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THE ENIGMATIC PISTON�M.J. Renney, M. Ruijgroka and Th.W. RuijgrokbaInstitute of Mathemati
s, Utre
ht UniversityP.O. Box 80010, 3508TA Utre
ht, The NetherlandsbInstitute of Theoreti
al Physi
s, Utre
ht UniversityP.O. Box 8006, 3508TA Utre
ht, The Netherlands(Re
eived September 24, 2001)The use of ensemble theory to des
ribe systems in thermal equilibrium isjusti�ed by the fa
t that it explains a large variety of experiments. The the-oreti
al understanding, as embodied in the work of Boltzmann and Gibbs,is based on the assumption that all mi
ros
opi
 states with the same energyo

ur with equal a priori probability. E�orts to explain this assumptionor to avoid it by using the mi
ros
opi
 equations of motion, are doomed tofail, be
ause of the extreme 
omplexity of these equations. In the presentpaper, however, we 
onsider a system for whi
h this 
omplexity is redu
edto a minimum. It 
onsists of a �nite one-dimensional tube, �lled with anideal gas, in whi
h a piston forms an adiabati
 separation between the twoparts. Analyti
al and numeri
al investigation of this system reveals a veryslow approa
h to a �nal state in whi
h the piston still performs some non-
haoti
 motion, whi
h is probably related to the formation of sho
k fronts.The general question of how mu
h 
omplexity is needed for a system toapproa
h thermal equilibrium is, however, still an open problem.PACS numbers: 05.70.Ln, 05.45.Pq1. The problem1.1. The Boltzmann-Gibbs point of viewA perennial sour
e of 
onfused dis
ussions is the paradox that, on theone hand, the equations of motion of a system, 
onsisting of a large numberof parti
les, are invariant under time reversal, whereas, on the other hand, itis 
lear that all ma
ros
opi
 systems approa
h an equilibrium state, so thata preferred time dire
tion seems to exist.� Presented at the XLI Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,June 2�11, 2001.y On leave of absen
e from the Dept. of Applied S
ien
es, University of Te
hnology,Delft, The Netherlands. (4183)



4184 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokAlthough a 
entury ago the misunderstanding giving rise to this paradox,was 
leared up by Boltzmann and Gibbs, we believe it worthwhile to repeatthe main line of their argument. In this we follow Uhlenbe
k and Ford [1℄.For an ideal gas all ma
ros
opi
 properties of the system are deter-mined by the distribution of N points in the �-spa
e of a single parti-
le. This spa
e is divided into a large number M � N of 
ells of size!1; � � � ; !M and a ma
ros
opi
 state of the system is then spe
i�ed by giv-ing the numbers n1; � � � ; nM of points in ea
h of these 
ells. The sizes!i are determined by the resolving power of the measuring instruments. Toa given set fn1; � � � ; nMg 
orresponds a large number of mi
ros
opi
 states.The volume in � -spa
e 
overed by these states is equal toW (n1; � � � ; nM ) = N !n1! � � �nM !!n11 � � �!nMM :The distribution whi
h maximises this volume is proportional to the respe
-tive 
ell sizes and is given by ni = A!ie�� "i ;where "i is the energy of a parti
le in 
ell i and A and � are �xed by therequirement that the total number of parti
les and the total energy are givenquantities. For states fn1; � � � ; nMg = fn1 +�n1; � � � ; nM +�nMg 
lose tothis maximum state, the 
orresponding volume in � -spa
e 
an be 
al
ulatedand is found to be equal toW (n) = W (n) e�Nh(�ni=ni)2i :The ma
ros
opi
 states for whi
h the exponential fa
tor is not smaller thana �xed number between zero and unity, are 
alled equilibrium states. Theyform a small set in the sense that the numbers �ni=ni are on the averageof the order of 1=pN: Nevertheless, the total of all these states 
orrespondsto mi
ros
opi
 states whi
h 
over almost all of phase-spa
e.Therefore, any initial state in phase-spa
e whi
h is not an equilibriumstate in the above sense, will, barring ex
eptional 
ases, very qui
kly enterthis equilibrium region, never, or hardly ever, to leave it again.The above 
onsiderations should not, of 
ourse, be 
onsidered as a proofof Boltzmann's ergodi
 hypothesis, whi
h says thata me
hani
al system's traje
tory in phase-spa
e will spend equaltimes in regions of equal phase-spa
e measure [2℄.Also Gibbs' ensemble theory for systems in whi
h intera
tions are notnegle
ted, has no foundation based on Hamilton's equations of motion. Atthis point we want to quote Van Kampen [3℄, who argues that
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 Piston 4185The introdu
tion of an ensemble, and the related des
ription interms of probability, 
annot be justi�ed on a priori ground, butonly by appealing to experien
e.If 
orre
t, this statement should put a stop to all further resear
h intothe foundations of equilibrium statisti
al me
hani
s. There are, however,other fundamental problems, related to how fast a many-parti
le systemapproa
hes equilibrium. There is hope that these problems 
an be betterunderstood by studying the r�le of 
haoti
 dynami
s, whi
h are dis
ussed,among others, by Dorfman [2℄ and by Zaslavsky [4℄.Another way of gaining understanding is to study spe
ial systems inwhi
h the amount of 
omplexity is redu
ed to a minimum, so that analyti
almethods 
an be applied.An example of su
h a model-system will be studied in the present paper.The model will be des
ribed in the next se
tion, in whi
h we will also dis
ussthe relation with a pe
uliar, widely known problem in thermodynami
s.1.2. Two experimentsAs an introdu
tion we will �rst dis
uss1.2.1. Rü
hardt's experiment [5℄This is an experiment for determining the ratio CP=CV of a gas. Theapparatus 
onsists of a 60 
m pre
ision bore glass tube, atta
hed verti
allyto a 10 litre glass jug. A tightly �tting steel ball of about 10 gram is allowedto fall in the tube. The en
losed volume of gas a
ts as a 
ushion, on whi
hthe ball boun
es up and down. Although the os
illations are damped byfri
tion inside the tube, the period of the os
illations 
an still be measured,and from this it is then possible to 
al
ulate CP =CV :For the one-dimensional 
ase we show how the equation of motion for theposition x(t) of the ball 
an be derived, assuming that the gas under the ballis at all times in thermal equilibrium, des
ribed by the pressure P (x) andthe temperature T (x) and negle
ting the fri
tion inside the tube: We alsoassume that the system is thermally isolated from its surroundings. Usingthe thermodynami
 relations for an ideal gas between energy, pressure andtemperature in an adiabati
 pro
essU(x) = 12NkT (x) and P (x) = �dUdx = �12NkdTdx ;and the ideal gas law P (x) = NkT (x)x ;



