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.jp(Re
eived June 21, 2001)We analyze the stability of quantum 
omputations on physi
ally realiz-able quantum 
omputers by simulating quantum spin models representingquantum 
omputer hardware. Examples of logi
ally identi
al implemen-tations of the 
ontrolled-NOT operation are used to demonstrate that theresults of a quantum 
omputation are unstable with respe
t to the physi
alrealization of the quantum 
omputer. We dis
uss the origin of these in-stabilities and dis
uss possibilities to over
ome this, for pra
ti
al purposes,fundamental limitation of quantum 
omputers.PACS numbers: 03.67.Lx, 05.30.�d, 89.80.+h, 02.70.Lq1. Introdu
tionRe
ent theoreti
al work has shown that Quantum Computer (QC) hasthe potential of solving 
ertain 
omputationally hard problems su
h as fa
-toring integers [1℄ and sear
hing databases mu
h faster than a 
onventional
omputer [2℄. In most theoreti
al works the operation of a QC is des
ribed� Presented at the XII S
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s on Phase Transitions and Criti
alPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3203)



3204 H. De Raedt et al.in terms of highly idealized (but physi
ally unrealizable) transformations onthe qubits [3�6℄. The impa
t of the physi
al implementation of a QC on its
omputational e�
ien
y is largely unexplored.In this talk we dis
uss the relation between the physi
al realization of QCand its logi
al operation [7,8℄. On a 
onventional 
omputer or ideal QC, theorder in whi
h we exe
ute two logi
ally and mutually independent operationsO1 and O2 does not matter: O1O2 = O2O1. However, a physi
ally realizableQC is a quantum many-body system for whi
h in general O1O2 6= O2O1.Hen
e this QC may (but not ne
essarily does) give wrong answers. We 
allthis problem the Quantum Programming Problem (QPP). The QPP is dueto the spe
i�
 physi
al realization of the QC and leads to systemati
 insteadof random errors.2. Physi
al model of Quantum ComputerWe investigate the QPP by simulating QC hardware. Our 
hoi
e of aphysi
al model is largely inspired by NMR-QC experiments [9�16℄, mainlybe
ause other 
andidate te
hnologies for building QCs are not yet devel-oped to the point that they 
an exe
ute 
omputationally non-trivial quan-tum algorithms (QAs). Generi
 QC hardware 
an be modeled in terms ofquantum spins (qubits) that evolve in time a

ording to the time-dependentS
hrödinger equation (TDSE)i ��t j�(t)i = H(t)j�(t)i ; (1)in units su
h that �h = 1. For present purposes it is su�
ient to 
onsiderNMR-like two-qubit QCs only. In the absen
e of intera
tions with other de-grees of freedom this spin 1=2 system 
an be modeled by the time-dependentHamiltonian [17, 18℄H(t) = �JSz1Sz2 � hz1Sz1 � hz2Sz2 � hx1Sx1 � hx2Sx2 � hy1Sy1 � hy2Sy2�(~hx1Sx1 + ~hx2Sx2 ) sin(!t+ �x)� (~hy1Sy1 + ~hy2Sy2 ) sin(!t+ �y) ;(2)where S�j , � = x; y; z denotes the �-th 
omponent of the spin 1=2 operatorrepresenting the j-th qubit, J determines the strength of the intera
tionbetween the two qubits, h�j and ~h�j represent the strength of the appliedstati
 (magneti
) and applied Sinusoidal Field (SF) a
ting on the j-th spinrespe
tively. For a physi
al system, h�2 = 
h�1 and ~h�2 = 
~h�1 , for � = x; y; z,where 
 is a 
onstant. The frequen
y and the phase of the SF are denotedby ! and ��. As the Ising model, i.e. the �rst term of (2), is known to be auniversal QC [19,20℄, model (2) is su�
iently general to serve as a physi
almodel for a generi
 QC at zero temperature. In terms of spin matri
es, theoperator Qj measuring the state of qubit j is given by Qj = 12 � Szj .



