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The two models of short coherence length superconductors with aniso-
tropic pairing symmetry are discussed. First, we examine superconducting
properties of the extended Hubbard model with intersite attraction on a 2D
square lattice with nearest- and next-nearest-neighbor hopping. The effects
of phase fluctuations on the extended s and d,2_,2-wave as well as on the
mixed s=+id state are studied within the Kosterlitz—Thouless scenario. This
leads to a new phase with a pseudogap, and the universal linear scaling of
the critical temperature versus zero temperature phase stiffness can occur
on the Uemura type plots due to the separation of scales for pairing and for
the phase coherence. The second model is that of local electron pairs and
itinerant fermions coupled via charge exchange mechanism, which mutually
induces superconductivity in both subsystems. The phase diagram of this
two-component system is presented for anisotropic pairing on a 2D square
lattice.

PACS numbers: 74.20.-z, 71.10.Fd, 74.20.Mn, 74.72.-h

1. Introduction

The cuprate High Temperature Superconductors (HTS) are strongly ani-
sotropic systems. The short coherence length and low superfluid density in
the underdoped regime indicate that phase fluctuations are important [1,2].
In this paper we briefly outline properties of two models of short-coherence
length anisotropic superconductors with emphasis on the role played by ther-
mal phase fluctuations of the order parameter.
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2. The extended Hubbard model with intersite attraction

The simplest model which describes both extended s-wave (s*) and
dy2_,2-wave pairing symmetries is the extended Hubbard model with on-
site repulsion and intersite attraction [3-5]:

H = Z(tij — M(sij)c;!lo_cjo' + %Uanniﬁ + % .Z, Wijnicnjqr, (1)
iJ,0 0 ij,00

where n;, = cgacig, t;; is the transfer integral, u the chemical potential,
U is the on-site and W;; is the intersite interaction. In our analysis we
consider W < 0 i.e. the case of nearest neighbor attraction. Comprehen-
sive studies of the anisotropic superconductivity, the competition between
d-wave superconductivity and antiferromagnetism on 2D lattice as well as
the effects of phase fluctuations in the model (1) have been performed in
Refs. [3-8]. Here we focus on the phase diagrams including a possibil-
ity of s £ id symmetry mixing, the role of phase fluctuations and ana-
lyze the Uemura type plots. Within the Hartree-Fock-BCS approximation
(BCS-HFA) the energy gap is determined by the equation:

1
Ap = NZ(—U— Wi )A:Fg, (2)

q

E; : .
where Fy = ﬁ@ tanh(ﬂT"), W is the Fourier transform of W;; and 8 =
1/kgT. The quasiparticle energy is given by Ez = , /5% + 442, &5 =e;— i,

where the electron dispersion on a 2D square lattice is ¢, = —2t(cos(gza) +
cos(gqya)) — 4tg cos(gya)cos(gya)  with the next nearest neighbor (nnn)
hopping parameter to, and g = p — n(U/2 + 4W). In the case of singlet
pairing the gap function takes the form: Ay = Af + Ayy; + Aynp, where
v = 2(cos(kza) + cos(kya)) and np = 2(cos(kza) — cos(kya)). The first and
second terms refer to the on-site and extended s-wave (s*) and the third one
to the dg2_,»2-wave pairing. The resulting equations for the gap amplitudes
are solved together with the equation determining the chemical potential f:
n—1= —% > i EpFy. m is the electron concentration.

If the states with pure s*-wave (assuming U = 0)( A, # 0, A, = 0) and
d-wave (with A, # 0, A, = 0) symmetry overlap a mixed symmetry state
can appear. The free energy calculations show, that for systems with the
tetragonal symmetry, s* & id phase (with Ay = A,v; & i4,n; and time-
reversal symmetry breaking) is more stable than s* £ d phase [§].

The BCS critical temperature (T.>“®) is the one at which the gap am-
plitude vanishes. To include phase fluctuations we apply the Kosterlitz—
~Thouless (KT) theory. The transition temperature (TX7) is determined by
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the universal jump of superfluid stiffness py:

_ 2
7 (o) = kT, ©
where ps, obtained from the linear response theory, is given by

1 de:\20f(E;) 10%; g BE:
m(T):WZ{(aE’;) o+ 5o [I—E—’;tanh< 2k>]} )

i k

and f(E;) is the Fermi-Dirac distribution function, @ = z,y, z. In the local
limit A=2 = (16me?/h%c?)ps, A being the London penetration depth.

