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We apply our new method of approach to electronic states in correlated
systems [for a brief review, Part I, see: Acta Phys. Pol. B31, 2879 (2000)]
to the analysis of the states and electron localization in nanoscopic chains
containing up to N = 12 atoms. The Mott and the Hubbard criteria of
localization are explicitly evaluated and the importance of the former is
stressed. We also define the many-particle wave function and calculate it
explicitly for the hydrogen molecule. Further applications of our method
are listed at the end.

PACS numbers: 71.10.Fd, 71.15.Fv, 31.25.Nj

1. Introduction
A combined first- and second-quantization scheme

It is generally perceived that the wave mechanics [1] (hereinafter called
the first-quantization scheme) describes the matter-wave aspect of the sys-
tem behavior, whereas the second-quantization scheme [2] restores the parti-
cle language as it operates with the particle transitions (creations and annihi-
lations) between the states with well defined quantum numbers appropriate
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for a complete set of single particle states [3]. Obviously, a complete descrip-
tion of the physical system relies on the complementarity of both descriptions
of the quantum states. The question we have addressed [4-7] in this respect
is whether one can combine both first- and the second-quantization schemes
in approaching the many-particle systems, possibly in a systematic man-
ner, which would represent a nonperturbational description of many-body
aspects of N-particle states.

Such an approach has a number of advantages. First of them is that wave
and particle aspects of the states converge into a single scheme. Second, we
can treat the so-called correlated fermion systems, for which the interaction
part is comparable (if not prevalent) to the single-particle part of the system
energy. As an extra bonus from such a treatment we obtain the explicit form
of the many-particle wave function starting from a single-particle scheme,
as will be illustrated at the and of this paper on the simple examples of Ho
molecule.

The method has been applied so far to the simple systems [4-6]: Ho
molecule, He atom, Hubbard chain, and linear chain with all pair-site inter-
actions. So, it requires further development. Below we discuss a nanoscopic
system of linear chain configuration with periodic boundary conditions and
discuss the electron localization for this case as an example of a quantum
phase transition [7]. At the end, we return to some general features of our
approach (c¢f. Section 2) by defining the many-particle wave function and
making a suggestion about the iterative aspects of the description of quan-
tum states in interacting many-particle systems, i.e. describe the feedback
effect between the first- and second-quantization aspects of the states. But
first, we summarize briefly the method of approach (¢f. Section 2) and
present the results for nanoscopic systems (Sections 3 and 4).

It is worth summarizing the method in a few words. We start with
the many-body Hamiltonian in the Fock-space, in which the single-particle
wave functions are contained in the microscopic parameters of the model.
The creation and annihilation operators describe the transitions between
the single-particle states selected to define the field operators. Therefore,
the Fock-space aspect of the problem accounts for redistribution of particles
(dynamic processes) induced by the interaction amongst them. Once the
dynamic processes have been accounted for i.e. the Hamiltonian has been
diagonalized in the Fock space (rigorously or otherwise), we optimize the
ground-state energy with respect to the single-particle orbitals contained
in the microscopic parameters of the Hamiltonian. The second procedure
closes the solution of the many-body problem in the sense that the system
properties can be discussed as a function of the mean interparticle distance,
not only as a function of the parameters, as is usually the case. The solution
is nonperturbational in the sense, in which the interaction terms are included
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in the diagonalization procedure of the Hamiltonian. In what follows we
implement this methodology to the correlated nanoscopic chain (cf. Sections
3 and 4) and return subsequently to some general aspects of the method in
Section 5.

2. Method combining first- and second-quantizations

We start with the Hamiltonian in the Fock space of the form [8, 9]
H=Y / Brih () Hy ()T (r)
o

by 3 [ [ErdraBh, )8 )V (1= (r2) i, (1) (1)

0105

where Hy(r) and Vo = V(r1 — r2) are, respectively, the Hamiltonians for a
single particle and a single pair of particles in the coordinate (Schrodinger)
representation, and ¥g(7) is the field operator defined through

@U(T) = Z w; (1) X0 Gio (2)

where a;o is the annihilation operator of a particle in a single-particle state
w;i(r)Xo. One should note that the basis {w;(r)xos} is completely arbitrary
in this definition. By inserting (2) into (1) we obtain the usual form of the
Hamiltonian

1
H = Ztija;ro-afjd +5 > Vijklagga;glala’akga (3)
ijo ijkloo’

with the microscopic parameters defined by

tij = (wi i) = / drw? () Hy (1) () (4)
and

‘/ijkl = (wiwj|V12|wkwl) :/d37’1d37’2w;-k (’7"1)’[1]3f (TQ)V(T‘l - Tg)wk(’l"l)wl(’l"g) .

