff’s problem for three variables

P
Pdp+Qidw+Rds=0 with P=s, Q4=+ % R=2p.

For the integrability of this equation, i.e., for a relation F(p,w,s) = 0 to

exist, it is necessary (and sufficient) that the vector V 1 = (P, Q+, R) satisfy
the condition (see Sneddon [19], chapter 1, Section 5)

Di = 7i . Curl?i =0.

In the present case we find D4 = :l:%\/g Since this quantity is not equal to

zero the Pfaffian problem is not integrable. This is not to say that equations
(36)—(38) have no solution. It only means that the solution cannot be ob-
tained by the method of Riemann invariants, as discussed by Whitham [18],
Section 5.3.

5. Simulations

In this section we will show the results of a numerical simulation of
Callen’s piston with Ny = Ny = 1000 molecules to the left and to the right
and for varying mass ratios pu; = Nymq/M and ps = Nomo/M. We will
restrict ourselves to the cases where p; = s = p.

Figures 4 and 5 show the velocity distribution of the molecules on the
left after 4.000.000 and after 5.000.000 collisions, respectively. Actually these
are accumulated distributions, meaning that for each bin on the horizontal
velocity axis, the height gives the total time a molecule happened to have
a velocity in this bin. Only for v ~ 0 there is a persistent and varying
difference with a Maxwellian velocity distribution with equal temperatures
left and right.
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Fig. 4. Distribution for g = 1.0 and 4 million collisions.

Fig. 5. Distribution for 4 = 1.0 and 5 million collisions.

All remaining figures describe properties of the piston. The number N, of
collisions varies from 1 million to 10 million, whereas p takes values between
0.1 and 5.0. In figures with two pictures the one on the left, to be denoted by
(a), refers to the first 20.000 collisions, while the right picture (b) is obtained
from the last 20.000 collisions.

Figure 6 shows the orbits of the piston in its X-V phase-space with
N, = 1 million. In figure 7 we have plotted the position of the piston as

0.1 0.1

0.05 0.05

0 0

0. 05 0. 05

-0.1 -0.1
0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.41 0.42 0.43 0.44 0.45 0.46

Fig.6. X-V phase-space of piston for p = 0.1

a function of time for N, = 10 million and p = 1.0, whereas figure 8 gives
the phase-space orbit for this case. Especially in figure 8(b) for the last
20.000 collisions, the appearance of shorter sub-cycles can be clearly seen.
We will call them epicycles. Notice that the horizontal scale in figure 8(b)
is stretched by a factor of about 2.

Figure 9 gives the position of the piston, averaged over 20.000 collisions,
as a function of time, for the whole period of 10 million collisions, again with
u=1.0.
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Fig. 7. X(t) for N, = 10 million and p = 1.0.
0. 06
0. 075
0.04
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0.025 0.02
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-0.05 -0.04
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Fig.8. X-V phase-space for N, = 10 million and u = 1.0.

For N, = 5 million and p = 5.0 figure 10 gives again the position of the
piston, while figure 11 shows the phase orbits. It is seen that the position
approaches the value %, but oscillations remain appreciable.

The average position of the piston for this case is shown in figure 12.
Also this average position still shows appreciably irregular behaviour.

Xz

0.54
0.52
0.5
0.48
0. 46
0. 44
0.42

t

100 200 300 400 500

Fig.9. Averaged position of the piston for p = 1.0.
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Fig.10. X (¢) for N, = 5 million and p = 5.0.
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Fig.11. X-V phase-space for N, = 5 million and u = 5.0.
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Fig. 12. Averaged position of the piston for p = 5.0.
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6. Conclusions

