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QUANTUM COMPUTATION ANDQUANTUM SPIN DYNAMICS�Hans De Raedt, Kristel Mihielsen, Anthony HamsInstitute for Theoretial Physis and Materials Siene CentreUniversity of GroningenNijenborgh 4, 9747 AG Groningen, The Netherlandse-mail: deraedt�phys.rug.nlkristel�phys.rug.nlA.H.Hams�phys.rug.nlSeiji Miyashita and Keiji SaitoDept. of Applied Physis, Shool of Engineering, University of TokyoBunkyo-ku, Tokyo 113, Japane-mail: miya�yuragi.t.u-tokyo.a.jpsaitoh�spin.t.u-tokyo.a.jp(Reeived June 21, 2001)We analyze the stability of quantum omputations on physially realiz-able quantum omputers by simulating quantum spin models representingquantum omputer hardware. Examples of logially idential implemen-tations of the ontrolled-NOT operation are used to demonstrate that theresults of a quantum omputation are unstable with respet to the physialrealization of the quantum omputer. We disuss the origin of these in-stabilities and disuss possibilities to overome this, for pratial purposes,fundamental limitation of quantum omputers.PACS numbers: 03.67.Lx, 05.30.�d, 89.80.+h, 02.70.Lq1. IntrodutionReent theoretial work has shown that Quantum Computer (QC) hasthe potential of solving ertain omputationally hard problems suh as fa-toring integers [1℄ and searhing databases muh faster than a onventionalomputer [2℄. In most theoretial works the operation of a QC is desribed� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3203)



3204 H. De Raedt et al.in terms of highly idealized (but physially unrealizable) transformations onthe qubits [3�6℄. The impat of the physial implementation of a QC on itsomputational e�ieny is largely unexplored.In this talk we disuss the relation between the physial realization of QCand its logial operation [7,8℄. On a onventional omputer or ideal QC, theorder in whih we exeute two logially and mutually independent operationsO1 and O2 does not matter: O1O2 = O2O1. However, a physially realizableQC is a quantum many-body system for whih in general O1O2 6= O2O1.Hene this QC may (but not neessarily does) give wrong answers. We allthis problem the Quantum Programming Problem (QPP). The QPP is dueto the spei� physial realization of the QC and leads to systemati insteadof random errors.2. Physial model of Quantum ComputerWe investigate the QPP by simulating QC hardware. Our hoie of aphysial model is largely inspired by NMR-QC experiments [9�16℄, mainlybeause other andidate tehnologies for building QCs are not yet devel-oped to the point that they an exeute omputationally non-trivial quan-tum algorithms (QAs). Generi QC hardware an be modeled in terms ofquantum spins (qubits) that evolve in time aording to the time-dependentShrödinger equation (TDSE)i ��t j�(t)i = H(t)j�(t)i ; (1)in units suh that �h = 1. For present purposes it is su�ient to onsiderNMR-like two-qubit QCs only. In the absene of interations with other de-grees of freedom this spin 1=2 system an be modeled by the time-dependentHamiltonian [17, 18℄H(t) = �JSz1Sz2 � hz1Sz1 � hz2Sz2 � hx1Sx1 � hx2Sx2 � hy1Sy1 � hy2Sy2�(~hx1Sx1 + ~hx2Sx2 ) sin(!t+ �x)� (~hy1Sy1 + ~hy2Sy2 ) sin(!t+ �y) ;(2)where S�j , � = x; y; z denotes the �-th omponent of the spin 1=2 operatorrepresenting the j-th qubit, J determines the strength of the interationbetween the two qubits, h�j and ~h�j represent the strength of the appliedstati (magneti) and applied Sinusoidal Field (SF) ating on the j-th spinrespetively. For a physial system, h�2 = h�1 and ~h�2 = ~h�1 , for � = x; y; z,where  is a onstant. The frequeny and the phase of the SF are denotedby ! and ��. As the Ising model, i.e. the �rst term of (2), is known to be auniversal QC [19,20℄, model (2) is su�iently general to serve as a physialmodel for a generi QC at zero temperature. In terms of spin matries, theoperator Qj measuring the state of qubit j is given by Qj = 12 � Szj .