4186 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokwe see that the temperature should satisfydTdx = �2T (x)x :The solution of this equation isT (x) = T (x0)�x0x �2 ;where x0 is the position of the ball at time t = 0: The equation of motionof the ball be
omesMd2xdt2 = �Mg + P (x) = �dVdxwith V (x) = Mgx+ 12NkT (x0)�x0x �2 :The 
onstant pressure from the outside has been in
luded in the term �Mg.This equation des
ribes an os
illatory motion between x� and x+, with aperiod equal to T = p2M x+Zx� dxpV (x�)� V (x) :The 
al
ulation 
an be repeated for the three-dimensional 
ase, and theresulting period turns out to be in good agreement with the experimentalvalue.At this point we want to remark that the undamped periodi
 motion ofthe ball is a result of the existen
e of a velo
ity independent potential. Thereis, however, reason to doubt that the true motion of the ball is periodi
. Inorder to show the eviden
e for this doubt, we have performed a numeri
al
al
ulation of the motion of the ball for the 
ase where the gas is repla
edby a single parti
le of mass m = 0:2M , whi
h boun
es elasti
ally betweenthe ball and the bottom of the jug, 
onserving energy and momentum onea
h 
ollision with the ball. When plotting the position and the velo
ity ofthe ball at ea
h moment this parti
le hits the bottom, we obtain the pi
tureshown in �gure 1. This Poin
aré-se
tion of four orbits illustrates the fa
tthat a large portion of the total phase-spa
e is �lled by a single orbit. Ea
hof the three other orbits des
ribes a quasi periodi
 motion of the system. Fora mass ratio m=M = 0:465 the region 
ontaining quasi periodi
 orbits haspra
ti
ally shrunk to zero and all of phase-spa
e is �lled by a single orbit.Therefore, in this 
ase the system is ergodi
 and the mi
ro
anoni
al ensemble
an be used to 
al
ulate the velo
ity distribution f(v) of the parti
le. The
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 Piston 4187result f(v) � (v2max � v2)3=2 is in 
omplete agreement with the distributionobtained by monitoring the parti
le velo
ity over a large number of 
ollisionsin a numeri
al simulation. During this time the motion of the ball is veryerrati
. It is, therefore, not unreasonable to expe
t that, if the single parti
leis repla
ed by a large number of gas parti
les, but with a total mass whi
his not 
hanged, the motion of the ball will turn out still to be very errati
.Later it will turn out that this is indeed the 
ase. This is di�erent from thesmooth behaviour whi
h was found while analysing Rü
hardt's experiment.However, the same errati
 behaviour is also expe
ted for the gas mole
ules,whi
h supports the assumption of thermodynami
 equilibrium made in dis-
ussing Rü
hardt's experiment. This assumption led to a smooth periodi
motion of the ball. We, therefore, have arrived at a paradoxi
al situation.One of the purposes of the present paper is to explain the origin of thisparadox.
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Fig. 1. Phase plot of the ball for m=M = 0:2.It is related to a similar problem, about whi
h in re
ent times quite a fewpubli
ations have appeared, and whi
h we will 
all the problem of Callen'spiston.1.2.2. Callen's experimentIn his book on thermodynami
s [6℄ Callen 
alls attention to a situationwhi
h he denotes as a �uniquely deli
ate problem�. The Gedankenexperimentis sket
hed in �gure 2. Two gases are separated by a movable adiabati
piston. In equilibrium the pressures and temperatures on the left will beequal to those on the right, and the equations of state will then determinethe position of the piston.
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Fig. 2. Callen's piston.Callen noti
es, however, that thermodynami
s only predi
ts the 
orre
tme
hani
al equilibrium, P1 = P2; but that other parameters are largelyundetermined. For instan
e, temperatures and volumes of the two 
ompart-ments depend on the details of the vis
ous pro
esses by whi
h the pistondissipates its kineti
 energy, but these pro
esses do not belong to the realmof thermodynami
s.The problem whi
h therefore arises, may be illustrated for the 
ase of onedimensional ideal gases, although vis
osity is absent there. At time t = 0when the piston is released in the position x0 with zero velo
ity, the internalenergies, temperatures, pressures and volumes of the two gases are given.Under the assumption that the gases stay in thermal equilibrium during themotion of the piston, the ideal gas laws then determine the values of thesequantities at later times. In parti
ular the pressures be
omeP1(x) = P1(x0)�x0x �3 and P2(x) = P2(x0)�L� x0L� x �3 :The motion of the piston then follows fromMd2xdt2 = P1(x)� P2(x) :From this it 
an be shown that the piston is only in a stable position whenfrom the outset the pressures are equal and the temperatures are 
hosen su
hthat P1 = N1kT1x0 = N2kT2L�x0 = P2: Only for equal densities the temperaturesto the left and to the right will be equal. It, therefore, shows, and thiswas Callen's main observation, that thermodynami
s is not su�
ient tounderstand why in general only that state is realised for whi
h not just thepressures, but also the temperatures of the two gases are equal.All non stationary solutions of the equation of motion are undampedperiodi
 os
illations around the pointx = x = L1 + 
 with 
 = �P2(x0)P1(x0)�1=3 L� x0x0 :
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 Piston 4189For small amplitudes we �nd that the square of the frequen
y is equal to!2 = 3N1kT1(x)M Lx2(L� x) : (1)As in the 
ase of Rü
hardt's experiment, we see no tenden
y of the system toapproa
h equilibrium. The piston, as well as the temperatures and pressures,keep os
illating. Also adding dissipation terms to the equations of motionof the gas and of the piston does not help, be
ause the �nal position of thepiston, and therefore the temperatures, turn out to depend on the piston'sinitial position.An appeal to ensemble theory does not improve the situation. Distribut-ing the total energy E as the sum of E1 and E2 over the two gases and
onsidering the position x of the piston as an external parameter, we 
an
al
ulate the entropy, i.e., the logarithm of the mi
ro
anoni
al partitionfun
tion Z(E1; x) by standard methods:lnZ(E1; x) = N12 lnE1 + N22 ln(E �E1) +N1 lnx+N2 ln(L� x) + � � � ;where we have omitted terms whi
h are independent of E1 and x. By 
on-sidering E1 and x as independent variables we easily f ind the values of E1and x for whi
h lnZ(E1; x) rea
hes its maximum. This o

urs when E1 andx satisfy the equationsN1E1 = N2E �E2 and N1x = N2L� x ;whi
h amounts to saying that in equilibrium the pressures and the temper-atures will be equal. This seems to solve the problem of the indetermina
yof the temperatures.However, the variables E1 and x are not independent, be
ause, due tothe adiabati
 
onstraint, the relationsdE1 = �P1dx and d(E �E1) = �P2 d(L� x)exist, where P1 = 2E1x and P2 = 2(E�E1)L�x : From these only the equalityof the pressures 
an be dedu
ed; separate 
on
lusions on temperatures andvolumes 
annot be drawn. This is in agreement with the fa
t that under theadiabati
 
onstraint d lnZ = 0 identi
ally, as in Callen's demonstration.The 
ontroversies around Callen's piston have been dis
ussed by Curzonand Le� [7℄, who also give referen
es to older literature. Gruber [9℄ dis
ussesmore re
ent developments.