Numerically determined phase diagram including s*, d and s* 4 id states
is shown in Fig. 1. For |t3] < 0.5¢, the s*-wave symmetry occurs for low
n and is strongly restricted by the mixed state, while d-wave is stabilized
for higher n. In the BCS-HFA the transition from the s* + id state to the
state with pure symmetry is continuous and the four second order phase
transition lines meet at the TTCP. The KT temperatures are significantly
lower than the TS (Fig. 1). Phase fluctuations destroy superconductivity
above TXT but the pairs are thermally broken only at T.2¢S. In the region
TCKT <T < TCBCS the Cooper pairs exist, but they are phase incoherent.
This state characterized by the gap in fermionic spectrum can be responsible
for the pseudo-gap phase observed in the underdoped cuprate HTS.
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Fig. 1. Phase diagram in T — n plane for |W|/4t = 0.5, t = —0.45¢ (U = 0). Filled
symbols denote TXT, empty symbols and dashed lines — TPCS| empty symbols
and solid lines — borders of mixed s + id phase. TTCP is the tetracritical point.
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Fig.2. Uemura type plot with the control parameter n (indicated by arrows), for
|W|/4t = 0.5, t = —0.45t (U = 0). Solid lines with filled symbols denote TXT,
dashed lines with empty symbols denote T2“S. Open triangle — d-wave BCS,
open circle — s*-wave BCS. The dot-dashed line mp,(0)/2 is an upper bound on
the phase ordering temperature

The Uemura type plots (critical temperatures vs ps(T = 0)), with the
control parameter mn, are presented in Fig. 2. It should be noted that the
Uemura scaling T, ~ 1/X(0)? is not obeyed within the BCS-HFA scheme.
In a dilute limit, the KT temperatures points collapse on the universal line
7ps(0)/2, because of separation of the energy scales for pairing and phase co-
herence (in this region A(0) > ps(0)). The left s*-wave branch is restricted
to low n, for higher n the s + id state appears, and next pure d-wave state.
For m > 1.45 the right s*-wave branch occurs and ps(0) descends to 0 for
n = 2. Thus, with growing n, the return is on the s*-wave branch.

It is also of interest to discuss the case of |t3] > 0.5¢. In such a case, a
pure d-wave pairing can be realized in low densities and competition with
s*-wave symmetry is pushed to higher values of n. In Fig. 3 we show the
phase diagram for t9/t = —0.7. We notice the existence of quantum critical
point separating the band insulator and d-wave superconductor at T'= 0K.
Its position for 0.5 < |t2/t| < 1 is determined by fi = 4to — E}/2, where Ej
is the binding energy of d-wave pair in an empty lattice and can be given
exactly. In this case the Uemura scaling for d-wave symmetry is obeyed
in an extended range of concentrations, due to separation of the scales for
the pairing and the phase coherence. However, in low n region the d-wave
pairing is nodeless and the transition to d-wave with the nodal points (and
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Fig. 3. Phase diagram for t»/t = —0.7, |W/4¢| = 0.5, in T — i plane. The range
of fi corresponds to n varying from 0 to 1.4. d(nd) — d,>_,»-wave nodeless phase,
d(no) — d,2_,2-wave with nodal points, d +is — mixed symmetry state, nodeless.
The solid line, plotted for U = 0 shows stability of d + is state. I-insulator, SC-
superconductor, N-normal state. QCP is the Quantum Critical Point. The dashed
line marks the crossover from BCS to LP (Local Pair) regimes at 7' = 0K. The
dot-dashed line marks a transition from nodeless d-wave state to d-wave with nodal
points at T' = 0K.

the presence of nodal quasiparticles), can take place for higher n. This is
in contrast to the case of |t2| < 0.5¢, where we have d-wave pairing with
four nodal points, and this fact has important consequences for temperature
behavior of the superfluid density and spectral properties. Let us point out
that a density driven crossover from BCS to Bose condensation of LP pairs
can take place for d-wave symmetry (c.f. Fig. 3). This crossover is smooth
in contrast to the case of d-wave pairing with nodal points, for which the
crossover is continuous but not smooth [7,8].

We should also add that the finite on-site repulsion U will modify the
phase diagrams by reducing the s-wave component and the range of stability
of mixed symmetry state thus expanding pure d-wave state. Indeed, U > 0
will also lead to competition with antiferromagnetic order [3,8].

In Fig. 4 the results obtained in the KT scenario are compared with
experimental ones [8,9]. For each family of cuprate HTS the experimental
T (being a function of doping) have been scaled to T:"**  and ps(0) to the
value p;(0)™2* attained at T:"**. Analogously, the theoretical results given
in Fig. 2 (only for s+id and d-wave state) have been scaled. As we see, there
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is an agreement between experimental points and our theoretical lines. In
the underdoped regime the s+ id solution is stable, in the optimally doped
regime the theory is consistent with d,2_,» pairing. The largest deviations
are observed in the overdoped regime.
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Fig.4. Comparison of theoretical results (solid lines with filled symbols) from
Fig. 2 with the experimental points taken from Ref. [9]. x —Las_,Sr,CuOQy,
A — YB&QCUng, o — Yl_zPpraQCU3OG_97, o — TlgB&QCUOe_;,.g, * —
TlgBaQCaQCu3010, T10_5Pb0_5SYQCaQCU3OQ, o — BigSrQCal_szCugog.

