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EXACT DIAGONALIZATION OF MANY-FERMIONHAMILTONIAN COMBINED WITH WAVE-FUNCTIONREADJUSTMENTII. METALLICITY AND ELECTRON LOCALIZATIONIN NANOSCOPIC SYSTEMS�J. Spaªek, A. Ry
erzMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand W. Wój
ikInstitute of Physi
s, Tadeusz Ko±
iuszko Te
hni
al UniversityPod
hor¡»y
h 1, 30-084 Kraków, Poland(Re
eived June 21, 2001)We apply our new method of approa
h to ele
troni
 states in 
orrelatedsystems [for a brief review, Part I, see: A
ta Phys. Pol. B31, 2879 (2000)℄to the analysis of the states and ele
tron lo
alization in nanos
opi
 
hains
ontaining up to N = 12 atoms. The Mott and the Hubbard 
riteria oflo
alization are expli
itly evaluated and the importan
e of the former isstressed. We also de�ne the many-parti
le wave fun
tion and 
al
ulate itexpli
itly for the hydrogen mole
ule. Further appli
ations of our methodare listed at the end.PACS numbers: 71.10.Fd, 71.15.Fv, 31.25.Nj1. Introdu
tionA 
ombined �rst- and se
ond-quantization s
hemeIt is generally per
eived that the wave me
hani
s [1℄ (hereinafter 
alledthe �rst-quantization s
heme) des
ribes the matter-wave aspe
t of the sys-tem behavior, whereas the se
ond-quantization s
heme [2℄ restores the parti-
le language as it operates with the parti
le transitions (
reations and annihi-lations) between the states with well de�ned quantum numbers appropriate� Presented at the XII S
hool of Modern Physi
s on Phase Transitions and Criti
alPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3189)
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ikfor a 
omplete set of single parti
le states [3℄. Obviously, a 
omplete des
rip-tion of the physi
al system relies on the 
omplementarity of both des
riptionsof the quantum states. The question we have addressed [4�7℄ in this respe
tis whether one 
an 
ombine both �rst- and the se
ond-quantization s
hemesin approa
hing the many-parti
le systems, possibly in a systemati
 man-ner, whi
h would represent a nonperturbational des
ription of many-bodyaspe
ts of N -parti
le states.Su
h an approa
h has a number of advantages. First of them is that waveand parti
le aspe
ts of the states 
onverge into a single s
heme. Se
ond, we
an treat the so-
alled 
orrelated fermion systems, for whi
h the intera
tionpart is 
omparable (if not prevalent) to the single-parti
le part of the systemenergy. As an extra bonus from su
h a treatment we obtain the expli
it formof the many-parti
le wave fun
tion starting from a single-parti
le s
heme,as will be illustrated at the and of this paper on the simple examples of H2mole
ule.The method has been applied so far to the simple systems [4�6℄: H2mole
ule, He atom, Hubbard 
hain, and linear 
hain with all pair-site inter-a
tions. So, it requires further development. Below we dis
uss a nanos
opi
system of linear 
hain 
on�guration with periodi
 boundary 
onditions anddis
uss the ele
tron lo
alization for this 
ase as an example of a quantumphase transition [7℄. At the end, we return to some general features of ourapproa
h (
f. Se
tion 2) by de�ning the many-parti
le wave fun
tion andmaking a suggestion about the iterative aspe
ts of the des
ription of quan-tum states in intera
ting many-parti
le systems, i.e. des
ribe the feedba
ke�e
t between the �rst- and se
ond-quantization aspe
ts of the states. But�rst, we summarize brie�y the method of approa
h (
f. Se
tion 2) andpresent the results for nanos
opi
 systems (Se
tions 3 and 4).It is worth summarizing the method in a few words. We start withthe many-body Hamiltonian in the Fo
k-spa
e, in whi
h the single-parti
lewave fun
tions are 
ontained in the mi
ros
opi
 parameters of the model.The 
reation and annihilation operators des
ribe the transitions betweenthe single-parti
le states sele
ted to de�ne the �eld operators. Therefore,the Fo
k-spa
e aspe
t of the problem a

ounts for redistribution of parti
les(dynami
 pro
esses) indu
ed by the intera
tion amongst them. On
e thedynami
 pro
esses have been a