Quantum Computation and Quantum Spin Dynami
s 3205For numeri
al purposes it is ne
essary to �x as many model parametersas possible. We have 
hosen to simulate the two nu
lear spins of the 1H and13C atoms in a 
arbon-13 labeled 
hloroform, a mole
ule that has been usedin NMR-QC experiments [11, 12℄. In these experiments hz1=2� � 500MHz,hz2=2� � 125MHz, and J=2� � �215Hz [11℄. In the following we will usemodel parameters res
aled with respe
t to hz1=2�, i.e. we putJ = �0:43� 10�6 ; hz1 = 1 ; hz2 = 0:25 : (3)With this 
hoi
e of units, time divided by 2� is measured in units of 2 ns.Note that there is a di�eren
e of many orders of magnitude between theintera
tion J and the �elds hzj . If the duration of the SF-pulses is mu
hshorter than 2�=jJ j, the e�e
ts of J on the time evolution during these pulsesare very small. Our numeri
al experiments (see below) are all performedunder this 
ondition. We will only 
onsider QCs at zero temperature without
oupling to the environment. In this sense we simulate highly idealized NMRexperiments on a 
losed quantum system at zero temperature. This allowsus to study a 
on
rete physi
al realization of a QC and at the same timefo
us on its intrinsi
 quantum dynami
s.The time evolution of quantum model (2) is obtained by solving theTDSE (1). The simulations have been 
arried out with a software tool
alled Quantum Computer Emulator (QCE) [21℄. The QCE software simu-lates physi
al models of QC hardware by a Suzuki produ
t-formula [22,23℄,i.e. in terms of elementary unitary operations [24,25℄. For all pra
ti
al pur-poses, the numeri
al results obtained by this te
hnique are exa
t. A detaileddes
ription of the QCE software tool 
an be found elsewhere [26℄.3. Quantum algorithmsOne qubit is a two-state quantum system. The two basis states spanningthe Hilbert spa
e are denoted by j "i � j0i and j #i � j1i. Rotations ofspin j about �=2 around the x and y-axis are basi
 QC operations. We willdenote them by Xj and Yj respe
tively and write Z for the inverse of theoperation Z. Clearly these operations 
an be implemented in terms of thetime evolution of model (2) by a proper 
hoi
e of the model parameters.Computation ne
essarily requires some form of 
ommuni
ation betweenthe qubits. A basi
 two-qubit operation is provided by the CNOT gate.The CNOT gate �ips the se
ond spin if the �rst spin is in the down state,i.e. the �rst qubit a
ts as a 
ontrol qubit for the se
ond one. On an idealQC the CNOT gate 
an be expressed in terms of single-qubit operationsand a two-qubit phase-shift operation. There are many di�erent, logi
allyequivalent sequen
es that implement the CNOT gate on an NMR QC. Here



3206 H. De Raedt et al.we limit ourselves to the sequen
esCNOT1 = Y1X 01Y 1X 02Y 2I 0Y2 ; (4)CNOT2 = Y1X 01X 02Y 1Y 2I 0Y2 ; (5)where the symbol I 0 represents the time evolution ei�(JSz1Sz2+hz1Sz1+hz2Sz2 ) with� = ��=J . The single-spin rotations X 01, Y 01 , and X 02 are de�ned by theidentities e�i�(hz1�h)Sz1 = Y1X 01Y 1 = X1Y 01X1; (6)e�i�(hz2�h)Sz2 = Y2X 02Y 2 ; (7)where h = �J=2.As simple examples of QAs that exhibit the QPP, we 
onsider (QA)1and (QA)2 de�ned by(QA)1jb1b2i � (CNOT )5jb1b2i; (8)(QA)2jsii � Y1(CNOT )5jsii ; (9)where jb1b2i � jb1ijb2i, bi = 0; 1, and jsii = (j01i � j10i)=p2. On anideal QC, CNOT 2 is the identity operation and hen
e (CNOT )5 = CNOT .Furthermore we have hsij(CNOT )5Q1(CNOT )5jsii = 1=2. To obtain a
lear-
ut, zero-one answer in terms of expe
tation values of the qubits weapply a �=2 rotation to spin 1: Y1(CNOT )5jsii = j11i. For this reason theCNOT operations in (9) are followed by a �=2 rotation of spin 1. Obviously,running (QA)1 and (QA)2 on an ideal QC yields the 
orre
t answer but aswe will show below, on a physi
al QC this is not always the 
ase.It is instru
tive to inquire about the 
ondition to rotate spin 1 aboutan angle '1 without a�e
ting the state of spin 2. A general analyti
al,quantitative analysis of this many-body problem is rather di�
ult but we
an easily study the limiting 
ase in whi
h the intera
tion between the spinshas neglegible impa
t on the time evolution of the spins during appli
ation ofthe SF pulse. This is the 
ase that is relevant to the model system 
onsideredhere (sin
e J is very small) and also to experiments [9�12℄. For simpli
itywe 
onsider the 
ase of rotating SF �elds, e.g. �x = 0 and �y = �=2. An SFpulse of duration t 
hanges the state of the two-spin system a