(5)
Thus in the form (3) of the many-particle Hamiltonian the single- and many-
particle aspects of the problem are separated in the sense that calculation
of the parameters t;; and Vj;j; is separated from the diagonalization of the
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Hamiltonian in the Fock space. This can be seen explicitly when we calculate
the ground state energy

Eq = (H) = Zh‘j(aj-gaja) + % Z ijl(agga}g:aza'aka)a (6)
ijo ijkloo’
where the averaging (...) takes place over all feasible occupancies of given
single particle states |io1), |jo2), |kos), and |koy) (compatible with the total
number of particles).

So far, the approach is standard [8,9]. We have proposed [4-6] to close the
solution with optimization of the single-particle basis {w;(r)} by treating the
E¢ expression (6) as a functional of {w;(r)} and their gradients, which are
contained in the microscopic parameters. In such situation the renormalized
wave function is determined from the Euler equation for the functional

Flutr)) = Botus(r)} - Yo ([ @raioyuie) =5,) . )
i>]
where A;; are the Lagrange multipliers, which appear in the general case,
when the single-particle basis is nonorthonormal (otherwise and usually, the
basis is chosen as orthonormal and then A;; = 0 and we have the customary
Lagrange-Euler problem). The general form of this equation in the station-
ary case is:

0EG
dwy(r) v 5Vw ZA”U}] ®)
j>t
We will work here with fermions (electrons) on the lattice and the wave
functions {w;(r)} will be taken in the form of the (orthonormal) Wannier
functions. Additionally, as is implicit in the treatment above, we define
one global spin quantization axis for all single particle states used to define

Vg (r).
3. Nanoscopic chain of correlated electrons

We consider a chain of N atoms, with one valence electron per atom
in 1s state and apply periodic boundary conditions. The Hamiltonian (3)
containing all two-site terms is of the form

N-1 i—1
H = Z {ami + UnZTnzi + Z { (Kij — %JZ]) nin; — 2Ji]‘SZ’ . Sj
=0 7=0

+ zo; [tij + Vij(nis + nja')] (a;raajg + a}aaig) + Jij (aZTahajiajT

+ajyal o o) }} ) (9)
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where, respectively, the first two terms express the atomic part of the single-
particle (e, = t;;) and two-particle (U = Vj;;;) energies, the next two repre-
sent the intersite Coulomb (K;; = Vij;;) and exchange (J;; = Vijji) energies,
the following two describe the intersite particle hopping (¢;;) and so-called
correlated hopping (V;; = Vj;i;) for i # j, whereas the last part is responsi-
ble for two-electron hopping between the sites ¢ and j. In such notation the
Wannier functions are chosen as real functions.

The Wannier functions are defined through the atomic 1s functions in

the following manner
N—

,_.\

Bi—jj(r (10)

J=0

where the 1s functions of the (adjustable) size a~!

site are

centered on the j-the

o3\ 12
¢j<r>=(—) exp (—alr — Rj) | (1)

™

and the expansion coefficients 3;_; = f, are determined from [4, 5]

-1/2

= NIZ{ZSP’ cos(k-Rpf)} cos(k - Rp) . (12)
k p

The overlap integrals S), are defined as

Sy = (i | thirp) = / P (r — RYp(r — Rigy).

and the summation over the wave vectors {k} runs over the first Brillouin
zone.

The whole solution procedure consists of the following steps. First, we
transform the parameters e,, U, t,, K, Jp, and V, (for p = |¢ — j]) to the
atomic basis {t;(r)}, where they can be explicitly calculated [5]. These
calculation include three-site terms contained in the expression for #;;. In
this manner, the parameters for all the values of p = 1,..., N — 1 have been
included. Second, we diagonalize numerically the Hamiltonian (9) for given
values of the parameters by calculating the ground state energy Eg. This
energy is subsequently optimized with respect to the orbital size o' for
given interatomic distance R. The obtained earlier eigenvectors in the occu-
pation number representation and the Wannier functions for the optimal size
al= amm allow us to calculate explicitly not only Fg = Eqg(R), but also
the relevant correlation functions such as the momentum distribution func-

tion ngg for the electrons and spin—spin correlation functions, as well as the
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microscopic parameters t, = t,(R), U = U(R), etc. Below we analyze only
the results important for a characterization of the transition from itinerant
to localized states of electrons, which represents a quantum transformation
of the metallic state into the atomic configuration of localized spins. The
discussion of these results will carry us out to the natural question: How
small a metal can be?