ounted for i.e. the Hamiltonian has beendiagonalized in the Fo
k spa
e (rigorously or otherwise), we optimize theground-state energy with respe
t to the single-parti
le orbitals 
ontainedin the mi
ros
opi
 parameters of the Hamiltonian. The se
ond pro
edure
loses the solution of the many-body problem in the sense that the systemproperties 
an be dis
ussed as a fun
tion of the mean interparti
le distan
e,not only as a fun
tion of the parameters, as is usually the 
ase. The solutionis nonperturbational in the sense, in whi
h the intera
tion terms are in
luded
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edure of the Hamiltonian. In what follows weimplement this methodology to the 
orrelated nanos
opi
 
hain (
f. Se
tions3 and 4) and return subsequently to some general aspe
ts of the method inSe
tion 5.2. Method 
ombining �rst- and se
ond-quantizationsWe start with the Hamiltonian in the Fo
k spa
e of the form [8, 9℄H = X� Z d3rb	 y�(r)H1(r)b	�(r)+12 X�1�2ZZ d3r1d3r2 b	 y�1(r1)b	 y�2(r2)V (r1�r2)b	�2(r2)b	�1(r1) ;(1)where H1(r) and V12 � V (r1� r2) are, respe
tively, the Hamiltonians for asingle parti
le and a single pair of parti
les in the 
oordinate (S
hrödinger)representation, and b	�(r) is the �eld operator de�ned throughb	�(r) =Xi wi(r)��ai� ; (2)where ai� is the annihilation operator of a parti
le in a single-parti
le statewi(r)��. One should note that the basis fwi(r)��g is 
ompletely arbitraryin this de�nition. By inserting (2) into (1) we obtain the usual form of theHamiltonianH =Xij� tijayi�aj� + 12 Xijkl��0 Vijklayi�ayj�0al�0ak� ; (3)with the mi
ros
opi
 parameters de�ned bytij � hwijH1jwji = Z d3rw�i (r)H1(r)wj(r) ; (4)andVijkl � hwiwj jV12jwkwli =Z d3r1d3r2w�i (r1)w�j (r2)V (r1 � r2)wk(r1)wl(r2) :(5)Thus in the form (3) of the many-parti
le Hamiltonian the single- and many-parti
le aspe
ts of the problem are separated in the sense that 
al
ulationof the parameters tij and Vijkl is separated from the diagonalization of the
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ikHamiltonian in the Fo
k spa
e. This 
an be seen expli
itly when we 
al
ulatethe ground state energyEG � hHi =Xij� tijhayi�aj�i+ 12 Xijkl��0 Vijklhayi�ayj�0al�0ak�i; (6)where the averaging h:::i takes pla
e over all feasible o

upan
ies of givensingle parti
le states ji�1i, jj�2i, jk�3i, and jk�4i (
ompatible with the totalnumber of parti
les).So far, the approa
h is standard [8,9℄. We have proposed [4�6℄ to 
lose thesolution with optimization of the single-parti
le basis fwi(r)g by treating theEG expression (6) as a fun
tional of fwi(r)g and their gradients, whi
h are
ontained in the mi
ros
opi
 parameters. In su
h situation the renormalizedwave fun
tion is determined from the Euler equation for the fun
tionalFfwi(r)g = EGfwi(r)g �Xi�j �ij �Z d3rw�i (r)wj(r)� Æij� ; (7)where �ij are the Lagrange multipliers, whi
h appear in the general 
ase,when the single-parti
le basis is nonorthonormal (otherwise and usually, thebasis is 
hosen as orthonormal and then �ij � 0 and we have the 
ustomaryLagrange�Euler problem). The general form of this equation in the station-ary 
ase is: ÆEGÆw�i (r) �r � ÆEGÆrw�i (r) �Xj�i �ijwj(r) = 0: (8)We will work here with fermions (ele
trons) on the latti
e and the wavefun
tions fwi(r)g will be taken in the form of the (orthonormal) Wannierfun
tions. Additionally, as is impli
it in the treatment above, we de�neone global spin quantization axis for all single parti
le states used to de�neb	�(r). 3. Nanos
opi
 