4190 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokThe above 
onsiderations show that on the basis of pure thermodynami
theory it 
annot be understood why also the temperatures on both sides ofthe adiabati
 piston should be
ome equal. An important assumption hasbeen, however, that during the pro
ess the system went through a seriesof states whi
h were always equilibrium states. This assumption will bequestioned in the present paper by developing a model whi
h is 
loser tokineti
 theory. Other models of this type have been dis
ussed in the re
entliterature [8-15℄. A 
omparison with our work will, however, be postponeduntil the last se
tion. 2. The 
ontinuum limitOur goal is to derive a ma
ros
opi
 des
ription of the behaviour of thegas and of the piston, in the limit where N1 and N2 tend to in�nity. This
an, however, not be the usual thermodynami
 limit, in whi
h simultane-ously the size of the system grows indef initely, while the parti
le masses arekept 
onstant. In this 
ase the 
orrelations between re
ollisions, whi
h areessential for the establishment of equilibrium, would be lost.Instead we now 
onsider the 
ase in whi
h the size L of the 
ontainer is�xed and the masses N1m1 and N2m2 of the gas to the left and to the rightare 
omparable to the mass M of the piston. This piston mass, as well asthe total energy, will also be kept �xed when N = N1+N2 !1: The massof the gas parti
les will tend to zero, however.This is 
alled the 
ontinuum limit. It 
an be formally 
hara
terised bytaking Boltzmann's 
onstant k ! 0: As was explained in great detail byCompagner [16℄, this is the proper limit for the des
ription of a thermody-nami
 system when ma
ros
opi
 dependen
ies on spa
e and time are present.All mi
ros
opi
 �u
tuations are suppressed.At any time the state of the system is given by spe
ifying the positionX(t) and the velo
ity V (t) = dX(t)dt of the piston and also the 
oordinatesand velo
ities of the gas mole
ules. Sin
e, however, the number of mole
ulesgoes to in�nity and sin
e these mole
ules have no mutual intera
tion, thestate of the gas is a
tually 
ompletely des
ribed by two distribution fun
tionsf1(x; v; t) and f2(x; v; t): Here f1(x; v; t) dx dv is the fra
tion of all mole
uleson the left in the volume element (x; x+dx); (v; v+dv); with 0 < x < X(t):In the same way is f2(x; v; t) dx dv the fra
tion of all mole
ules on the rightin the volume element (x; x + dx); (v; v + dv); with X(t) < x < L: Thesefun
tions are, therefore, normalised asX(t)Z0 dx 1Z�1 f1(x; v; t) dv = 1 and LZX(t) dx 1Z�1 f2(x; v; t) dv = 1 :
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 Piston 4191The fa
t that they do not 
hange be
ause of 
ollisions, but only be
auseof the free streaming of the gas, implies that they satisfy the 
ontinuityequations�f1(x; v; t)�t + v�f1(x; v; t)�x = 0 for 0 < x < X(t) and all v and t (2)and�f2(x; v; t)�t + v�f2(x; v; t)�x = 0 for X(t) < x < L and all v and t : (3)In a 
ollision with one of the walls the parti
le velo
ity will be reversed:v ! �v; whereas in a 
ollision with the piston the velo
ity of the (massless)parti
le will be transformed like v ! 2V (t) � v: The boundary values off1(x; v; t) and f2(x; v; t), therefore, have to satisfy the following 
onditionsfor x = 0 : f1(0;�v; t) = f1(0; v; t) for all v and t ;for x = L : f2(L;�v; t) = f2(L; v; t) for all v and t (4)and for x = X(t) : fi(X(t); 2V (t)� v; t) = fi(X(t); v; t) ;for all v and t and i = 1; 2 :The latter 
ondition 
an also be written asfor x = X(t) : fi(X(t); V (t)� v; t) = fi(X(t); V (t) + v; t)for all v and t and i = 1; 2 : (5)For given initial distributions f1(x; v; 0) and f2(x; v; 0) on the intervals0 < x < X(0) and X(0) < x < L and for all v, and assuming that X(t) isa known fun
tion of t, equations (2) and (3), together with the boundary
onditions (4) and (5), should be su�
ient to 
al
ulate the distributions atlater times. It will turn out that the solution of these equations is far fromtrivial, and the main part of this paper is, therefore, devoted to the studyof this problem.First of all we want to 
onvin
e ourselves that the number of parti
lesin ea
h of the two 
ompartments is 
onserved, or in terms of the 
ontinuumlimit, that the total amount of �uid on ea
h side does not vary in time. For



4192 M.J. Renne, M. Ruijgrok, Th.W. Ruijgrokthat purpose we 
al
ulate the integralddt X(t)Z0 dx 1Z�1 f1(x; v; t) dv= V 1Z�1 f1(X(t); v; t) dv + X(t)Z0 dx 1Z�1 �f1(x; v; t)�t dv= V 1Z�1 f1(X(t); v; t) dv + X(t)Z0 dx 1Z�1 (�v �f1(x; v; t)�x )dv= V 1Z�1 f1(X(t); v; t) dv � 1Z�1 vf1(X(t); v; t) dv + 1Z�1 vf1(0; v; t) dv : (6)The third integral on the right hand side vanishes be
ause of Eq. (4). These
ond integral 
an be written as1Z�1 vf1(X(t); v; t) dv= 1Z�1 (V + v) f1(X(t); V + v; t) dv= 1Z�1 (V � v) f1(X(t); V + v; t) dv ; (7)in whi
h Eq. (5) was invoked. Taking half the sum of the last two integralsin Eq. (7) gives1Z�1 vf1(X(t); v; t) dv = V 1Z�1 f1(X(t); V + v; t) dv= V 1Z�1 f1(X(t); v; t) dv :Substitution into Eq. (6) then shows that the sum of the integrals in theright-hand side of this equation is equal to zero, so that the 
onservationlaw has indeed been established. The same proof holds for f2(x; v; t):
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 Piston 4193With similar manipulations we 
an show that for an arbitrary fun
-tion H, e.g. H = f1 log f1, the integral R X(t)0 dx R1�1H[f1(x; v; t)℄ dv is 
on-stant in time.The total momentum of the system is not 
onserved, be
ause the wallsat x = 0 and x = L exert a for
e on the gas. However, for 
ollisions withthe piston momentum 
onservation does hold. From this we 
an determinethe for
e on the piston, by 
al
ulating the momentum transfer per unit timefrom the gas to the piston. Sin
e for ea
h 
ollision this loss of momentumis equal to mi(v � v0) = 2mi(v � V (t)) � for mi � M � the momentumtransfer in the time dt from the gas on the left to the piston is equal to(momentum transfer in dt) = N1 1ZV (t) dv X(t)ZX(t)�(v�V (t))dt2m1(v�V (t))f1(x; v; t)dx :From this follows the for
e on the piston due to the �rst gasF1(t) = 2N1m1 1ZV (t) (v � V (t))2f1(X(t); v; t) dv : (8)The for
e due to the se
ond gas be
omesF2(t) = 2N2m2 V (t)Z�1 (V (t)� v)2f2(X(t); v; t) dv : (9)Using Eq. (5) these integrals 
an be written as integrals over the wholev-axis, so the equation of motion for the piston be
omesM d2X(t)dt2 = F1(t)� F2(t)= 1Z�1 (v � V (t))2 [N1m1f1(X(t); v; t) �N2m2f2(X(t); v; t)℄ dv : (10)Together with (2)�(5) we now have a 
losed set of equations for the des
rip-tion of the system in the 
ontinuum limit. (Remember that �1 = N1m1M and�2 = N2m2M are �nite dimensionless numbers, whi
h remain 
onstant whenN1; N2 !1:)



