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EXACT DIAGONALIZATION OF MANY-FERMIONHAMILTONIAN COMBINED WITH WAVE-FUNCTIONREADJUSTMENTII. METALLICITY AND ELECTRON LOCALIZATIONIN NANOSCOPIC SYSTEMS�J. Spaªek, A. RyerzMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand W. WójikInstitute of Physis, Tadeusz Ko±iuszko Tehnial UniversityPodhor¡»yh 1, 30-084 Kraków, Poland(Reeived June 21, 2001)We apply our new method of approah to eletroni states in orrelatedsystems [for a brief review, Part I, see: Ata Phys. Pol. B31, 2879 (2000)℄to the analysis of the states and eletron loalization in nanosopi hainsontaining up to N = 12 atoms. The Mott and the Hubbard riteria ofloalization are expliitly evaluated and the importane of the former isstressed. We also de�ne the many-partile wave funtion and alulate itexpliitly for the hydrogen moleule. Further appliations of our methodare listed at the end.PACS numbers: 71.10.Fd, 71.15.Fv, 31.25.Nj1. IntrodutionA ombined �rst- and seond-quantization shemeIt is generally pereived that the wave mehanis [1℄ (hereinafter alledthe �rst-quantization sheme) desribes the matter-wave aspet of the sys-tem behavior, whereas the seond-quantization sheme [2℄ restores the parti-le language as it operates with the partile transitions (reations and annihi-lations) between the states with well de�ned quantum numbers appropriate� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3189)



3190 J. Spaªek, A. Ryerz, W. Wójikfor a omplete set of single partile states [3℄. Obviously, a omplete desrip-tion of the physial system relies on the omplementarity of both desriptionsof the quantum states. The question we have addressed [4�7℄ in this respetis whether one an ombine both �rst- and the seond-quantization shemesin approahing the many-partile systems, possibly in a systemati man-ner, whih would represent a nonperturbational desription of many-bodyaspets of N -partile states.Suh an approah has a number of advantages. First of them is that waveand partile aspets of the states onverge into a single sheme. Seond, wean treat the so-alled orrelated fermion systems, for whih the interationpart is omparable (if not prevalent) to the single-partile part of the systemenergy. As an extra bonus from suh a treatment we obtain the expliit formof the many-partile wave funtion starting from a single-partile sheme,as will be illustrated at the and of this paper on the simple examples of H2moleule.The method has been applied so far to the simple systems [4�6℄: H2moleule, He atom, Hubbard hain, and linear hain with all pair-site inter-ations. So, it requires further development. Below we disuss a nanosopisystem of linear hain on�guration with periodi boundary onditions anddisuss the eletron loalization for this ase as an example of a quantumphase transition [7℄. At the end, we return to some general features of ourapproah (f. Setion 2) by de�ning the many-partile wave funtion andmaking a suggestion about the iterative aspets of the desription of quan-tum states in interating many-partile systems, i.e. desribe the feedbake�et between the �rst- and seond-quantization aspets of the states. But�rst, we summarize brie�y the method of approah (f. Setion 2) andpresent the results for nanosopi systems (Setions 3 and 4).It is worth summarizing the method in a few words. We start withthe many-body Hamiltonian in the Fok-spae, in whih the single-partilewave funtions are ontained in the mirosopi parameters of the model.The reation and annihilation operators desribe the transitions betweenthe single-partile states seleted to de�ne the �eld operators. Therefore,the Fok-spae aspet of the problem aounts for redistribution of partiles(dynami proesses) indued by the interation amongst them. One thedynami proesses have been aounted for i.e. the Hamiltonian has beendiagonalized in the Fok spae (rigorously or otherwise), we optimize theground-state energy with respet to the single-partile orbitals ontainedin the mirosopi parameters of the Hamiltonian. The seond proedureloses the solution of the many-body problem in the sense that the systemproperties an be disussed as a funtion of the mean interpartile distane,not only as a funtion of the parameters, as is usually the ase. The solutionis nonperturbational in the sense, in whih the interation terms are inluded