4. Transformation of a nanoscopic metal into a spin system

The explicit analysis can be performed only numerically. We will discuss
results for V < 12 atoms with one electron per atom. Strictly speaking, we
model a chain of hydrogenic-like states, as the screening of internal shells
and their polarizability are not included. In Fig. 1 we display the electron
momentum distribution ngs = (a};aakg) for N = 10 atoms and the two
interatomic distances R = 3ag and R = R, = 3.929 ag, where ag is 1s Bohr
radius. The points represent the result of numerical computation described
in the preceding section, whereas the continuous lines represent the interpo-
lation

ko = 5 +sgn(k — kr) (alk — kel + Blk — k| =) , (13)

where «, [, and 7 represent the fitted parameters and kg is the Fermi
wave vector, kp = m/(2R). This form of the distribution function can be
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Fig.1. Momentum distribution nggs for electrons in the linear chain of N = 10

atoms; the interatomic distance R is specified in units of 1s Bohr radius ag. The

continuous line represents the parabolic interpolation discussed in main text, which
is of the same type for both k¥ > kr and k < kr (kr is the Fermi wave vector).
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understood by representing it via its Fourier transform, which contains the
correlation functions <0/2-O-0/i+p0'>, namely we have

Ngo = % + Z eik'(Ri_Rj)mI'aaja) . (14)
3(9)

From Fig. 1 one clearly sees that there exists a critical interatomic distance
R = R, at which the distribution function is continuous. Note that the
interpolation formula (13), with k as a continuous variable, emulates a large
system with the same statistical properties. The localization threshold is de-
fined as the distance at which the value of the discontinuity at the Fermi level
Ang, = Ng=kp—0 — Nk=kp+0, disappears. Having determined this quantity,
one can use the Fermi-liquid relation for the quasiparticle mass enhancement
at the Fermi level [10]

m*

= (Ankp)_l ) (15)

mp

where mp is the effective band mass at the Fermi level, which must be
calculated separately [10]. In effect, in Fig. 2 we display this enhancement
as a function of R. The computed points can be fitted with the continuous
line

mh = AR — R, (16)

with A ~ 10,2, R. ~ 3.92ag, and 4 ~ 4/3. This infinite effective mass
means that the quasiparticles are localized on atoms to minimize the atomic
part of the energy. Obviously, my, represents the effective mass for a trans-
lational motion throughout the crystal and as such is unrelated to that the
electron has when moving in the atom. To clarify this situation we have
plotted in Fig. 4 the quantity ncay, where N, = 1/R is the carrier concen-
tration (number of electrons per unit length of the chain), and ag = o, is
the optimal size of the atomic orbit for given interatomic distance R. The
dotted line marks the value 0.2 corresponding to the Mott criterion in bulk
systems.

In order to relate our criterion of the electron localization in this nano-
scopic system to the well known criteria due to Hubbard [11| and Mott [12]
we proceed as follows. We calculate first the ratio W/(U — K1), where W
is the width of the band states W = 4|}, tij|, as a function of the lattice
parameter R. The result is displayed in Fig. 3 (in the inset we present
the R dependence of the orbital size & ! in units of ag). The dot-dashed
line marks the Hubbard localization threshold defined through the condition
W/(U — K1) = 1. This condition is met for R ~ 2.7ag, well below R.. So,
the two criteria of localization are incompatible for the nanoscopic system
of small number of atoms N ~ 10.
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Fig.2. The quantum critical behavior of the quasiparticle mass at the Fermi level:
The computed points for N = 10 atoms are fitted with the curve m* ~ |R—RC|’4/3,
with R, ~ 4.3a9. Note the logarithmic scale for the effective mass.
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Fig.3. The bare bandwidth-to-interaction ratio versus R; the Hubbard criterion
for localization is marked (see main text). The inset provides the optimal size
a~! =a_ i (in units of ag) of the atomic orbitals composing the optimized Wannier
functions.
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Fig.4. The Mott criterion value ncan vs. R and for different number of atoms
N = 6 + 12. The horizontal dotted line marks the Mott criterion for the bulk
3-dimensional systems.