4194 M.J. Renne, M. Ruijgrok, Th.W. RuijgrokAlso the total energyE = 12M V 2(t) + 12N1m1 X(t)Z0 dx 1Z�1 v2f1(x; v; t) dv+12N2m2 LZX(t) dx 1Z�1 v2f2(x; v; t) dvis 
onserved. This 
an be proved with the same method as above. If inaddition we use the equation of motion of the piston and the fa
t that1Z�1 (v � V (t))n fi(X(t); v; t) dv = 0 for odd n ; (11)it is easy to show that indeed dEdt = 0:3. An AnsatzAs an approximate solution of Eqs (2)�(5) we propose Maxwell distribu-tions, shifted in velo
ity and with time dependent parameters f1(x; v; t) 'fM1 (x; v; t) and f2(x; v; t) ' fM2 (x; v; t) withfM1 (x; v; t) = 1X(t)rm1�1(t)2� exp�12m1�1(t)�v � xX(t)V (t)�2for 0 � x � X(t)andfM2 (x; v; t) = 1L�X(t)rm2 �2(t)2� exp�12m2 �2(t)�v � L� xL�X(t)V (t)�2for X(t) � x � L :These same fun
tions were used by Huang [17℄ as an approximate solution ofBoltzmann's transport equation. They are properly normalised and satisfythe boundary 
onditions (4) and (5). Furthermore, these distributions giverise to uniform normalised spatial densities and linear spatial pro�les for the
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al ma
ros
opi
 gas velo
ities:�M1 (x; t) � 1Z�1 fM1 (x; v; t) dv = 1X(t) ;wM1 (x; t) � 1�M1 (x; t) 1Z�1 v fM1 (x; v; t) dv = xX(t)V (t) :Likewise for the other 
ompartment:�M2 (x; t) = 1L�X(t) and wM2 (x; t) = L� xL�X(t)V (t) :In order to determine the time dependen
e of the re
ipro
al temperatures�1(t) and �2(t) we �rst 
al
ulate the energy 
ontent of both gases:E1(t) = 12N1m1 X(t)Z0 dx 1Z�1 v2fM1 (x; v; t) dv = N12�1(t) + 16N1m1V 2(t) ;E2(t) = 12N2m2 LZX(t) dx 1Z�1 v2fM2 (x; v; t) dv = N22�2(t) + 16N2m2V 2(t) :Both expressions 
ontain a 
ontribution from the lo
al ma
ros
opi
 velo
ity,whi
h for the �rst gas is12N1m1 X(t)Z0 �M1 (x; t) (wM1 (x; t))2 dx = 16N1m1V 2(t) ;and one from the internal energy. The equation of motion (10) for the pistontakes the form M d2X(t)dt2 = N1�1(t)X(t) � N2�2(t) (L�X(t)) ; (12)from whi
h the time evolution of the total energy follows:dEdt = ddt �12M V 2(t) +E1(t) +E2(t)�= 13N1m1V (t)dVdt + N1V (t)�1(t)X(t) � N12�21(t) d�1dt+13N2m2V (t)dVdt � N2V (t)�2(t) (L�X(t)) � N22�22(t) d�2dt :
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e we insist on energy 
onservation, also for the approximate solutions,we 
hoose the time dependen
e of the temperatures su
h that they obey theequations dT1dt + 2V (t)X(t)T1(t) + m13 k dV 2(t)dt = 0 (13)and dT2dt � 2 V (t)L�X(t)T2(t) + m23 k dV 2(t)dt = 0 : (14)Noti
e that Boltzmann's 
onstant only appears in the 
ombinations mik ;whi
h attain de�nite values in the 
ontinuum limit. Using these equationswe 
an derive the equations whi
h should be satis�ed by the distributionsfM1 (x; v; t) and fM2 (x; v; t) :� ��t + v ��x� fM1 (x; v; t) = C1(x; v; t) fM1 (x; v; t) for 0 < x < X(t)and� ��t + v ��x� fM2 (x; v; t) = C2(x; v; t) fM2 (x; v; t) for X(t) < x < L ;with C1(x; v; t) and C2(x; v; t) de�ned byC1(x; v; t) = m1�1(t)dV (t)dt� �13V (t) + �v � wM1 (x; t)� xX(t) � 13m1�1(t) �v � wM1 (x; t)�2 V (t)�andC2(x; v; t) = m2�2(t)dV (t)dt� �13V (t) + �v � wM2 (x; t)� L� xL�X(t) � 13m2�2(t) �v � wM2 (x; t)�2 V (t)� :Clearly, the shifted Maxwell distributions in general only give an approxi-mate solution of equations (2) and (3). They be
ome exa
t when the mole
-ular masses or the piston's a

eleration be
ome small. In order to elu
idatethis point we rewrite the equations in dimensionless variables, whi
h willalso be used in the se
tions on hydrodynami
s and on simulations.As units of length, velo
ity, time and temperature we takeL; V0�r2 EM ; t0� LV0 and T0 � 2 ENk ; respe
tively, where N=N1 +N2
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ules (this number tends to inf inity in the
ontinuum limit, but the produ
t Nk stays f inite). The unit of velo
ity isequal to the velo
ity of the piston if it would 
arry all energy of the systemand the mole
ules were at rest. In terms of these units we de�nex = yL; v = ev V0; Ni = niN; Nimi = �iM; LV0fMi � hMi (y; ev; �) ;t = �t0; X(t) = x(�)L; V (t) = eV (�)V0; Ti(t) = ui(�)T0 ;t0Ci = Di(y; ev; �) :Inserting these quantities into the shifted Maxwell distributions we �ndhM1 (y; ev; �) = 1x(�)r �12�n1u1(�) exp� �12n1u1(�) �ev � yx(�) eV (�)�2for 0 � y � x(�) (15)andhM2 (y; ev; �) = 11� x(�)r �22�n2u2(�) exp� �22n2u2(�) �ev � 1� y1� x(�) eV (�)�2for x(�) � y � 1 : (16)The distributions hM1 (y; ev; �) and hM2 (y; ev; �) are normalised to unity andsatisfy the equations�hM1 (y; ev; �)�� + ev�hM1 (y; ev; �)�y = D1(y; ev; �)hM1 (y; ev; �) for 0 � y � x(�)and�hM2 (y; ev; �)�� + ev�hM2 (y; ev; �)�y = D2(y; ev; �)hM2 (y; ev; �) for x(�) � y � 1 ;in whi
hD1(y; ev; �) = �1n1u1(�) d eV (�)d��"13 eV (�) +�ev � yx(�) eV (�)� yx(�) � 13 �1n1u1(�) �ev � yx(�) eV (�)�2 eV (�)#andD2(y; ev; �) = �2n2u2(�) d eV (�)d� �13 eV (�) +�ev � 1� y1� x(�) eV (�)� 1� y1� x(�)�13 �2n2u2(�) �ev � 1� y1� x(�) eV (�)�2 eV (�)# :
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e in most dis
ussions of this problem n1 � 1 � n2 ' 12 , we see thathM1 (y; ev; �) and hM2 (y; ev; �) des
ribe free streaming �uids when the temper-atures u1(�) and u2(�) are not too low and the relative �uid masses �1 and�2 or the a