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3191in the diagonalization proedure of the Hamiltonian. In what follows weimplement this methodology to the orrelated nanosopi hain (f. Setions3 and 4) and return subsequently to some general aspets of the method inSetion 5.2. Method ombining �rst- and seond-quantizationsWe start with the Hamiltonian in the Fok spae of the form [8, 9℄H = X� Z d3rb	 y�(r)H1(r)b	�(r)+12 X�1�2ZZ d3r1d3r2 b	 y�1(r1)b	 y�2(r2)V (r1�r2)b	�2(r2)b	�1(r1) ;(1)where H1(r) and V12 � V (r1� r2) are, respetively, the Hamiltonians for asingle partile and a single pair of partiles in the oordinate (Shrödinger)representation, and b	�(r) is the �eld operator de�ned throughb	�(r) =Xi wi(r)��ai� ; (2)where ai� is the annihilation operator of a partile in a single-partile statewi(r)��. One should note that the basis fwi(r)��g is ompletely arbitraryin this de�nition. By inserting (2) into (1) we obtain the usual form of theHamiltonianH =Xij� tijayi�aj� + 12 Xijkl��0 Vijklayi�ayj�0al�0ak� ; (3)with the mirosopi parameters de�ned bytij � hwijH1jwji = Z d3rw�i (r)H1(r)wj(r) ; (4)andVijkl � hwiwj jV12jwkwli =Z d3r1d3r2w�i (r1)w�j (r2)V (r1 � r2)wk(r1)wl(r2) :(5)Thus in the form (3) of the many-partile Hamiltonian the single- and many-partile aspets of the problem are separated in the sense that alulationof the parameters tij and Vijkl is separated from the diagonalization of the



3192 J. Spaªek, A. Ryerz, W. WójikHamiltonian in the Fok spae. This an be seen expliitly when we alulatethe ground state energyEG � hHi =Xij� tijhayi�aj�i+ 12 Xijkl��0 Vijklhayi�ayj�0al�0ak�i; (6)where the averaging h:::i takes plae over all feasible oupanies of givensingle partile states ji�1i, jj�2i, jk�3i, and jk�4i (ompatible with the totalnumber of partiles).So far, the approah is standard [8,9℄. We have proposed [4�6℄ to lose thesolution with optimization of the single-partile basis fwi(r)g by treating theEG expression (6) as a funtional of fwi(r)g and their gradients, whih areontained in the mirosopi parameters. In suh situation the renormalizedwave funtion is determined from the Euler equation for the funtionalFfwi(r)g = EGfwi(r)g �Xi�j �ij �Z d3rw�i (r)wj(r)� Æij� ; (7)where �ij are the Lagrange multipliers, whih appear in the general ase,when the single-partile basis is nonorthonormal (otherwise and usually, thebasis is hosen as orthonormal and then �ij � 0 and we have the ustomaryLagrange�Euler problem). The general form of this equation in the station-ary ase is: ÆEGÆw�i (r) �r � ÆEGÆrw�i (r) �Xj�i �ijwj(r) = 0: (8)We will work here with fermions (eletrons) on the lattie and the wavefuntions fwi(r)g will be taken in the form of the (orthonormal) Wannierfuntions. Additionally, as is impliit in the treatment above, we de�neone global spin quantization axis for all single partile states used to de�neb	�(r). 3. Nanosopi hain of orrelated eletronsWe onsider a hain of N atoms, with one valene eletron per atomin 1s state and apply periodi boundary onditions. The Hamiltonian (3)ontaining all two-site terms is of the formH = N�1Xi=0 �"ani + Uni"ni# + i�1Xj=0 n�Kij � 12Jij�ninj � 2JijSi � Sj+X� �tij + Vij(ni�� + nj ��)� �ayi�aj� + ayj�ai��+ Jij �ayi"ayi#aj#aj"+ayj" ayj#ai#ai"�o� ; (9)



