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32 years have passed since Falicov and Kimball proposed a model of
correlated electrons attempting to explaine such cooperative phenomena
as metal-insulator transitions in some solids. We present a telegraph-style
review of the development of the theory and applications of models based on
the Falicov and Kimball idea which has taken place during the last 15 years
of increased interest in these models. The list of collective phenomena that
have been discussed in the framework of Falicov—Kimball models includes
crystallization, segregation, phase separation, formation of molecules, flux
phases, mixed-valence states, Peierls instability and metal-insulator transi-
tions. We point out new trends and some open problems.
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1. The “Ising model” of interacting quantum quasiparticles
and a glimpse of its history

1.1. The origin

One of the most intriguing features of solids, like for instance transition-
metal or rare-earth compounds, are metal-insulator transitions. They are
observed when external factors like temperature, pressure or composition
are varied [1]. Several mechanisms have been proposed to explain metal-
insulator transitions, all based on the assumption that it is sufficient to
consider only the electron subsystem of a solid. Clearly, such effects are out
of reach of band theories of solids. That is why all the considered mecha-
nisms agree in one respect, namely a theory of a metal-insulator transition
has to be based on a model of an interacting electron gas (or more precisely,
interacting quasiparticle gas). Probably the first idea, nowadays known
as the Mott—Hubbard mechanism, was that the electron—electron interac-
tion is capable of changing the nature of electronic states from localized
to itinerant, and the basic model studied was the Hubbard model and re-
lated ones [2]. This approach turned out to be rather unsuccessful because
of enormous technical difficulties. Another mechanism was proposed by
Falicov and Kimball [3]. An analysis of experimental data for transition-
metal and rare-earth compounds led them to put forward a new idea. Namely,
they suggested that the metal-insulator transitions in these compounds oc-
cur due to a change in the occupation numbers of two sorts of electron states,
extended Bloch-like states and localized states centered at the sites of the
metallic ions in the crystal, while these states remain basically unchanged.
This mechanism of metal-insulator transitions is nowadays referred to as
the charge-transfer mechanism [4].

1.2. The “backbone Hamiltonian”

The simplest Hamiltonian that grasps the idea of Falicov—Kimball, and
is referred to as the Hamiltonian of the one-band spinless Falicov—Kimball
Model (FKM), is Hy = Ty + V4, where T stands for the hopping energy of
spinless itinerant fermions that hop on a finite portion of a Bravais lattice
(or just a finite graph) A with |A]| sites, and V} is the interaction energy
between the itinerant fermions and localized (immobile) particles (with any
statistics). In terms of creation and annihilation operators a%, a, of a fermion
at a site z of A, the Ty term reads

Ty =— Z bay @y Gy, (1)
z,y€A

with the hopping amplitudes t,, being matrix elements of a |A| x |4| Her-
mitian matrix 4. The lattice A is assumed to be of the alternant type, i.e.,
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it consists of two sublattices A% A€ such that the nearest neighbours of a
site on one sublattice belong to the other one. Moreover, the hopping ampli-
tudes ¢, are nonzero if and only if sites x,y belong to different sublattices.
Typically, A is a piece of a d-dimensional hypercubic lattice and then A°, A°
are the odd and even sublattices, respectively, and t;, assumes a real value
t > 0 if z and y are nearest neighbour sites and vanishes otherwise. The
interaction energy V, can be expressed in terms of occupation number op-
erators of itinerant fermions, n, = a}a,, and occupation number operators
of localized particles, w(z):

Vi=-20) w(z)n,. (2)

Apparently, the occupation number operators of localized particles, w(x),
commute with H,, thus they can be looked upon as a classical field taking
values from the set of natural numbers; in the case of fermions w(z) can
be simply 0 or 1. Since the itinerant particles are fermions, for a fixed set
of occupation numbers w(z), in the literature of the model referred to as
the configuration of localized particles, the Hamiltonian H, is a second-
quantized form of a one-particle Hamiltonian hy = t4 + 2UW},, where t,
is a Hermitian matrix with zy matrix element equal to t;, and W, is a
diagonal |A| x |A| matrix with zz matrix elements equal to w(x).

1.3. The effective interaction

The most convenient Gibbs ensemble to study such systems as FKM is
the grand-canonical ensemble and the grand-canonical partition function of
FKM has the form

Z/l = Z Trexp[—,B(HA _M'LNZ_NINZ)]a (3)
{w(z)}

where [ is the inverse temperature and u; (N;), p; (N;) are the chemical
potentials (total particle numbers) of itinerant and localized particles, re-
spectively, and Tr stands for the trace over the fermion-particle Fock space.
There is direct interaction neither between the itinerant particles nor be-
tween the localized ones, still the simple on-site interaction between the
two kinds of particles involved induces a complicated, many-body and long-
range effective interaction within each group of particles. This effective
interaction is most easily defined for the localized particles. Denoting it by
FA(B, pi, p1, Wa), we have the following defining formula (see [11])

Zp = Z eXP[_/BFA(IBaMaMaWA)]a (4)
{w(=)}
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which implies in turn the following compact form of Fy (8, p;, pi, W)

_ |
Fu(B, pis i, Wa) = —B~ ' Trincosh [ﬁATMZ]
—Mlglw(x)—lAI%—ﬂllAUnz_ )

In the above formula Tr stands for the trace over the |A|-dimensional one-
particle state-space. There are not many instances in physics literature,
where an effective interaction can be written explicitly. Thus, it is a remark-
able fact that in the Falicov—Kimball model it can be not only determined
but also described by such a simple formula. Without exaggeration, one
can say that studies of phase diagrams, that have been carried out up to
now, can be considered as studies of the above effective interaction, to large
extent in the § — oo limit.