eleration of the piston are small.Let us now turn to the solutions of Eqs (12), (13) and (14), whi
h we�rst write in dimensionless form. In order to make 
onta
t with the thermo-dynami
 des
ription in Se
tion 1.2, we will use the dimensionless pressuresP1(�) and P2(�) instead of the temperatures u1(�) and u2(�):eP1(�) = n1u1(�)x(�) and eP2(�) = n2u2(�)1� x(�) : (17)Eqs (12)�(14) then readd2x(�)d�2 = eP1(�)� eP2(�) ;d eP1(�)d� = � 1x(�) h
1 eP1(�)� �1 eP2(�)i dx(�)d� ;d eP2(�)d� = 11� x(�) h
2 eP2(�)� �2 eP1(�)i dx(�)d� ; (18)in whi
h �i = 23�i and 
i = 3 + �i, i = 1; 2:Eliminating � by the substitution d� = dx=eV we �nally get for thepressure equations d eP1(x)dx = �1x h
1 eP1(x)� �1 eP2(x)iand d eP2(x)dx = 11� x h
2 eP2(x)� �2 eP1(x)i :The exa
t solution in terms of hypergeometri
 fun
tions 
an be given, butis rather uninformative and will not be exhibited here. Sin
e the velo
-ity eV does not appear in this solution the piston will perform a periodi
motion without damping. One integration 
onstant is the energy, whi
h indimensionless units is equal toE12MV 20 = 1 = �1 + 12�1 + 12�2��dx(�)d� �2 + x eP1(x) + (1� x) eP2(x) :
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an easily bederived T =p2(2 + �1 + �2) x+Zx� dxq1� x eP1(x)� (1� x) eP2(x) ;in whi
h x� and x+ are the turning points.For the spe
ial 
ase of massless gases, i.e. �1 = �2 = 0, the solution
an be given in terms of elementary fun
tions. If, moreover, we 
onsideronly os
illations of small amplitudes the frequen
y be
omes equal to thefrequen
y 
al
ulated by the thermodynami
 method and given by Eq. (1),whi
h reads in s
aled variablese!2 � !2t20 = 3n1u1(x)x2(1� x) ;x now being the s
aled equilibrium point.The 
on
lusion of this se
tion is that for small values of �1 and �2 theshifted Maxwell distributions probably give a good approximation to theexa
t distributions. It is, however, still not 
lear whether and how thesefun
tions, when started from arbitrary values, will be approa
hed for largetimes. The perpetual os
illatory behaviour of the pressures and tempera-tures is in 
on�i
t with the predi
tions of ensemble theory. It remains to beseen whether this 
on�i
t is due to the approximations and will disappearin an exa
t solution, or whether it is a property of the spe
ial system we are
onsidering here. 4. The hydrodynami
 des
ription4.1. The general equationsDespite their simple appearan
e equations (2) and (3), together with theboundary 
onditions (4) and (5), are hard to solve exa
tly. A less ambitioustask, in whi
h we abandon the idea to 
al
ulate the full distribution fun
-tions, is to try and �nd solutions for the hydrodynami
 equations. As showne.g. by Huang [17℄, these 
an be derived from Eqs (2)�(5). To this end wede�nethe normalised spatial densities (i = 1; 2) :�i(x; t) = 1Z�1 fi(x; v; t) dv; X(t)Z0 �1(x; t) dx = 1; LZX(t) �2(x; t) dx = 1 ;
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al velo
ities:wi(x; t) = 1�i(x; t) 1Z�1 v fi(x; v; t) dv ;the lo
al temperatures:Ti(x; t) = mik 1�i(x; t) 1Z�1 (v � wi(x; t))2 fi(x; v; t) dv ;and the lo
al heat �uxes:qi(x; t) = 12miNi 1Z�1 (v � wi(x; t))3 fi(x; v; t) dv :The lo
al pressures are related to the lo
al spatial densities and temperaturesby the ideal gas law ePi(x; t) = Ni �i(x; t) kTi(x; t) :The boundary 
onditions (4) and (5) impose boundary 
onditions on someof these quantities:w1(0; t) = w2(L; t) = 0 and w1(X(t); t) = w2(X(t); t) = V (t)and q1(0; t) = q2(L; t) = 0 and q1(X(t); t) = q2(X(t); t) = 0 ; (19)the latter equality following from Eq. (11).The equation of motion for the piston (10) then takes the formM d2X(t)dt2 = P1(X(t); t) � P2(X(t); t) : (20)From Eqs (2)�(5) one easily derives the standard 
onservation laws:the 
ontinuity equation:��i(x; t)�t + ��x (�i(x; t)wi(x; t)) = 0 ;
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onservation:�i(x; t) � ��t + wi(x; t) ��x�wi(x; t) = � 1Nimi �Pi(x; t)�x ;energy 
onservation:�i(x; t)� ��t+wi(x; t) ��x�Ti(x; t)=� 2Ni k��qi(x; t)�x +Pi(x; t)�wi(x; t)�x � :In order to assess the relative importan
e of the various terms in theseexpressions we write them in dimensionless form, using the units of Se
tion 3.The distribution fun
tions are repla
ed by hi(y; ev; �) = LV0 fi(x; v; t), whi
hare normalised asx(�)Z0 dy 1Z�1 h1(y; ev; �) dev = 1 and 1Zx(�) dy 1Z�1 h2(y; ev; �) dev = 1 :In addition we introdu
ethe s
aled lo
al densities:�i(x; t) = 1L e�i(y; �); so that e�i(y; �) = 1Z�1 hi(y; ev; �) dev ;the s
aled lo
al velo
ities:wi(x; t) = V0 ewi(y; �) so that ewi(y; �) = 1e�i(y; �) 1Z�1 ev hi(y; ev; �) dev ;the s
aled lo
al temperatures: Ti(x; t) = T0 ui(y; �) so thatui(y; �) = �ini e�i(y; �) 1Z�1 (ev � ewi(y; �))2 hi(y; ev; �) dev ;the s
aled lo
al pressures:Pi(x; t) = M V 20L ePi(y; �) so that ePi(y; �) = nie�i(y; �)ui(y; �) ;
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aled lo
al heat �uxes: qi(x; t) = M V 30L eqi(y; �) so thateqi(y; �) = �i2 1Z�1 (ev � ewi(y; �))3hi(y; ev; �) dev :In these units the equations expressing the 
onservation laws read:�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 : (21)e�i(y; �) � ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i � ePi(y; �)�y= �ni�i ��y (e�i(y; �)ui(y; �)) : (22)e�i(y; �) � ��� + ewi(y; �) ��y�ui(y; �) = � 2ni ��eqi(y; �)�y + ePi(y; �)� ewi(y; �)�y �= ��ini ��y 1Z�1 (ev � ewi(y; �))3hi(y; ev; �) dev � 2 e�i(y; �)ui(y; �)� ewi(y; �)�y : (23)In the new units the total energy is equal to unity. With the s
aled vari-ables it 
an be expressed in terms of the s
aled lo
al fun
tions asK +Q = 1;in whi
h K is the total kineti
 energy of the piston and of the lo
almotions of the �uidK = �dx(�)d� �2+�1 x(�)Z0 e�1(y; �) ew1(y; �)2dy+�2 1Zx(�) e�2(y; �) ew2(y; �)2dy(24)and Q is the total internal energy. This is the kineti
 energy as mea-sured relative to the lo
al velo
itiesQ = n1 x(�)Z0 e�1(y; �)u1(y; �) dy + n2 1Zx(�) e�2(y; �)u2(y; �) dy : (25)For an ideal one-dimensional gas the relation between pressure, densityand entropy is given by P = � �3eS=
v ;
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h � is some 
onstant. Therefore, if instead of using the lo
al tem-perature, we want to use a quantity whi
h 
an be interpreted as (a fun
tionof) the lo
al entropy, the above relation suggests to de�ne the followingdependent variables s2i = �eSi=
vMV 20 L2 :With these fun
tions the dimensionless pressures 
an be written asePi(y; �) = nie�i(y; �)ui(y; �) = e�3i (y; �) s2i (y; �) :Eqs (21)�(23) 
an now be written as�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 ; (26)� ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i e�i ��y �e�3i (y; �)s2i (y; �)� ; (27)� ��� + ewi(y; �) ��y� s2i (y; �) = � 2e�3i �eqi�y : (28)Eqs (26)�(28) form a set of 
onservation laws, whi
h put 
onstraints onthe unknown fun
tions e�i(y; �); ewi(y; �); si(y; �) and eqi(y; �); but whi
h arenot su�
ient to �x them 
ompletely.This situation is 
hanged when we assume that the spatial derivative ofthe heat �ux, whi
h a