Quantum Computation and Quantum Spin Dynamis 3205For numerial purposes it is neessary to �x as many model parametersas possible. We have hosen to simulate the two nulear spins of the 1H and13C atoms in a arbon-13 labeled hloroform, a moleule that has been usedin NMR-QC experiments [11, 12℄. In these experiments hz1=2� � 500MHz,hz2=2� � 125MHz, and J=2� � �215Hz [11℄. In the following we will usemodel parameters resaled with respet to hz1=2�, i.e. we putJ = �0:43� 10�6 ; hz1 = 1 ; hz2 = 0:25 : (3)With this hoie of units, time divided by 2� is measured in units of 2 ns.Note that there is a di�erene of many orders of magnitude between theinteration J and the �elds hzj . If the duration of the SF-pulses is muhshorter than 2�=jJ j, the e�ets of J on the time evolution during these pulsesare very small. Our numerial experiments (see below) are all performedunder this ondition. We will only onsider QCs at zero temperature withoutoupling to the environment. In this sense we simulate highly idealized NMRexperiments on a losed quantum system at zero temperature. This allowsus to study a onrete physial realization of a QC and at the same timefous on its intrinsi quantum dynamis.The time evolution of quantum model (2) is obtained by solving theTDSE (1). The simulations have been arried out with a software toolalled Quantum Computer Emulator (QCE) [21℄. The QCE software simu-lates physial models of QC hardware by a Suzuki produt-formula [22,23℄,i.e. in terms of elementary unitary operations [24,25℄. For all pratial pur-poses, the numerial results obtained by this tehnique are exat. A detaileddesription of the QCE software tool an be found elsewhere [26℄.3. Quantum algorithmsOne qubit is a two-state quantum system. The two basis states spanningthe Hilbert spae are denoted by j "i � j0i and j #i � j1i. Rotations ofspin j about �=2 around the x and y-axis are basi QC operations. We willdenote them by Xj and Yj respetively and write Z for the inverse of theoperation Z. Clearly these operations an be implemented in terms of thetime evolution of model (2) by a proper hoie of the model parameters.Computation neessarily requires some form of ommuniation betweenthe qubits. A basi two-qubit operation is provided by the CNOT gate.The CNOT gate �ips the seond spin if the �rst spin is in the down state,i.e. the �rst qubit ats as a ontrol qubit for the seond one. On an idealQC the CNOT gate an be expressed in terms of single-qubit operationsand a two-qubit phase-shift operation. There are many di�erent, logiallyequivalent sequenes that implement the CNOT gate on an NMR QC. Here



3206 H. De Raedt et al.we limit ourselves to the sequenesCNOT1 = Y1X 01Y 1X 02Y 2I 0Y2 ; (4)CNOT2 = Y1X 01X 02Y 1Y 2I 0Y2 ; (5)where the symbol I 0 represents the time evolution ei�(JSz1Sz2+hz1Sz1+hz2Sz2 ) with� = ��=J . The single-spin rotations X 01, Y 01 , and X 02 are de�ned by theidentities e�i�(hz1�h)Sz1 = Y1X 01Y 1 = X1Y 01X1; (6)e�i�(hz2�h)Sz2 = Y2X 02Y 2 ; (7)where h = �J=2.As simple examples of QAs that exhibit the QPP, we onsider (QA)1and (QA)2 de�ned by(QA)1jb1b2i � (CNOT )5jb1b2i; (8)(QA)2jsii � Y1(CNOT )5jsii ; (9)where jb1b2i � jb1ijb2i, bi = 0; 1, and jsii = (j01i � j10i)=p2. On anideal QC, CNOT 2 is the identity operation and hene (CNOT )5 = CNOT .Furthermore we have hsij(CNOT )5Q1(CNOT )5jsii = 1=2. To obtain alear-ut, zero-one answer in terms of expetation values of the qubits weapply a �=2 rotation to spin 1: Y1(CNOT )5jsii = j11i. For this reason theCNOT operations in (9) are followed by a �=2 rotation of spin 1. Obviously,running (QA)1 and (QA)2 on an ideal QC yields the orret answer but aswe will show below, on a physial QC this is not always the ase.It is instrutive to inquire about the ondition to rotate spin 1 aboutan angle '1 without a�eting the state of spin 2. A general analytial,quantitative analysis of this many-body problem is rather di�ult but wean easily study the limiting ase in whih the interation between the spinshas neglegible impat on the time evolution of the spins during appliation ofthe SF pulse. This is the ase that is relevant to the model system onsideredhere (sine J is very small) and also to experiments [9�12℄. For simpliitywe onsider the ase of rotating SF �elds, e.g. �x = 0 and �y = �=2. An SFpulse of duration t hanges the state of the two-spin system aording toj�(t)i = eithz1(Sz1+Sz2 )eit~hx1Sy1 eitS2�v1;2 j�(0)i ; (10)where vn;m � (0; ~hxm; hzm � hzn). Without loss of generality we will assumethat 0 <  < 1, in onert with the hoie of parameters (3). Then, us-ing representation (10), straightforward algebra shows that the ondition



Quantum Computation and Quantum Spin Dynamis 3207to rotate spin 1 about an angle '1 without a�eting the state of spin 2 isgiven by (1� )2k21 + 24 �'12��2 = n21 ; (11)where k1 and n1 are positive integers. Reversing the role of spin 1 and spin 2we obtain (1� 1 )2k22 + 142 �'22��2 = n22 ; (12)where k2 and n2 are positive integers. The angles of rotation about the y-axis an be hosen suh that 0 � '1 � 2� and 0 � '2 � 2�. In general (11)or (12) have no solution but a good approximate solution may be obtainedif  is a rational number and k1 and k2 are large. Let  = N=M (for ourhoie of parameters, N = 1 and M = 4) where N and M are integerssatisfying 0 < N < M . It follows that the representation k1 = kMN2 andk2 = kNM2 will generate su�iently aurate solutions of (11) and (12) ifthe integer k is hosen suh that2kNM(M �N)� 1: (13)If k satis�es ondition (13) a pulse that rotates spin 1 (2) will hardly a�etspin 2 (1). In terms of k, N , and M , the relevant physial quantities arethen given by t1hz12� = 2kMN2 ; ~hx1hz1 = 12kMN2 '12� ; (14)and t2hz12� = 2kM3 ; ~hx2hz1 = 12kM3 '22� : (15)4. Simulation of Quantum Computer hardwareThe model parameters for the rotating SFs are determined aordingto the theory outlined above. We use the integer k to ompute all freeparameters and the subsript s = 2kMN2 to label the results of the QCalulation. For referene we present the set of parameters orrespondingto k = 1 in Table I. Multiplying s (the duration of the SF pulse) with theunit of time (2 ns) shows that in our simulations, single-qubit operationsare implemented by using short SF pulses that are, in NMR terminology,non-seletive and hard.