hain of 
orrelated ele
tronsWe 
onsider a 
hain of N atoms, with one valen
e ele
tron per atomin 1s state and apply periodi
 boundary 
onditions. The Hamiltonian (3)
ontaining all two-site terms is of the formH = N�1Xi=0 �"ani + Uni"ni# + i�1Xj=0 n�Kij � 12Jij�ninj � 2JijSi � Sj+X� �tij + Vij(ni�� + nj ��)� �ayi�aj� + ayj�ai��+ Jij �ayi"ayi#aj#aj"+ayj" ayj#ai#ai"�o� ; (9)
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tively, the �rst two terms express the atomi
 part of the single-parti
le ("a � tii) and two-parti
le (U � Viiii) energies, the next two repre-sent the intersite Coulomb (Kij � Vijij) and ex
hange (Jij � Vijji) energies,the following two des
ribe the intersite parti
le hopping (tij) and so-
alled
orrelated hopping (Vij � Viiij) for i 6= j, whereas the last part is responsi-ble for two-ele
tron hopping between the sites i and j. In su
h notation theWannier fun
tions are 
hosen as real fun
tions.The Wannier fun
tions are de�ned through the atomi
 1s fun
tions inthe following manner wi(r) = N�1Xj=0 �i�j j(r); (10)where the 1s fun
tions of the (adjustable) size ��1 
entered on the j-thesite are  j(r) = ��3� �1=2 exp (��jr �Rjj) ; (11)and the expansion 
oe�
ients �i�j � �p are determined from [4, 5℄�p = N�1Xk �Xp0 Sp0 
os(k � Rp0)��1=2 
os(k � Rp) : (12)The overlap integrals Sp are de�ned asSp � h i j  i+pi = Z d3r �(r � Ri) (r � Ri+p) ;and the summation over the wave ve
tors fkg runs over the �rst Brillouinzone.The whole solution pro
edure 
onsists of the following steps. First, wetransform the parameters "a, U , tp, Kp, Jp, and Vp (for p = ji � jj) to theatomi
 basis f i(r)g, where they 
an be expli
itly 
al
ulated [5℄. These
al
ulation in
lude three-site terms 
ontained in the expression for tij. Inthis manner, the parameters for all the values of p = 1; :::; N � 1 have beenin
luded. Se
ond, we diagonalize numeri
ally the Hamiltonian (9) for givenvalues of the parameters by 
al
ulating the ground state energy EG. Thisenergy is subsequently optimized with respe
t to the orbital size ��1 forgiven interatomi
 distan
e R. The obtained earlier eigenve
tors in the o

u-pation number representation and the Wannier fun
tions for the optimal size��1 = ��1min allow us to 
al
ulate expli
itly not only EG = EG(R), but alsothe relevant 
orrelation fun
tions su
h as the momentum distribution fun
-tion nk� for the ele
trons and spin�spin 
orrelation fun
tions, as well as the
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ikmi
ros
opi
 parameters tp = tp(R), U = U(R), et
. Below we analyze onlythe results important for a 
hara
terization of the transition from itinerantto lo
alized states of ele
trons, whi
h represents a quantum transformationof the metalli
 state into the atomi
 