ording to Eq. (28) is the sour
e of entropy produ
tion,
an be negle
ted. In view of the boundary 
onditions (19) this is equivalentto assuming that eqi(y; �) � 0 for all y and �: For the Ansatz we made inEqs (15) and (16) for the distribution funtions hMi (y; ev; �) this assumptionis satis�ed, be
ause the heat �uxes eqMi (y; �) are identi
ally zero. If in thegeneral 
ase we also assume that the heat �ux is the same in all points (thisis 
alled an ideal �uid), Eq. (28) be
omes� ��� + ewi(y; �) ��y� si(y; �) = 0 :This equation shows that si(y; �) is 
onstant along ea
h stream line de�nedas the solution y(� ; y0) of dy(� ;y0)d� = ewi(y; �), with y(0; y0) = y0:Together with Eqs (26) and (27) we now have a set of hydrodynami
equations for the initial value problem, from whi
h for a pres
ribed motionof the piston, the fun
tions e�i(y; �); ewi(y; �) and si(y; �) 
an in prin
iple besolved.The only boundary 
onditions areew1(0; �) = ew2(1; �) = 0 and ew1(x(�); �) = ew2(x(�); �) = dx(�)d� :
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ial 
asesWe now have a 
omplete set of equations for the fun
tions e�i(y; �),ewi(y; �) and si(y; �), to whi
h we add Eq. (20) in s
aled form for the piston'smotion:�e�i(y; �)�� + ��y (e�i(y; �) ewi(y; �)) = 0 ; (29)� ��� + ewi(y; �) ��y� ewi(y; �) = � 1�i e�i ��y �e�3i (y; �)s2i (y; �)� ; (30)� ��� + ewi(y; �) ��y � si(y; �) = 0 ; (31)d2x(�)d�2 = e�31(x(�); �)s21(x(�); �) � e�32(x(�); �) s22(x(�); �) ; (32)together with the boundary 
onditionsew1(0; �) = ew2(1; �) = 0 and ew1(x(�); �) = ew2(x(�); �) = dx(�)d� : (33)They are nonlinear partial di�erential equations, whi
h 
annot be solvedin 
losed form. Apart from applying numeri
al methods, we therefore 
anonly get some insight into the 
ontent of these equations, by using phys-i
ally motivated approximations. Some of these will be dis
ussed in thissubse
tion.The energy 
onservation law (24)�(25) 
an be expressed as�dx(�)d� �2 + �1 x(�)Z0 e�1(y; �) ew1(y; �)2dy + �2 1Zx(�) e�2(y; �) ew2(y; �)2dy+ x(�)Z0 e�31(y; �)s21(y; �) dy + 1Zx(�) e�32(y; �)s22(y; �) dy = 1 :This relation 
an of 
ourse also be derived dire
tly from Eqs (29)�(33).We will now 
onsider a number of spe
ial 
ases of these equations.4.2.1. Case 1As a preparation for obtaining a spe
ial solution to these equations weassume that the distribution fun
tions hi(y; ev; �); whi
h are needed to 
al-
ulate e�i(y; �); ewi(y; �) and ui(y; �), are given by the shifted distributions
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 Piston 4205hMi (y; ev; �) of the Ansatz (15) and (16). Using these distributions we obtaine�M1 (y; �) = 1x(�) ; e�M2 (y; �) = 11� x(�) ;ew1(y; �) = yx(�) dx(�)d� ; ew2(y; �) = 1� y1� x(�) dx(�)d� ;u1(y; �) = u1(�) ; u2(y; �) = u2(�) ;while the heat �uxes eqi(y; �) vanish identi
ally, in 
omplian
e with the as-sumption made in the derivation of equations (29)�(33). On substitution ofthe above results in the equation of motion for the piston (32), this equationattains the same form as in (17), (18):d2x(�)d�2 = n1u1(�)x(�) � n2u2(�)1� x(�) : (34)At this point we observe that the spatial uniformity of the densities e�iand of the temperatures ui and the linear interpolation between the wallsand the piston of the lo
al velo
ities ewi, valid for all times, is a 
onsequen
eof the spe
ial form of the distribution fun
tions hMi (y; ev; �); these fun
tionsonly 
onstitute exa
t solutions to the free �ow equations (2) and (3) when�i = 0 (
f. the dis
ussion in Se
tion 3). However, for �i = 0; the samebehaviour also follows from the solutions of Eqs (29) and (31), with Eq. (30)repla
ed by ni ��y (e�i(y; �)ui(y; �)) = � ePi(y; �)�y = 0and the assumption of uniform initial 
onditions, without using the spe
ialform of the underlying distribution fun
tions.Equations (31) turn into equations for u1(�) and u2(�), now both inde-pendent of y:du1(�)d� = �2u1(�)x(�) dx(�)d� and du2(�)d� = 2 u2(�)1� x(�) dx(�)d� :The solutions, written as fun
tions of the position of the piston, areu1(�) = �x(0)x(�)�2 u1(0) and u2(�) = �1� x(0)1� x(�)�2 u2(0) :
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orresponding pressures are also uniform and are given byeP1(�) = �x(0)x(�)�3 eP1(0) and eP2(�) = �1� x(0)1� x(�)�3 eP2(0) :The �entropies� si turn out to be independent of y and � .Eq. (34) is the same as Eq. (18) when �i = 0 and also as the equation ofmotion obtained in Se
tion 1.2.2, on the basis of purely thermodynami
 