One can notice a good agreement with the value of R, if one writes the
Mott criterion for the localization in the form ncay ~ 0.22. One may say that
the Mott-criterion applicability even in the one-dimensional case originates
from the long-range nature of the Coulomb interaction we take into account
and which, in turn, imitates the higher-lattice dimensionality. Hence, the
long-standing conclusion [13] about the universality of the insulating state
for the Hubbard chain does not extend to the 1s models with a realistic
account of the electronic structure. This conclusion is very important also
because it removes one of the main objections against using the itinerant (or
even effective mass) states in low dimensional metals (wires) and quantum
dots. In Fig. 5 we display an exemplary evolution with increasing R of the
band structure of the linear chain with periodic boundary conditions. The
continuity of the wave vector k is obtained by using the following expression
for the band energy

N-1
ek =ca+2 Y tpcos(kR,), (17)
p=1

where ¢, represent the calculated hopping integrals using the optimized Wan-
nier functions in the correlated state. The horizontal plane marks the posi-
tion of the Fermi level, which is localized always in the middle of the band
when the shift of the atomic level g, is accounted for with the increasing dis-
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tance R. Obviously, the band flattens out with increasing R but is always
nonzero, since the bandwidth characterizes the wave function overlap be-
tween the neighboring sites. The true localization (W — 0 or equivalently)
m* — 00, is achieved only when the interparticle interactions are properly
included.

ENERGY =

Fig.5. The space profile of the band shape for N = 10 atoms versus R, taking
into account the calculated hopping integrals {t,}p=1..5. The horizontal plane
intersecting the band marks the Fermi level position for one electron per atom.

From the foregoing discussion it follows that the system evolves with the
increasing interatomic distance from a metal (as visualized by the existence
of the Fermi ridge in Fig. 1) towards the Mott insulating state with one
(nonpaired) electron per atom. The system possesses a quantum critical
point for metal-insulator transition at R = R, only if we extrapolate our
results to the large N limit. Such an extrapolation procedure here relies
on regarding the quasimoment hk as a quasicontinuous variable, so we can
interpolate between the discrete computed points the properties such as ngq,
m*, and €. The electronic properties of the system for R > R, are close
to those of a Mott—Heisenberg magnetic insulator, as discussed in detail
elsewhere [8]. For the sake of completness we display in Fig. 6 the basic
characteristics (as a function of R), which are well defined in both itinerant
and atomic states. Those comprise: (i) the site spin magnitude @y =

(4/3)(S2), where S; = (S1,8;,57) = (a;'Taii,ahaiT,lﬂ(niT —ny)) is
the electron spin on site 4, (i7) the spin-spin correlation function Oap =
—(8;-8;i11), and (i) Ovi = 40?{nge}, where 02{nys} is the dispersion of
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the statistical distribution defined as

2
o {nps} = % ana — <% ang> . (18)

ko ko

The averages are for the ground state, and are determined via the ex-
act diagonalization in the occupation-number representation. The quantity
Ou(=1-— 2<niTnZ¢)) takes the value (1/2) in the ideal gas limit and ap-
proaches unity in the atomic limit, where we have a Pauli spin (7/2) on
each atom. ©ap approaches the value (3/4) for the singlet configuration
of the atomic spins, whereas 0?{nys} acquires the value 1 in the ideal gas
limit (nge = @(u — €x)) and vanishes for an even momentum distribution
(nr = 1/2), when the particle position is sharply defined on atom. Thus,
the quantity Gy plays the role of the order parameter for this crossover be-
havior, since it clearly distinguishes between the complementary momentum
and position representations for the system quantum states. From Fig. 6 it
follows that for R/ag ~ bag all three parameters (i)-(%ii) acquire (with 5%
margin) their asymptotic values for purely atomic states.