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3193where, respetively, the �rst two terms express the atomi part of the single-partile ("a � tii) and two-partile (U � Viiii) energies, the next two repre-sent the intersite Coulomb (Kij � Vijij) and exhange (Jij � Vijji) energies,the following two desribe the intersite partile hopping (tij) and so-alledorrelated hopping (Vij � Viiij) for i 6= j, whereas the last part is responsi-ble for two-eletron hopping between the sites i and j. In suh notation theWannier funtions are hosen as real funtions.The Wannier funtions are de�ned through the atomi 1s funtions inthe following manner wi(r) = N�1Xj=0 �i�j j(r); (10)where the 1s funtions of the (adjustable) size ��1 entered on the j-thesite are  j(r) = ��3� �1=2 exp (��jr �Rjj) ; (11)and the expansion oe�ients �i�j � �p are determined from [4, 5℄�p = N�1Xk �Xp0 Sp0 os(k � Rp0)��1=2 os(k � Rp) : (12)The overlap integrals Sp are de�ned asSp � h i j  i+pi = Z d3r �(r � Ri) (r � Ri+p) ;and the summation over the wave vetors fkg runs over the �rst Brillouinzone.The whole solution proedure onsists of the following steps. First, wetransform the parameters "a, U , tp, Kp, Jp, and Vp (for p = ji � jj) to theatomi basis f i(r)g, where they an be expliitly alulated [5℄. Thesealulation inlude three-site terms ontained in the expression for tij. Inthis manner, the parameters for all the values of p = 1; :::; N � 1 have beeninluded. Seond, we diagonalize numerially the Hamiltonian (9) for givenvalues of the parameters by alulating the ground state energy EG. Thisenergy is subsequently optimized with respet to the orbital size ��1 forgiven interatomi distane R. The obtained earlier eigenvetors in the ou-pation number representation and the Wannier funtions for the optimal size��1 = ��1min allow us to alulate expliitly not only EG = EG(R), but alsothe relevant orrelation funtions suh as the momentum distribution fun-tion nk� for the eletrons and spin�spin orrelation funtions, as well as the



3194 J. Spaªek, A. Ryerz, W. Wójikmirosopi parameters tp = tp(R), U = U(R), et. Below we analyze onlythe results important for a haraterization of the transition from itinerantto loalized states of eletrons, whih represents a quantum transformationof the metalli state into the atomi on�guration of loalized spins. Thedisussion of these results will arry us out to the natural question: Howsmall a metal an be?4. Transformation of a nanosopi metal into a spin systemThe expliit analysis an be performed only numerially. We will disussresults for N � 12 atoms with one eletron per atom. Stritly speaking, wemodel a hain of hydrogeni-like states, as the sreening of internal shellsand their polarizability are not inluded. In Fig. 1 we display the eletronmomentum distribution nk� = hayk�ak�i for N = 10 atoms and the twointeratomi distanes R = 3a0 and R = R = 3:929 a0, where a0 is 1s Bohrradius. The points represent the result of numerial omputation desribedin the preeding setion, whereas the ontinuous lines represent the interpo-lation nk� = 12 + sgn(k � kF) ��jk � kFj2 + �jk � kFj � � ; (13)where �, �, and  represent the �tted parameters and kF is the Fermiwave vetor, kF = �=(2R). This form of the distribution funtion an be

E
L
E

C
T

R
O

N
 O

C
C

U
P

A
T

IO
N

 
MOMENTUM,  kR/

R/a  = 3

R = R

0

c

N = 10

α = αmin

0.0

0.5

1.0

π
-1 -0.5 0 0.5 1Fig. 1. Momentum distribution nk� for eletrons in the linear hain of N = 10atoms; the interatomi distane R is spei�ed in units of 1s Bohr radius a0. Theontinuous line represents the paraboli interpolation disussed in main text, whihis of the same type for both k > kF and k < kF (kF is the Fermi wave vetor).