on�guration of lo
alized spins. Thedis
ussion of these results will 
arry us out to the natural question: Howsmall a metal 
an be?4. Transformation of a nanos
opi
 metal into a spin systemThe expli
it analysis 
an be performed only numeri
ally. We will dis
ussresults for N � 12 atoms with one ele
tron per atom. Stri
tly speaking, wemodel a 
hain of hydrogeni
-like states, as the s
reening of internal shellsand their polarizability are not in
luded. In Fig. 1 we display the ele
tronmomentum distribution nk� = hayk�ak�i for N = 10 atoms and the twointeratomi
 distan
es R = 3a0 and R = R
 = 3:929 a0, where a0 is 1s Bohrradius. The points represent the result of numeri
al 
omputation des
ribedin the pre
eding se
tion, whereas the 
ontinuous lines represent the interpo-lation nk� = 12 + sgn(k � kF) ��jk � kFj2 + �jk � kFj � 
� ; (13)where �, �, and 
 represent the �tted parameters and kF is the Fermiwave ve
tor, kF = �=(2R). This form of the distribution fun
tion 
an be
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-1 -0.5 0 0.5 1Fig. 1. Momentum distribution nk� for ele
trons in the linear 
hain of N = 10atoms; the interatomi
 distan
e R is spe
i�ed in units of 1s Bohr radius a0. The
ontinuous line represents the paraboli
 interpolation dis
ussed in main text, whi
his of the same type for both k > kF and k < kF (kF is the Fermi wave ve
tor).
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t Diagonalization of Many-Fermion Hamiltonian : : : 3195understood by representing it via its Fourier transform, whi
h 
ontains the
orrelation fun
tions hayi�ai+p�i, namely we havenk� = 12 +Xj(i) eik�(Ri�Rj)hayi�aj�i : (14)From Fig. 1 one 
learly sees that there exists a 
riti
al interatomi
 distan
eR = R
, at whi
h the distribution fun
tion is 
ontinuous. Note that theinterpolation formula (13), with k as a 
ontinuous variable, emulates a largesystem with the same statisti
al properties. The lo
alization threshold is de-�ned as the distan
e at whi
h the value of the dis
ontinuity at the Fermi level�nkF � nk=kF�0 � nk=kF+0; disappears. Having determined this quantity,one 
an use the Fermi-liquid relation for the quasiparti
le mass enhan
ementat the Fermi level [10℄ m�mB = (�nkF)�1 ; (15)where mB is the e�e
tive band mass at the Fermi level, whi
h must be
al
ulated separately [10℄. In e�e
t, in Fig. 2 we display this enhan
ementas a fun
tion of R. The 
omputed points 
an be �tted with the 
ontinuousline m�F = AjR�R
j�
0 ; (16)with A ' 10; 2, R
 ' 3:92a0, and 
0 ' 4=3. This in�nite e�e
tive massmeans that the quasiparti
les are lo
alized on atoms to minimize the atomi
part of the energy. Obviously, m�F represents the e�e
tive mass for a trans-lational motion throughout the 
rystal and as su
h is unrelated to that theele
tron has when moving in the atom. To 
larify this situation we haveplotted in Fig. 4 the quantity n
aH, where N
 = 1=R is the 
arrier 
on
en-tration (number of ele
trons per unit length of the 
hain), and aH = ��1min isthe optimal size of the atomi
 orbit for given interatomi
 distan
e R. Thedotted line marks the value 0:2 
orresponding to the Mott 
riterion in bulksystems.In order to relate our 
riterion of the ele
tron lo
alization in this nano-s
opi
 system to the well known 
riteria due to Hubbard [11℄ and Mott [12℄we pro
eed as follows. We 
al
ulate �rst the ratio W=(U �K1), where Wis the width of the band states W = 4jPj(i) tij j, as a fun
tion of the latti
eparameter R. The result is displayed in Fig. 3 (in the inset we presentthe R dependen
e of the orbital size ��1 in units of a0). The dot-dashedline marks the Hubbard lo
alization threshold de�ned through the 
onditionW=(U �K1) = 1. This 
ondition is met for R � 2:7a0, well below R
. So,the two 
riteria of lo
alization are in
ompatible for the nanos
opi
 systemof small number of atoms N � 10.
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��
Æ���������������. .Fig. 2. The quantum 
riti
al behavior of the quasiparti
le mass at the Fermi level:The 
omputed points forN = 10 atoms are �tted with the 
urvem� � jR�R
j�4=3,with R
 ' 4:3a0. Note the logarithmi
 s
ale for the e�e
tive mass.

Fig. 3. The bare bandwidth-to-intera
tion ratio versus R; the Hubbard 
riterionfor lo
alization is marked (see main text). The inset provides the optimal size��1 = ��1min (in units of a0) of the atomi
 orbitals 
omposing the optimizedWannierfun
tions.
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riterion value n
aH vs. R and for di�erent number of atomsN = 6 � 12. The horizontal dotted line marks the Mott 
riterion for the bulk3-dimensional systems.One 
an noti
e a good agreement with the value of R
 if one writes theMott 
riterion for the lo
alization in the form n
aH ' 0:22. One may say thatthe Mott-
riterion appli
ability even in the one-dimensional 
ase originatesfrom the long-range nature of the Coulomb intera
tion we take into a

ountand whi
h, in turn, imitates the higher-latti
e dimensionality. Hen
e, thelong-standing 
on
lusion [13℄ about the universality of the insulating statefor the Hubbard 
hain does not extend to the 1s models with a realisti
a

ount of the ele
troni
 stru
ture. This 
on
lusion is very important alsobe
ause it removes one of the main obje
tions against using the itinerant (oreven e�e
tive mass) states in low dimensional metals (wires) and quantumdots. In Fig. 5 we display an exemplary evolution with in
reasing R of theband stru
ture of the linear 
hain with periodi
 boundary 
onditions. The
ontinuity of the wave ve
tor k is obtained by using the following expressionfor the band energy "k = "a + 2N�1Xp=1 tp 
os(kRp) ; (17)where tp represent the 
al
ulated hopping integrals using the optimized Wan-nier fun
tions in the 
orrelated state. The horizontal plane marks the posi-tion of the Fermi level, whi
h is lo
alized always in the middle of the bandwhen the shift of the atomi
 level "a is a