ording toj�(t)i = eithz1(Sz1+Sz2 )eit~hx1Sy1 eitS2�v1;2 j�(0)i ; (10)where vn;m � (0; ~hxm; hzm � hzn). Without loss of generality we will assumethat 0 < 
 < 1, in 
on
ert with the 
hoi
e of parameters (3). Then, us-ing representation (10), straightforward algebra shows that the 
ondition



Quantum Computation and Quantum Spin Dynami
s 3207to rotate spin 1 about an angle '1 without a�e
ting the state of spin 2 isgiven by (1� 
)2k21 + 
24 �'12��2 = n21 ; (11)where k1 and n1 are positive integers. Reversing the role of spin 1 and spin 2we obtain (1� 1
 )2k22 + 14
2 �'22��2 = n22 ; (12)where k2 and n2 are positive integers. The angles of rotation about the y-axis 
an be 
hosen su
h that 0 � '1 � 2� and 0 � '2 � 2�. In general (11)or (12) have no solution but a good approximate solution may be obtainedif 
 is a rational number and k1 and k2 are large. Let 
 = N=M (for our
hoi
e of parameters, N = 1 and M = 4) where N and M are integerssatisfying 0 < N < M . It follows that the representation k1 = kMN2 andk2 = kNM2 will generate su�
iently a

urate solutions of (11) and (12) ifthe integer k is 
hosen su
h that2kNM(M �N)� 1: (13)If k satis�es 
ondition (13) a pulse that rotates spin 1 (2) will hardly a�e
tspin 2 (1). In terms of k, N , and M , the relevant physi
al quantities arethen given by t1hz12� = 2kMN2 ; ~hx1hz1 = 12kMN2 '12� ; (14)and t2hz12� = 2kM3 ; ~hx2hz1 = 12kM3 '22� : (15)4. Simulation of Quantum Computer hardwareThe model parameters for the rotating SFs are determined a

ordingto the theory outlined above. We use the integer k to 
ompute all freeparameters and the subs
ript s = 2kMN2 to label the results of the QC
al
ulation. For referen
e we present the set of parameters 
orrespondingto k = 1 in Table I. Multiplying s (the duration of the SF pulse) with theunit of time (2 ns) shows that in our simulations, single-qubit operationsare implemented by using short SF pulses that are, in NMR terminology,non-sele
tive and hard.



3208 H. De Raedt et al. TABLE IModel parameters of single-qubit operations on an NMR QC using rotating SFs forthe 
ase (k = 1, N = 1, M = 4), see (14) and (15). Parameters of model (2) thatdo not appear in this table are zero, ex
ept for the intera
tion J = �0:43� 10�6,~hy1 = ~hx1 , ~hy2 = ~hx2 , and the 
onstant magneti
 �elds hz1 = 1 and hz2 = 0:25. TheTDSE is solved using a time step Æ=2� = 0:01.�=2� ! ~hx1 ~hx2 �x �yX1 8 1.00 �0:0312500 �0:0078125 ��=2 0X2 128 0.25 �0:0078125 �0:0039063 ��=2 0Y1 8 1.00 0.0312500 0.0156250 0 �=2Y2 128 0.25 0.0078125 0.0039063 0 �=2X 01 8 1.00 0.0559593 0.0139898 ��=2 0X 02 128 0.25 0.0445131 0.0111283 ��=2 0Y 01 8 1.00 �0:0559593 �0:0139898 0 �=2In Tables II and III we present simulation results for (QA)1 and (QA)2,respe
tively. The initial states j10i, j01i, j11i, and jsii = (j01i � j10i)=p2have been prepared by starting from the state j00i and performing exa
trotations of the spins. It is 
lear that the least a