In this paper we have presented a new approach to the problem of
Callen’s piston, as defined in Section 1.2.2. The question is whether the
adiabatic piston, when it is moving, will allow heat to pass from one com-
partment to the other, thus allowing the temperatures on the left and right
to become equal. It is generally believed that in a relatively short time the
piston will pass through an oscillatory damped motion to a position which
depends on its initial position. During this time the pressures will equalise,
but the temperatures will still be different. In [8] this picture was supported
by a theory in which the momentum exchange in a particle-piston collision
was taken into account, as long as the mass ratio m/M is not exactly equal
to zero. In addition, however, it was assumed that the particle densities are
always uniform and that the instantaneous velocity distributions are always
unshifted Maxwellian. These assumptions may be harmless, but they are
certainly not exactly true. In a much later stage the piston is then supposed
to move toward a final position under the influence of Brownian forces, while
at the same time the temperatures become equal.

In two papers [9,14] on the same subject, Gruber and Frachebourg derive
equations for the long time behaviour of the system. They show that with
dissipation the piston damps out and the temperatures will become equal.
Without damping they find that the oscillations will go on forever. In order
to derive these results they had to assume that the correlation between the
velocity of the piston and the velocities of the particles can be neglected.
They also assumed that the particle densities left and right are uniform for
all times. Our results, derived both from hydrodynamic equations and from
numerical simulations, indicate that these assumptions are incorrect.

The same unjustified assumption about the absence of correlations be-
tween particle- and piston velocity is used in [10] and [11]: “In the absence
of recollisions the piston always ‘sees’ the unperturbed Maxwell distribu-
tions of the arriving fluid particles, and no correlations can occur between
its velocity and the precollisional velocity of the fluid particles.”

In [12] the same problem is addressed, but now for the special case in
which the mass of the piston and the mass of the molecules are equal. Some
interesting results are derived about the motion of the piston, but it will
be clear that an arbitrary initial velocity distribution will never tend to a
Maxwellian distribution, because there is no momentum transfer in a colli-
sion.

The authors of [13] derive an interesting “nonlinear differential equation
for the motion of the massive piston coupled to linear partial differential
equations for the evolution of the one particle distribution of the light par-
ticles.” In their concluding remarks they admit, however, that they cannot
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answer the question whether the piston converges to a stationary state.

A more realistic situation is described in [15] where the gas of Callen’s
piston consists of hard disks. Numerical calculations show that in this case
“the insulating piston qualitatively behaves as expected — it moves and
conducts heat”. As a result the temperatures left and right become equal.

In the present paper we have again studied the one-dimensional ideal
gas case. Instead, however, of considering the thermodynamic limit, we
have taken the continuum limit, defined in Section 2. For this limiting case
we used the equations for the single particle distributions to derive a closed
set of hydrodynamic equations. This was possible by assuming that the gas
behaved as an ideal fluid, meaning that the internal entropy production could
be neglected. In addition we performed some simulations and compared the
results with the conclusions that could be drawn from the hydrodynamic
equations.

Our main conclusions can be summed up in the following points.

1. We find an approximate solution for the single particle distributions,
which give Maxwellian velocity distributions. This is in agreement
with numerical simulations, as is shown in figures 4 and 5. It is not
clear, however, how this state is reached in the course of time.

2. This approximate solution also shows oscillatory behaviour of the po-
sition of the piston and of the temperatures to the left and to the right,
in agreement with numerical simulations. It does not show a tendency
of the piston to shift its oscillation centre towards the midpoint of
the tube (for equal densities), although this behaviour is observed in
numerical simulations.

3. The epicycles of the piston movement, which are noticeable in figures
8 and 11, may be caused by the impact of shock fronts in the gas.
The existence of shock waves was established in the context of the
hydrodynamic equations of Section 4, but it remains to be seen whether
their effect on the piston can be really understood from a closer study
of these equations coupled to the equation of motion of the piston.

4. If so, this will mean that the difference between the two temperatures
will keep oscillating around zero and therefore that for this composite
system, considered as one isolated unit, thermodynamic equilibrium
will not be reached for ¢ — oo.

One of the authors (M.J.R.) thanks the Institute of Theoretical Physics
for its hospitality.
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