ounted for with the in
reasing dis-
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iktan
e R. Obviously, the band �attens out with in
reasing R but is alwaysnonzero, sin
e the bandwidth 
hara
terizes the wave fun
tion overlap be-tween the neighboring sites. The true lo
alization (W ! 0 or equivalently)m� ! 1, is a
hieved only when the interparti
le intera
tions are properlyin
luded.
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Fig. 5. The spa
e pro�le of the band shape for N = 10 atoms versus R, takinginto a

ount the 
al
ulated hopping integrals ftpgp=1:::5. The horizontal planeinterse
ting the band marks the Fermi level position for one ele
tron per atom.From the foregoing dis
ussion it follows that the system evolves with thein
reasing interatomi
 distan
e from a metal (as visualized by the existen
eof the Fermi ridge in Fig. 1) towards the Mott insulating state with one(nonpaired) ele
tron per atom. The system possesses a quantum 
riti
alpoint for metal�insulator transition at R = R
 only if we extrapolate ourresults to the large N limit. Su
h an extrapolation pro
edure here relieson regarding the quasimoment ~k as a quasi
ontinuous variable, so we 
aninterpolate between the dis
rete 
omputed points the properties su
h as nk�,m�, and "k. The ele
troni
 properties of the system for R > R
 are 
loseto those of a Mott�Heisenberg magneti
 insulator, as dis
ussed in detailelsewhere [8℄. For the sake of 
ompletness we display in Fig. 6 the basi

hara
teristi
s (as a fun
tion of R), whi
h are well de�ned in both itinerantand atomi
 states. Those 
omprise: (i) the site spin magnitude �M =(4=3)hS2i i, where Si � (Syi ; S�i ; Szi ) = (ayi"ai#; ayi#ai"; 1=2(ni" � ni#)) isthe ele
tron spin on site i, (ii) the spin�spin 
orrelation fun
tion �AF ��hSi �Si+1i, and (iii) �MI = 4�2fnk�g, where �2fnk�g is the dispersion of
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al distribution de�ned as�2fnk�g = 12N Xk� n2k� �� 12N Xk� nk��2 : (18)The averages are for the ground state, and are determined via the ex-a
t diagonalization in the o