urate implementation(s = 16) of (QA)1 ni
ely reprodu
es the 
orre
t answers if the input 
orre-sponds to one of the four basis states but it is also 
lear that it 
ompletelyfails if the input state is a singlet. In the regime where systemati
 phaseerrors are signi�
ant the QAs exhibit the QPP. This is exempli�ed in Ta-ble III where we show the results of using CNOT2 instead of CNOT1. Fork = 16 there is a 
lear signature of the QPP: Although (QA)1 and (QA)2 arelogi
ally identi
al, the results depend sensitively on the order in whi
h theTABLE IIExpe
tation values of the two qubits (as and bs) as obtained on a QC that usesrotating SFs to manipulate individual qubits. The results obtained on an idealQC are given by a and b. The time s = �=2� = 2kMN2 determines the durationand strength of the SF pulses through relations (14) and (15), see Table I for theexample of the 
ase s = 8.Operation a b a16 b16 a64 b64(CNOT1)5j00i 0.00 0.00 0.00 0.00 0.00 0.00(CNOT1)5j10i 1.00 1.00 1.00 1.00 1.00 1.00(CNOT1)5j01i 0.00 1.00 0.00 1.00 0.00 1.00(CNOT1)5j11i 1.00 0.00 1.00 0.00 1.00 0.00Y1(CNOT1)5jsii 1.00 1.00 0.03 1.00 0.88 1.00



Quantum Computation and Quantum Spin Dynami
s 3209single-qubit operations are 
arried out. In agreement with the theoreti
alanalysis of Se
tion 3 the results 
onverge to the exa
t ones for su�
ientlylarge k, as indi
ated in Table II. Thus, for su�
iently slow operation thisQC will operate 
orre
tly. TABLE IIISame as Table II ex
ept that instead of CNOT1 sequen
e CNOT2 given by (5)was used to perform the quantum 
omputation.Operation a b a16 b16 a64 b64(CNOT2)5j00i 0.00 0.00 0.50 0.26 0.06 0.02(CNOT2)5j10i 1.00 1.00 0.50 0.74 0.95 0.98(CNOT2)5j01i 0.00 1.00 0.51 0.74 0.06 0.98(CNOT2)5j11i 1.00 0.00 0.50 0.26 0.95 0.02Y1(CNOT2)5jsii 1.00 1.00 0.95 0.74 0.99 0.985. Con
lusionFor ea
h realization of QC hardware, there is a one-to-one 
orrespon-den
e between the QA and the unitary matrix that transforms the state ofthe quantum system. A QA will operate 
orre
tly under all 
ir
umstan
esif the whole unitary matrix representing the QA is a good approximation tothe ideal one. In other words, the magnitude and the phase of all matrixelements should be 
lose to their ideal values. It is not su�
ient to havefor example two di�erent CNOT gates that operate 
orre
tly by themselves:Also the relative phases that they produ
e should mat
h. For n qubits thereare 2n(2n � 1) real numbers that spe
ify the unitary matrix 
orrespondingto a QA. All these numbers should be 
lose to their ideal values, otherwisethe QA is bound to produ
e wrong answers.Experimental realizations of QCs have not yet demonstrated that a QC
an 
orre
tly 
ompute the answer for inputs other than simple basis states.However, with the QC hardware 
urrently available su
h a test is de�nitlywithin rea
h. The two simple QAs, (8) and (9) may be used for this purpose.Quantum error 
orre
tion s
hemes that work well on an ideal QC requiremany extra qubits and many additional operations to dete
t and 
orre
t er-rors. The systemati
 errors dis
ussed in this paper are not in
luded in the
urrent model of quantum error 
orre
tion and fault tolerant 
omputing [27℄.On a physi
al QC the error-
orre
tion qubits will su�er from the same de�-
ien
ies as those dis
ussed in this paper. All this puts 
onsiderable demandson the te
hnology to fabri
ate qubits.It remains a great 
hallenge to demonstrate that a QC of many qubits
an perform a genuine 
omputation in less real time than a 
onventional
omputer.
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