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3195understood by representing it via its Fourier transform, whih ontains theorrelation funtions hayi�ai+p�i, namely we havenk� = 12 +Xj(i) eik�(Ri�Rj)hayi�aj�i : (14)From Fig. 1 one learly sees that there exists a ritial interatomi distaneR = R, at whih the distribution funtion is ontinuous. Note that theinterpolation formula (13), with k as a ontinuous variable, emulates a largesystem with the same statistial properties. The loalization threshold is de-�ned as the distane at whih the value of the disontinuity at the Fermi level�nkF � nk=kF�0 � nk=kF+0; disappears. Having determined this quantity,one an use the Fermi-liquid relation for the quasipartile mass enhanementat the Fermi level [10℄ m�mB = (�nkF)�1 ; (15)where mB is the e�etive band mass at the Fermi level, whih must bealulated separately [10℄. In e�et, in Fig. 2 we display this enhanementas a funtion of R. The omputed points an be �tted with the ontinuousline m�F = AjR�Rj�0 ; (16)with A ' 10; 2, R ' 3:92a0, and 0 ' 4=3. This in�nite e�etive massmeans that the quasipartiles are loalized on atoms to minimize the atomipart of the energy. Obviously, m�F represents the e�etive mass for a trans-lational motion throughout the rystal and as suh is unrelated to that theeletron has when moving in the atom. To larify this situation we haveplotted in Fig. 4 the quantity naH, where N = 1=R is the arrier onen-tration (number of eletrons per unit length of the hain), and aH = ��1min isthe optimal size of the atomi orbit for given interatomi distane R. Thedotted line marks the value 0:2 orresponding to the Mott riterion in bulksystems.In order to relate our riterion of the eletron loalization in this nano-sopi system to the well known riteria due to Hubbard [11℄ and Mott [12℄we proeed as follows. We alulate �rst the ratio W=(U �K1), where Wis the width of the band states W = 4jPj(i) tij j, as a funtion of the lattieparameter R. The result is displayed in Fig. 3 (in the inset we presentthe R dependene of the orbital size ��1 in units of a0). The dot-dashedline marks the Hubbard loalization threshold de�ned through the onditionW=(U �K1) = 1. This ondition is met for R � 2:7a0, well below R. So,the two riteria of loalization are inompatible for the nanosopi systemof small number of atoms N � 10.



3196 J. Spaªek, A. Ryerz, W. Wójik. .���������	
��Æ���������������. .Fig. 2. The quantum ritial behavior of the quasipartile mass at the Fermi level:The omputed points forN = 10 atoms are �tted with the urvem� � jR�Rj�4=3,with R ' 4:3a0. Note the logarithmi sale for the e�etive mass.

Fig. 3. The bare bandwidth-to-interation ratio versus R; the Hubbard riterionfor loalization is marked (see main text). The inset provides the optimal size��1 = ��1min (in units of a0) of the atomi orbitals omposing the optimizedWannierfuntions.



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3197
M

O
T

T
 C

R
IT

E
R

IO
N

  
n

  
a

INTERATOMIC DISTANCE  R/a

N =  12

N =  6

N = 10

0.30

0.26

0.22

0.18
2 3 4 5

0

C
H

 Fig. 4. The Mott riterion value naH vs. R and for di�erent number of atomsN = 6 � 12. The horizontal dotted line marks the Mott riterion for the bulk3-dimensional systems.One an notie a good agreement with the value of R if one writes theMott riterion for the loalization in the form naH ' 0:22. One may say thatthe Mott-riterion appliability even in the one-dimensional ase originatesfrom the long-range nature of the Coulomb interation we take into aountand whih, in turn, imitates the higher-lattie dimensionality. Hene, thelong-standing onlusion [13℄ about the universality of the insulating statefor the Hubbard hain does not extend to the 1s models with a realistiaount of the eletroni struture. This onlusion is very important alsobeause it removes one of the main objetions against using the itinerant (oreven e�etive mass) states in low dimensional metals (wires) and quantumdots. In Fig. 5 we display an exemplary evolution with inreasing R of theband struture of the linear hain with periodi boundary onditions. Theontinuity of the wave vetor k is obtained by using the following expressionfor the band energy "k = "a + 2N�1Xp=1 tp os(kRp) ; (17)where tp represent the alulated hopping integrals using the optimized Wan-nier funtions in the orrelated state. The horizontal plane marks the posi-tion of the Fermi level, whih is loalized always in the middle of the bandwhen the shift of the atomi level "a is aounted for with the inreasing dis-