3. The two-component model of coexisting local pairs
and electrons

A mixture of interacting charged bosons (bound electron pairs) and elec-
trons can show features which are intermediate between those of local pair
superconductors and those of classical BCS systems. Such a two-component
model has been proposed for high temperature superconductors [10] and re-
cently studied by several authors [10-13]. We shall consider a generalization
of the model to the case of anisotropic pairing of extended s-wave or d-wave
type, which is defined by the following Hamiltonian

H = Z(ek — M)CLnga + 2Z(Ao - M)b;rbi - Z Jijb;rbj
ko i ]

1
+ — I(Blby + b}l By), 5
\/N; ( q’q q Q) ()
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g refers to the energy band of the c-electrons, Ay measures the relative
position of the LP level with respect to the bottom of the c-electron band,
1 stands for the chemical potential which ensures that the total number of
particles in the system is constant, 4.e.

n= % (Z <c};acka> + QZ«)Zbi)) =n.+ 2ny.

ko

J;j is the pair hopping integral.
T— t t
Bg= Z ¢kck+q/2,TC—k+q/2,¢
k

denotes the singlet pair creation operator of c-electrons and I is the coupling
constant. The operators for local pairs (hard-core charged bosons) b;-r, b; obey
the Pauli commutation rules: [bz,b;] (1 = 2n;)d;5, [bi,bs] = 0, (b;[)2 =
(b;)? =0, bzbi + bl-bz =1,n; = bZ- b;. We assume that the coupling between
the two subsystems is via the center of mass momenta q of the Cooper pair
B:; and the hard-core boson bg. The pairing symmetry, on a 2D square
lattice, is determined by the form of ¢, which is 1 for the on-site pairing,
¢ = vk for the extended s-wave and ¢ = ny for the d,2_,2-wave pairing.
In general, one can consider a decomposition I¢r = go + gsVi + ganr, with
appropriate coupling constants for different symmetry channels.

As in the previous section, our analysis is based on the BCS-Mean-Field
Approximation (MFA) and the Kosterlitz—Thouless (KT) theory for two-
dimensional superfluid. The direct bosonic hopping .J;; is not considered
here. The superconducting state is characterized by two order parameters:

1
- N Z ¢k<C;LTCT_k\L>
k

and .
T T
Po = QNE (b; +bi),

which satisfy the set of equations:

1 Igin% PE
= —— tanh 6
=N Zk 2B, o\ 2 )’ o
I
pg — _ﬂ tanh(ﬁA) s n = N¢ + an, (7)

2A
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where the quasiparticle energy is given by Ej = @/éz—i—A%, Er = € — I,
A2 = PP (pF)2. A = \/(Ag — )2 + I?23. The c-electron dispersion is

er, = —2t(cos(kza) + cos(kya)) — 4ta cos(kza) cos(kya) — €y ,

€p = MiNgy, .
The superfluid density, derived within BCS scheme, is given by

o 1 Oey, 28f(Ek) 1826k €k ﬁEk
pS_QN%:{(aka) o5, Tzome |1 E M 2 ‘

Finally, the effect of phase fluctuations on the critical temperatures is eval-

uated within the KT theory, i.e., from the relation for the universal jump of
the superfluid stiffness at T. (Eq. (3)).

We have performed an extended analysis of the phase diagrams and

superfluid properties of the model (5) for different pairing symmetries [14].

The typical phase diagram (for d-wave symmetry) plotted as a function of
the position of LP level Aq is shown in Fig. 5.
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Fig.5. Phase diagram of the induced pairing model for the dg2_,» — wave symmetry
and n = 1.5. I = —|ly|, Jij = 0. D = 4t. The dashed line — BCS-MFA
transition temperature, the line with diamonds — KT transition temperature, for
|Io|/D = 0.25. LPN — nonmetallic phase of LP, EM — electronic metal, LPS+ES

-superconducting state. The dotted line and the line with circles show BCS-MFA
and KT transition temperatures, respectively, for |Ip|/D = 0.15
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A sharp drop in the superfluid stiffness (and in the KT transition tem-
perature) occurs when the bosonic level reaches the bottom of the c-electron
band and the system approaches the LP limit. In the opposite, BCS like
limit, T, asymptotically approaches the MF transition temperature, with
narrow fluctuation regime. Between the KT and MFA temperatures the
phase fluctuation effects are important. In this regime a pseudo-gap in
c-electron spectrum will develop and the normal state of LP and itinerant
fermions can exhibit non-Fermi liquid properties [11].

With varying n but for fixed Ay, it appears that the mechanism of in-
duced superconductivity in the mixed regime of coexisting LP and electrons
is not very sensitive to the pairing symmetry, i.e. n. is nearly constant, but
np (LP level occupation) increases with total m. The chemical potential in
the superconducting phase is practically pinned around Ag. The superfluid
density exhibits linear in T' behavior (at low T') for dy2_,2-wave pairing due
to the existence of nodal quasiparticles. For the same pairing symmetry, we
have also found that the scaled stiffness ps(T")/ps(0) vs T/T, shows only a
weak dependence on the total density n. The d-wave pairing is preferred
for higher concentration of ¢ electrons, while the extended s-wave can be
realized for lower n. (for the nn hopping). The nnn hopping can substan-
tially enhance T, for d-wave symmetry. Finally, within the KT scenario, the
Uemura-type plots have also been obtained for s* and d-wave symmetry [14].
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