on-siderations. Therefore, they lead to the same os
illatory behaviour withoutdamping of the piston.We might add that the same results are also obtained in a mu
h more
ompli
ated 
al
ulation, in whi
h the hydrodynami
 equations are linearisedwith respe
t to small ex
ursions around the stationary solutions.4.2.2. Case 2We now 
onsider the 
ase where in Eqs (29)�(31) it is assumed thatthe �entropy� si(y; �) is a 
onstant s0 throughout. The remaining equations(29), (30) be
ome (omitting the tilde and index)���� + w���y + ��w�y = 0and �w�� + �����y + w�w�y = 0 with � = 3s20� :By in
orporating a fa
tor p� into � it is seen that there is no loss of gen-erality when we put � = 1: Taking the sum and the di�eren
e of these twoequations and de�ning u� = �� w, we obtain the equations�u+�� + u+�u+�y = 0 and �u��� � u��u��y = 0 :They 
an be written asdu+d� = 0 on 
hara
teristi
s y(� ; �) through y(0; �) = � given bydy(� ; �)d� = u+(y; �)anddu�d� = 0 on 
hara
teristi
s y(� ; �) through y(0; �) = � given bydy(� ; �)d� = �u�(y; �) :
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h of these 
hara
teristi
s the values of u+(y; �) and u�(y; �) are 
on-stant in time and are, therefore, given by their values at � = 0 and y = �:The 
hara
teristi
s themselves are straight lines with slopes u+(�; 0) and�u�(�; 0):For the 
ase where w(�; 0) = 0 for all � between � = 0 and � = x (�xed),we have 
hosen, as an example, the initial density�(�; 0) = 1 + f 
os ��2x � �0(�) :This also �xes the values of u+(�; 0) = u�(�; 0) = �0(�): The standardpro
edure for 
al
ulating �(y; �) and w(y; �) is as follows:1. Solve ��(y; �) from y = �� � �0(��)�:2. Then �(y; �) and w(y; �) are given by�(y; �) = 12 [�0(�+(y; �)) + �0(��(y; �))℄and w(y; �) = 12 [�0(�+(y; �)) � �0(��(y; �))℄ :At a boundary point y = 0 or y = x only one 
hara
teristi
 passesthrough this point. This is, however, su�
ient to determine the value of �at that point, sin
e w = 0 on the boundary, when x is �xed.A more di�
ult problem arises when the equation y = �++ �0(�+)� hastwo solutions for �+: In �gure 3, where in the y-� plane we have drawn thetwo families of 
hara
teristi
s, the dark region indi
ates where these multiplesolutions o

ur for our 
hoi
e of �0(�) with f = 0:9: The tip of this region
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omes in�nite.Beyond this time the density would be
ome multiple valued, whi
h is 
learlyuna

eptable. One way to handle this problem is to allow dis
ontinuous,but single valued solutions, whi
h des
ribe sho
k fronts. Whitham [18℄, in
hapters 2 and 6, dis
usses methods to �nd the sho
k velo
ity. However, theyinvolve assumptions about a fun
tional relation between � and w, whi
h weare not allowed to make for the system we are 
onsidering. This is not tosay that sho
k waves do not appear, as will be
ome 
lear in the next se
tion,where the results of some simulations will be dis
ussed.Applying this te
hnique to the situation of a moving piston with uniforminitial 
onditions and zero gas velo
ities leads to in
onsisten
ies. Theseare probably due to the assumption of 
onstant and uniform �entropy�, anassumption whi
h will be abandoned in the 
ase 
onsidered next.4.2.3. Case 3For that purpose we try and bring Eqs (29)�(31) in the so 
alled �
har-a
teristi
 form�. Following Whitham [18℄ we �rst write them as� ��� +A ��y�0� �ws 1A = 0 ; (35)where A(�;w; s) = 0� w � 03��s2 w 2��2s0 0 w 1A :The left-eigenve
tors ~l+;~l�;~l0 and eigenvalues 
+; 
�; 
0 of this matrix areequal to ~l� = �3s2�;� 12�p3�; 1� with 
� = w � �sr 3�and ~l0 = (0; 0; 1) with 
0 = w :The 
hara
teristi
 form is obtained after left-multipli
ation of Eq. (35) byea
h of the eigenve
tors. The result ison the 
hara
teristi
s dyd� = 
+ :sd�d� +r�3 dwd� + 23�dsd� = 0 with dd� = ��� + 
+ ��y : (36)
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hara
teristi
s dyd� = 
� :sd�d� �r�3 dwd� + 23�dsd� = 0 with dd� = ��� + 
� ��y : (37)on the 
hara
teristi
s dyd� = 
0 :dsd� = 0 with dd� = ��� + 
0 ��y : (38)Only the last of these equations 
an be dire
tly integrated along the 
hara
-teristi
 dyd� = 
0 = w; and s is found to be 
onstant on that line. An expli
itform 
an of 
ourse be given only after w(y; �) has been found. The othertwo equations have the form of Pfa�'s problem for three variablesP d�+Q� dw +Rds = 0 with P = s; Q� = �r�3 ; R = 23� :For the integrability of this equation, i.e., for a relation F (�;w; s) = 0 toexist, it is ne
essary (and su�
ient) that the ve
tor �!V � = (P;Q�; R) satisfythe 
ondition (see Sneddon [19℄, 
hapter 1, Se
tion 5)D� = �!V � � 
url�!V � = 0 :In the present 
ase we �nd D� = �13q�3 : Sin
e this quantity is not equal tozero the Pfa�an problem is not integrable. This is not to say that equations(36)�(38) have no solution. It only means that the solution 
annot be ob-tained by the method of Riemann invariants, as dis
ussed by Whitham [18℄,Se
tion 5.3. 5. SimulationsIn this se
tion we will show the results of a numeri
al simulation ofCallen's piston with N1 = N2 = 1000 mole
ules to the left and to the rightand for varying mass ratios �1 = N1m1=M and �2 = N2m2=M . We willrestri
t ourselves to the 
ases where �1 = �2 = �.Figures 4 and 5 show the velo
ity distribution of the mole
ules on theleft after 4:000:000 and after 5:000:000 
ollisions, respe
tively. A
tually theseare a