3198 J. Spaªek, A. Ryerz, W. Wójiktane R. Obviously, the band �attens out with inreasing R but is alwaysnonzero, sine the bandwidth haraterizes the wave funtion overlap be-tween the neighboring sites. The true loalization (W ! 0 or equivalently)m� ! 1, is ahieved only when the interpartile interations are properlyinluded.
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Fig. 5. The spae pro�le of the band shape for N = 10 atoms versus R, takinginto aount the alulated hopping integrals ftpgp=1:::5. The horizontal planeinterseting the band marks the Fermi level position for one eletron per atom.From the foregoing disussion it follows that the system evolves with theinreasing interatomi distane from a metal (as visualized by the existeneof the Fermi ridge in Fig. 1) towards the Mott insulating state with one(nonpaired) eletron per atom. The system possesses a quantum ritialpoint for metal�insulator transition at R = R only if we extrapolate ourresults to the large N limit. Suh an extrapolation proedure here relieson regarding the quasimoment ~k as a quasiontinuous variable, so we aninterpolate between the disrete omputed points the properties suh as nk�,m�, and "k. The eletroni properties of the system for R > R are loseto those of a Mott�Heisenberg magneti insulator, as disussed in detailelsewhere [8℄. For the sake of ompletness we display in Fig. 6 the basiharateristis (as a funtion of R), whih are well de�ned in both itinerantand atomi states. Those omprise: (i) the site spin magnitude �M =(4=3)hS2i i, where Si � (Syi ; S�i ; Szi ) = (ayi"ai#; ayi#ai"; 1=2(ni" � ni#)) isthe eletron spin on site i, (ii) the spin�spin orrelation funtion �AF ��hSi �Si+1i, and (iii) �MI = 4�2fnk�g, where �2fnk�g is the dispersion of



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3199the statistial distribution de�ned as�2fnk�g = 12N Xk� n2k� �� 12N Xk� nk��2 : (18)The averages are for the ground state, and are determined via the ex-at diagonalization in the oupation-number representation. The quantity�M(= 1 � 2hni"ni#i) takes the value (1=2) in the ideal gas limit and ap-proahes unity in the atomi limit, where we have a Pauli spin (�=2) oneah atom. �AF approahes the value (3=4) for the singlet on�gurationof the atomi spins, whereas �2fnk�g aquires the value 1 in the ideal gaslimit (nk� = �(� � "k)) and vanishes for an even momentum distribution(nk = 1=2), when the partile position is sharply de�ned on atom. Thus,the quantity �MI plays the role of the order parameter for this rossover be-havior, sine it learly distinguishes between the omplementary momentumand position representations for the system quantum states. From Fig. 6 itfollows that for R=a0 ' 5a0 all three parameters (i)�(iii) aquire (with 5%margin) their asymptoti values for purely atomi states.. .���������	
��Æ����������������� !"#$%&'()*+,-��. .Fig. 6. Correlation funtions de�ned in the text versus interatomi distane R,depiting the rossover from itinerant to loalized state, for N = 6 � 10 atoms.The shaded areas are drawn to emphasize the onvergene of the results in thelarge R (atomi) limit.