3208 H. De Raedt et al. TABLE IModel parameters of single-qubit operations on an NMR QC using rotating SFs forthe ase (k = 1, N = 1, M = 4), see (14) and (15). Parameters of model (2) thatdo not appear in this table are zero, exept for the interation J = �0:43� 10�6,~hy1 = ~hx1 , ~hy2 = ~hx2 , and the onstant magneti �elds hz1 = 1 and hz2 = 0:25. TheTDSE is solved using a time step Æ=2� = 0:01.�=2� ! ~hx1 ~hx2 �x �yX1 8 1.00 �0:0312500 �0:0078125 ��=2 0X2 128 0.25 �0:0078125 �0:0039063 ��=2 0Y1 8 1.00 0.0312500 0.0156250 0 �=2Y2 128 0.25 0.0078125 0.0039063 0 �=2X 01 8 1.00 0.0559593 0.0139898 ��=2 0X 02 128 0.25 0.0445131 0.0111283 ��=2 0Y 01 8 1.00 �0:0559593 �0:0139898 0 �=2In Tables II and III we present simulation results for (QA)1 and (QA)2,respetively. The initial states j10i, j01i, j11i, and jsii = (j01i � j10i)=p2have been prepared by starting from the state j00i and performing exatrotations of the spins. It is lear that the least aurate implementation(s = 16) of (QA)1 niely reprodues the orret answers if the input orre-sponds to one of the four basis states but it is also lear that it ompletelyfails if the input state is a singlet. In the regime where systemati phaseerrors are signi�ant the QAs exhibit the QPP. This is exempli�ed in Ta-ble III where we show the results of using CNOT2 instead of CNOT1. Fork = 16 there is a lear signature of the QPP: Although (QA)1 and (QA)2 arelogially idential, the results depend sensitively on the order in whih theTABLE IIExpetation values of the two qubits (as and bs) as obtained on a QC that usesrotating SFs to manipulate individual qubits. The results obtained on an idealQC are given by a and b. The time s = �=2� = 2kMN2 determines the durationand strength of the SF pulses through relations (14) and (15), see Table I for theexample of the ase s = 8.Operation a b a16 b16 a64 b64(CNOT1)5j00i 0.00 0.00 0.00 0.00 0.00 0.00(CNOT1)5j10i 1.00 1.00 1.00 1.00 1.00 1.00(CNOT1)5j01i 0.00 1.00 0.00 1.00 0.00 1.00(CNOT1)5j11i 1.00 0.00 1.00 0.00 1.00 0.00Y1(CNOT1)5jsii 1.00 1.00 0.03 1.00 0.88 1.00



Quantum Computation and Quantum Spin Dynamis 3209single-qubit operations are arried out. In agreement with the theoretialanalysis of Setion 3 the results onverge to the exat ones for su�ientlylarge k, as indiated in Table II. Thus, for su�iently slow operation thisQC will operate orretly. TABLE IIISame as Table II exept that instead of CNOT1 sequene CNOT2 given by (5)was used to perform the quantum omputation.Operation a b a16 b16 a64 b64(CNOT2)5j00i 0.00 0.00 0.50 0.26 0.06 0.02(CNOT2)5j10i 1.00 1.00 0.50 0.74 0.95 0.98(CNOT2)5j01i 0.00 1.00 0.51 0.74 0.06 0.98(CNOT2)5j11i 1.00 0.00 0.50 0.26 0.95 0.02Y1(CNOT2)5jsii 1.00 1.00 0.95 0.74 0.99 0.985. ConlusionFor eah realization of QC hardware, there is a one-to-one orrespon-dene between the QA and the unitary matrix that transforms the state ofthe quantum system. A QA will operate orretly under all irumstanesif the whole unitary matrix representing the QA is a good approximation tothe ideal one. In other words, the magnitude and the phase of all matrixelements should be lose to their ideal values. It is not su�ient to havefor example two di�erent CNOT gates that operate orretly by themselves:Also the relative phases that they produe should math. For n qubits thereare 2n(2n � 1) real numbers that speify the unitary matrix orrespondingto a QA. All these numbers should be lose to their ideal values, otherwisethe QA is bound to produe wrong answers.Experimental realizations of QCs have not yet demonstrated that a QCan orretly ompute the answer for inputs other than simple basis states.However, with the QC hardware urrently available suh a test is de�nitlywithin reah. The two simple QAs, (8) and (9) may be used for this purpose.Quantum error orretion shemes that work well on an ideal QC requiremany extra qubits and many additional operations to detet and orret er-rors. The systemati errors disussed in this paper are not inluded in theurrent model of quantum error orretion and fault tolerant omputing [27℄.On a physial QC the error-orretion qubits will su�er from the same de�-ienies as those disussed in this paper. All this puts onsiderable demandson the tehnology to fabriate qubits.It remains a great hallenge to demonstrate that a QC of many qubitsan perform a genuine omputation in less real time than a onventionalomputer.
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