umulated distributions, meaning that for ea
h bin on the horizontalvelo
ity axis, the height gives the total time a mole
ule happened to havea velo
ity in this bin. Only for v ' 0 there is a persistent and varyingdi�eren
e with a Maxwellian velo
ity distribution with equal temperaturesleft and right.
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Fig. 4. Distribution for � = 1:0 and 4 million 
ollisions.
Fig. 5. Distribution for � = 1:0 and 5 million 
ollisions.All remaining �gures des
ribe properties of the piston. The number N
 of
ollisions varies from 1 million to 10 million, whereas � takes values between0:1 and 5:0: In �gures with two pi
tures the one on the left, to be denoted by(a), refers to the �rst 20:000 
ollisions, while the right pi
ture (b) is obtainedfrom the last 20:000 
ollisions.Figure 6 shows the orbits of the piston in its X-V phase-spa
e withN
 = 1 million. In �gure 7 we have plotted the position of the piston as
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Fig. 6. X-V phase-spa
e of piston for � = 0:1a fun
tion of time for N
 = 10 million and � = 1:0; whereas �gure 8 givesthe phase-spa
e orbit for this 
ase. Espe
ially in �gure 8(b) for the last20:000 
ollisions, the appearan
e of shorter sub-
y
les 
an be 
learly seen.We will 
all them epi
y
les. Noti
e that the horizontal s
ale in �gure 8(b)is stret
hed by a fa
tor of about 2:Figure 9 gives the position of the piston, averaged over 20:000 
ollisions,as a fun
tion of time, for the whole period of 10 million 
ollisions, again with� = 1:0.
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tFig. 7. X(t) for N
 = 10 million and � = 1:0.
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Fig. 8. X-V phase-spa
e for N
 = 10 million and � = 1:0.For N
 = 5 million and � = 5:0 �gure 10 gives again the position of thepiston, while �gure 11 shows the phase orbits. It is seen that the positionapproa
hes the value 12 , but os
illations remain appre
iable.The average position of the piston for this 
ase is shown in �gure 12.Also this average position still shows appre
iably irregular behaviour.
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Fig. 9. Averaged position of the piston for � = 1:0.
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Fig. 10. X(t) for N
 = 5 million and � = 5:0.
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Fig. 11. X-V phase-spa
e for N
 = 5 million and � = 5:0.
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Fig. 12. Averaged position of the piston for � = 5:0.
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lusionsIn this paper we have presented a new approa
h to the problem ofCallen's piston, as de�ned in Se
tion 1.2.2. The question is whether theadiabati
 piston, when it is moving, will allow heat to pass from one 
om-partment to the other, thus allowing the temperatures on the left and rightto be
ome equal. It is generally believed that in a relatively short time thepiston will pass through an os
illatory damped motion to a position whi
hdepends on its initial position. During this time the pressures will equalise,but the temperatures will still be di�erent. In [8℄ this pi
ture was supportedby a theory in whi
h the momentum ex
hange in a parti
le-piston 
ollisionwas taken into a

ount, as long as the mass ratio m=M is not exa
tly equalto zero. In addition, however, it was assumed that the parti
le densities arealways uniform and that the instantaneous velo
ity distributions are alwaysunshifted Maxwellian. These assumptions may be harmless, but they are
ertainly not exa
tly true. In a mu
h later stage the piston is then supposedto move toward a �nal position under the in�uen
e of Brownian for
es, whileat the same time the temperatures be
ome equal.In two papers [9,14℄ on the same subje
t, Gruber and Fra
hebourg deriveequations for the long time behaviour of the system. They show that withdissipation the piston damps out and the temperatures will be
ome equal.Without damping they �nd that the os
illations will go on forever. In orderto derive these results they had to assume that the 
orrelation between thevelo
ity of the piston and the velo
ities of the parti
les 
an be negle
ted.They also assumed that the parti
le densities left and right are uniform forall times. Our results, derived both from hydrodynami
 equations and fromnumeri
al simulations, indi
ate that these assumptions are in
orre
t.The same unjusti�ed assumption about the absen
e of 
orrelations be-tween parti
le- and piston velo
ity is used in [10℄ and [11℄: �In the absen
eof re
ollisions the piston always `sees' the unperturbed Maxwell distribu-tions of the arriving �uid parti
les, and no 
orrelations 
an o

ur betweenits velo
ity and the pre
ollisional velo
ity of the �uid parti
les.�In [12℄ the same problem is addressed, but now for the spe
ial 
ase inwhi
h the mass of the piston and the mass of the mole
ules are equal. Someinteresting results are derived about the motion of the piston, but it willbe 
lear that an arbitrary initial velo
ity distribution will never tend to aMaxwellian distribution, be
ause there is no momentum transfer in a 
olli-sion.The authors of [13℄ derive an interesting �nonlinear di�erential equationfor the motion of the massive piston 
oupled to linear partial di�erentialequations for the evolution of the one parti
le distribution of the light par-ti
les.� In their 
on
luding remarks they admit, however, that they 
annot
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onverges to a stationary state.A more realisti
 situation is des
ribed in [15℄ where the gas of Callen'spiston 
onsists of hard disks. Numeri
al 
al
ulations show that in this 
ase�the insulating piston qualitatively behaves as expe
ted � it moves and
ondu
ts heat�. As a result the temperatures left and right be
ome equal.In the present paper we have again studied the one-dimensional idealgas 
ase. Instead, however, of 
onsidering the thermodynami
 limit, wehave taken the 
ontinuum limit, de�ned in Se
tion 2. For this limiting 
asewe used the equations for the single parti
le distributions to derive a 
losedset of hydrodynami
 equations. This was possible by assuming that the gasbehaved as an ideal �uid, meaning that the internal entropy produ
tion 
ouldbe negle
ted. In addition we performed some simulations and 
ompared theresults with the 
on
lusions that 
ould be drawn from the hydrodynami
equations.Our main 
on
lusions 
an be summed up in the following points.1. We �nd an approximate solution for the single parti
le distributions,whi
h give Maxwellian velo
ity distributions. This is in agreementwith numeri
al simulations, as is shown in �gures 4 and 5. It is not
lear, however, how this state is rea
hed in the 
ourse of time.2. This approximate solution also shows os
illatory behaviour of the po-sition of the piston and of the temperatures to the left and to the right,in agreement with numeri
al simulations. It does not show a tenden
yof the piston to shift its os
illation 
entre towards the midpoint ofthe tube (for equal densities), although this behaviour is observed innumeri
al simulations.3. The epi
y
les of the piston movement, whi
h are noti
eable in �gures8 and 11, may be 
aused by the impa
t of sho
k fronts in the gas.The existen
e of sho
k waves was established in the 
ontext of thehydrodynami
 equations of Se
tion 4, but it remains to be seen whethertheir e�e
t on the piston 
an be really understood from a 
loser studyof these equations 
oupled to the equation of motion of the piston.4. If so, this will mean that the di�eren
e between the two temperatureswill keep os
illating around zero and therefore that for this 
ompositesystem, 
onsidered as one isolated unit, thermodynami
 equilibriumwill not be rea
hed for t!1:One of the authors (M.J.R.) thanks the Institute of Theoreti
al Physi
sfor its hospitality.
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