3200 J. Spaªek, A. Ryerz, W. Wójik5. Remark on the many-partile wave funtion fromthe ombined �rst- and seond-quantization shemeWe have started from the Hamiltonian (1) in the seond-quantization for-malism. The single-partile wave funtion is ontained in the �eld-operatorde�nition (2). It is well known [13℄ that the general N -partile state in theFok spae is de�ned as followsj��i = 1pN ! Z d3r1:::d3rN	�(r1:::rN )b	 y(r1):::b	 y(rN )j0i; (19)where 	�(r1:::rN ) is the N -partile wave funtion and j0i is the vauumstate. In e�et, we have that	�(r1:::rN ) = 1pN !h0jb	 (rN ):::b	 (r1)j��i; (20)where b	(ri) is the �eld operator (2) summed up over the spin index �. Inour method, we diagonalize the Hamiltonian in the Fok spae �rst. So,we determine �rst expliitly the ground state j��i � j�0i. Hene, we andetermine expliitly the many-partile wave funtion 	0(r1:::rN ). Here wepresent the results for the elementary example of the states for H2 moleule,whih were obtained in an analyti form in Part I, leaving more ompliatedases to a separate publiation. Namely, the ground state for H2 moleuleis of the form [4℄j�0i = 1p2D(D � U +K) f4(t+ V )j4i � (D � U +K)j5ig : (21)In this formula D � [(U �K)2 + 16(t + V )2℄1=2, and the states j4i and j5iare, respetively 8<: j4i = 1p2 �ay1"ay2# � ay1#ay2"� j0ij5i = 1p2 �ay1"ay1# + ay2"ay2#� j0i: (22)Taking the �eld operator for these two-site system (i = 1; 2) in the form(note the summation over spin indies)b	 y(r) =X� �ay1�w1(r)��(r) + ay2�w2(r)��(r)� ; (23)we obtain the wave funtion of the ground state singlet in the form	0(r1r2) = 2(t+ V )p2D(D � U +K)�(r1r2)� 12rD � U +K2D �i(r1r2); (24)



Exat Diagonalization of Many-Fermion Hamiltonian : : : 3201where the ovalent part � has the usual form�(r1r2) = [w1(r1)w2(r2) + w1(r2)w2(r1)℄[�"(r1)�#(r2)� �#(r1)�"(r2)℄;(25)with wi(r1) being the Wannier funtion (moleular orbital) entered on thei-th atom. The ioni part has a slightly di�erent form�i(r1r2) = [w1(r1)w1(r2) + w2(r1)w2(r2)℄[�"(r1)�#(r2)� �#(r1)�"(r2)℄:(26)Note that these are the exat expressions within the subspae spanned bythe 1s orbitals on the two atoms. The spae part is symmetri while the spinpart is antisymmetri, as it should be. A further inrease in auray of ouralulation would require the inlusion of 2s; 2p, et. states in de�nition (23).Suh proedure an be devised in a systemati way.In a similar manner, one an obtain the wave funtions for the �rstexited triplet states with S = 2 and Sz = +1;�1; 0.At the end of this remark we would to mention an iterative aspet ofour approah. We start from a single-partile basis fwi(r)g whih de�nesthe �eld operator and the Hamiltonian in the Fok spae whih we diag-onalize subsequently in that spae. The ground state energy obtained inthis manner is regarded as a funtional of the single-partile wave funtion.In other words, EGfwi(r)g = h ~H1i, where ~H1 represents the renormalizedsingle-partile Hamiltonian [4, 5℄. ~H1 determines the readjusted (renormal-ized) wave funtions fwi(r)g. With the help of those funtions we de�neagain the �eld operator (23) whih in turn de�nes the many-partile wavefuntion (20). The last step terminates the iterative proedure and providesan expliit form of the many-partile wave funtion. A detailed analysis ofthis point will be disussed elsewhere.6. ConlusionsThe present method bases on the exat diagonalization in the Fok spae,whih is performed �rst and is followed by the single-partile optimizationof the wave funtions ontained in the expression for the �eld operator. Theexat diagonalization an be performed only for simple systems suh as thosedisussed in the present paper. However, the method an be implementedalso to approximate solutions for the orrelated systems suh as the dynamimean �eld approah [14℄ or Gutzwiller approximation [15℄. Also, one aninlude more ompliated atomi struture involving heavier atoms, whihwould require inlusion of the ore eletrons and polarization e�ets. Weshould be able to see a progress along these lines soon, sine our methodallows for a systemati analysis of interation and single-partile aspets ofthe eletroni states in a nonperturbational manner.
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