upation-number representation. The quantity�M(= 1 � 2hni"ni#i) takes the value (1=2) in the ideal gas limit and ap-proa
hes unity in the atomi
 limit, where we have a Pauli spin (�=2) onea
h atom. �AF approa
hes the value (3=4) for the singlet 
on�gurationof the atomi
 spins, whereas �2fnk�g a
quires the value 1 in the ideal gaslimit (nk� = �(� � "k)) and vanishes for an even momentum distribution(nk = 1=2), when the parti
le position is sharply de�ned on atom. Thus,the quantity �MI plays the role of the order parameter for this 
rossover be-havior, sin
e it 
learly distinguishes between the 
omplementary momentumand position representations for the system quantum states. From Fig. 6 itfollows that for R=a0 ' 5a0 all three parameters (i)�(iii) a
quire (with 5%margin) their asymptoti
 values for purely atomi
 states.. .���������	
��
Æ����������������� !"#$%&'()*+,-��. .Fig. 6. Correlation fun
tions de�ned in the text versus interatomi
 distan
e R,depi
ting the 
rossover from itinerant to lo
alized state, for N = 6 � 10 atoms.The shaded areas are drawn to emphasize the 
onvergen
e of the results in thelarge R (atomi
) limit.
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ik5. Remark on the many-parti
le wave fun
tion fromthe 
ombined �rst- and se
ond-quantization s
hemeWe have started from the Hamiltonian (1) in the se
ond-quantization for-malism. The single-parti
le wave fun
tion is 
ontained in the �eld-operatorde�nition (2). It is well known [13℄ that the general N -parti
le state in theFo
k spa
e is de�ned as followsj��i = 1pN ! Z d3r1:::d3rN	�(r1:::rN )b	 y(r1):::b	 y(rN )j0i; (19)where 	�(r1:::rN ) is the N -parti
le wave fun
tion and j0i is the va
uumstate. In e�e
t, we have that	�(r1:::rN ) = 1pN !h0jb	 (rN ):::b	 (r1)j��i; (20)where b	(ri) is the �eld operator (2) summed up over the spin index �. Inour method, we diagonalize the Hamiltonian in the Fo
k spa
e �rst. So,we determine �rst expli
itly the ground state j��i � j�0i. Hen
e, we 
andetermine expli
itly the many-parti
le wave fun
tion 	0(r1:::rN ). Here wepresent the results for the elementary example of the states for H2 mole
ule,whi
h were obtained in an analyti
 form in Part I, leaving more 
ompli
ated
ases to a separate publi
ation. Namely, the ground state for H2 mole
uleis of the form [4℄j�0i = 1p2D(D � U +K) f4(t+ V )j4i � (D � U +K)j5ig : (21)In this formula D � [(U �K)2 + 16(t + V )2℄1=2, and the states j4i and j5iare, respe
tively 8<: j4i = 1p2 �ay1"ay2# � ay1#ay2"� j0ij5i = 1p2 �ay1"ay1# + ay2"ay2#� j0i: (22)Taking the �eld operator for these two-site system (i = 1; 2) in the form(note the summation over spin indi
es)b	 y(r) =X� �ay1�w1(r)��(r) + ay2�w2(r)��(r)� ; (23)we obtain the wave fun
tion of the ground state singlet in the form	0(r1r2) = 2(t+ V )p2D(D � U +K)�
(r1r2)� 12rD � U +K2D �i(r1r2); (24)
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ovalent part �
 has the usual form�
(r1r2) = [w1(r1)w2(r2) + w1(r2)w2(r1)℄[�"(r1)�#(r2)� �#(r1)�"(r2)℄;(25)with wi(r1) being the Wannier fun
tion (mole
ular orbital) 
entered on thei-th atom. The ioni
 part has a slightly di�erent form�i(r1r2) = [w1(r1)w1(r2) + w2(r1)w2(r2)℄[�"(r1)�#(r2)� �#(r1)�"(r2)℄:(26)Note that these are the exa
t expressions within the subspa
e spanned bythe 1s orbitals on the two atoms. The spa
e part is symmetri
 while the spinpart is antisymmetri
, as it should be. A further in
rease in a

ura
y of our
al
ulation would require the in
lusion of 2s; 2p, et
. states in de�nition (23).Su
h pro
edure 
an be devised in a systemati
 way.In a similar manner, one 
an obtain the wave fun
tions for the �rstex
ited triplet states with S = 2 and Sz = +1;�1; 0.At the end of this remark we would to mention an iterative aspe
t ofour approa
h. We start from a single-parti
le basis fwi(r)g whi
h de�nesthe �eld operator and the Hamiltonian in the Fo
k spa
e whi
h we diag-onalize subsequently in that spa
e. The ground state energy obtained inthis manner is regarded as a fun
tional of the single-parti
le wave fun
tion.In other words, EGfwi(r)g = h ~H1i, where ~H1 represents the renormalizedsingle-parti
le Hamiltonian [4, 5℄. ~H1 determines the readjusted (renormal-ized) wave fun
tions fwi(r)g. With the help of those fun
tions we de�neagain the �eld operator (23) whi
h in turn de�nes the many-parti
le wavefun
tion (20). The last step terminates the itera
tive pro
edure and providesan expli
it form of the many-parti
le wave fun
tion. A detailed analysis ofthis point will be dis
ussed elsewhere.6. Con
lusionsThe present method bases on the exa
t diagonalization in the Fo
k spa
e,whi
h is performed �rst and is followed by the single-parti
le optimizationof the wave fun
tions 
ontained in the expression for the �eld operator. Theexa
t diagonalization 
an be performed only for simple systems su
h as thosedis
ussed in the present paper. However, the method 
an be implementedalso to approximate solutions for the 
orrelated systems su
h as the dynami
mean �eld approa
h [14℄ or Gutzwiller approximation [15℄. Also, one 
anin
lude more 
ompli
ated atomi
 stru
ture involving heavier atoms, whi
hwould require in
lusion of the 
ore ele
trons and polarization e�e
ts. Weshould be able to see a progress along these lines soon, sin
e our methodallows for a systemati
 analysis of intera
tion and single-parti
le aspe
ts ofthe ele
troni
 states in a nonperturbational manner.
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