CORRELATION FUNCTIONS

INTERATOMIC DISTANCE R/a0

Fig.6. Correlation functions defined in the text versus interatomic distance R,
depicting the crossover from itinerant to localized state, for N = 6 + 10 atoms.
The shaded areas are drawn to emphasize the convergence of the results in the
large R (atomic) limit.
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5. Remark on the many-particle wave function from
the combined first- and second-quantization scheme

We have started from the Hamiltonian (1) in the second-quantization for-
malism. The single-particle wave function is contained in the field-operator
definition (2). It is well known [13] that the general N-particle state in the
Fock space is defined as follows

D) = Bry. . PryUa(ri..o )T (r). T ry)0),  (19)

7/
N!
where Y (r;...ryN) is the N-particle wave function and |0) is the vacuum
state. In effect, we have that

Do (ry.rn) = \/LN_!<0|@(TN)...@(T1)|¢Q), (20)

where ¥ (r;) is the field operator (2) summed up over the spin index o. In
our method, we diagonalize the Hamiltonian in the Fock space first. So,
we determine first explicitly the ground state |$q) = |Pg). Hence, we can
determine explicitly the many-particle wave function ¥y(r;...ry). Here we
present the results for the elementary example of the states for Hy molecule,
which were obtained in an analytic form in Part I, leaving more complicated
cases to a separate publication. Namely, the ground state for Hy molecule
is of the form [4]

1
|Do)

" /2D(D U + K)

{4+ V)|4) — (D -U+ K)|5)}. (21)

In this formula D = [(U — K)? + 16(t + V)?]'/2, and the states |4) and |5)
are, respectively

— Tt Tt

|4> o \}5 (aTITaTQJ/ B aTlJ/afT) |0> (22)
— 1

15) = V2 (a1Ta1¢ + a2Ta2¢> 10)-

Taking the field operator for these two-site system (i = 1,2) in the form
(note the summation over spin indices)

7H(r) = 3" (algwi ()xo(r) + algun(r)xo(r)) . (23)

o

we obtain the wave function of the ground state singlet in the form

B 2(t+V) 1 |ID-U+K _
Wo(’l"l’rg) = \/QD(D U n K) @C(’rl’l"g) — 5 T@Z(rlm), (24)
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where the covalent part @, has the usual form

Pe(rirg) = [wi(ri)wa(rs) + wi(ra)wz(r)](r)x (r2) = x| (r1)x4(r2)];

(25)
with w;(r1) being the Wannier function (molecular orbital) centered on the
i-th atom. The ionic part has a slightly different form

Pi(r172) = [wi (r1)wi(r2) + wa(ri)wa(r2)]Dep (r1)x | (r2) — x| (r1)x4(r2)]-

(26)
Note that these are the exact expressions within the subspace spanned by
the 1s orbitals on the two atoms. The space part is symmetric while the spin
part is antisymmetric, as it should be. A further increase in accuracy of our
calculation would require the inclusion of 2s, 2p, etc. states in definition (23).
Such procedure can be devised in a systematic way.

In a similar manner, one can obtain the wave functions for the first
excited triplet states with S =2 and S* = +1,—1,0.

At the end of this remark we would to mention an iterative aspect of
our approach. We start from a single-particle basis {w;(r)} which defines
the field operator and the Hamiltonian in the Fock space which we diag-
onalize subsequently in that space. The ground state energy obtained in
this manner is regarded as a functional of the single-particle wave function.
In other words, Eg{w;(r)} = (H;), where H; represents the renormalized
single-particle Hamiltonian [4,5]. H; determines the readjusted (renormal-
ized) wave functions {w;(r)}. With the help of those functions we define
again the field operator (23) which in turn defines the many-particle wave
function (20). The last step terminates the iteractive procedure and provides
an explicit form of the many-particle wave function. A detailed analysis of
this point will be discussed elsewhere.

6. Conclusions

The present method bases on the exact diagonalization in the Fock space,
which is performed first and is followed by the single-particle optimization
of the wave functions contained in the expression for the field operator. The
exact diagonalization can be performed only for simple systems such as those
discussed in the present paper. However, the method can be implemented
also to approximate solutions for the correlated systems such as the dynamic
mean field approach [14] or Gutzwiller approximation [15]. Also, one can
include more complicated atomic structure involving heavier atoms, which
would require inclusion of the core electrons and polarization effects. We
should be able to see a progress along these lines soon, since our method
allows for a systematic analysis of interaction and single-particle aspects of
the electronic states in a nonperturbational manner.
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