1.4. The history loop: from solid state theory, via statistical mechanics
to solid state theory

The first 15 years (1970-1985) of studies of FKM and related models, can
be classified as a solid-state theory era. The interest of researchers was di-
rected mainly towards such phenomena as metal-insulator transitions |3,5-7]
and mixed-valence phenomena; see [1]| for review of the results obtained in
that period and an extensive list of references (however some general, model
oriented studies were also carried on [8]). The approximate methods used
(typically, various decoupling schemes in the Green function technique) did
not result in a clear view of the situation, a great deal of confusion arised. A
break through in the studies of FKM models occurred in 1986, when two pa-
pers, one by Brandt and Schmidt [9] and another by Kennedy and Lieb [10]
appeared. The papers contained mathematical arguments proving the exis-
tence of a phase transition in FKM. These two papers renewed interest in the
model and started the decade, 1986-1996, of intensive research which can be
named the statistical mechanics/mathematical physics era of the research of
the model. The achievements of this decade are summarized in an excellent
and comprehensive review by Gruber and Macris [11], who contributed a
great deal to the theory of FKM. In 1989 another important development
took place, namely Brandt and Mielsch [12]| noticed that in the appropriate
limit of infinitely dimensional lattice the Green functions technique applied
to FKM does not result in an infinite chain of coupled equations but leads
to a finite number of equations, that is, in this limit the FKM is exactly
solvable. There are good reasons to believe that the results obtained in that
limit for FKM are close to those which hold in the three-dimensional system
and even in the two-dimensional one [13,14]. This achievement was the first
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sign of the comeback of the solid-state era in about a decade. In late nineties,
after about a quarter of a century, again the main questions studied were
suggested by the solid-state physics. The possibility of calculating response
functions without uncontrolled approximations (like decoupling schemes of
Green functions), in the limit of infinite dimensionality, for the first time
opened possibilities of comparing theory with experimental data measured
in such systems as for instance Nily, as has been shown by Freericks and
coworkers [4,15]. Thus, the story of FKM seems to be a classic example
of the spiral of development. We have found out the level of interest in
Falicov—Kimball models, as measured by the number of those papers per
year which contain the key-word Falicov—Kimball model, to give a quantita-
tive representation of the described above history loop, see Fig. 1.
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2. Falicov—Kimball models — extensions of the
“backbone Hamiltonian”

2.1. Changes of quantum statistics

Kennedy and Lieb [10] discussed already the effect of replacing the itin-
erant fermions by itinerant bosons. They have described the ground state
of itinerant bosons and have shown that the phase transition, they found in
the fermionic case, disappears. Some more information about the bosonic
ground state can be found in [16]. If, however, instead of bosons one takes
hard-core bosons (their creation and annihilation operators satisfy the ca-
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nonical anticommutation relations if both operators involved in the anticom-
mutator are labeled by the same site and they commute if they are labeled
by different sites), then, as shown by Gruber et al. [17], the properties of
the modified model are, in many respects, analogous to the original one.
Replacing fermions by hard-core bosons is a highly nontrivial step, since
even for a fixed configuration of localized particles H, fails to be a second
quantized form of a one-particle Hamiltonian.

2.2. Modifications of lattices and/or hopping amplitudes
of itinerant particles

Gruber et al. [17] studied the FKM on the triangular lattice. In the same
paper complex hopping amplitudes, whose phase can be related with an
external magnetic field acting on moving charged particles (Lorentz force),
were taken into account. Recently, one can observe an increased interest in
models with so called correlated hopping, i.e. with the hopping amplitudes
tzy depending on the localized-particle occupation numbers at sites  and y
[18,19].

2.8. Additional degrees of freedom

One can consider for instance many bands of itinerant fermions [20, 21|
and supply both kinds of particles with spin [22], which can be different for
the itinerant and localized particles [23].

2.4. Modifications of localized-particle occupation numbers

The variables {w(z)}zec4 taking values from the set {1,0, —1} or taking
any real value have been studied by Lebowitz and Macris [24] while Gruber
and Macris considered them to represent a vector field [11].

2.5. Additional interactions of localized particles

Brandt et al. [22] studied an extension of FKM, where both kinds of
particles had spin 1/2, so there were two kinds of the localized-particle occu-
pation numbers: w4 (z) and w_(z). They introduced an on-site interaction
of the form Y wy (z)w_(z). In [24], where continuous variables w(z) have

€A

been considered, an interaction of the form Y w?(z) have been taken into
xeA
account.
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3. Phase diagrams for the “backbone Hamiltonian”

The vast majority of papers devoted to FKM and its extensions is, up
to now, concerned with equilibrium properties. Even the criteria for metal—
insulator transitions refer usually to equilibrium [10]; only recently, in the
d — oo limit, a criterium based on the conductivity, defined in the frame-
work of the linear response theory, was used [4]. From the point of view of
statistical mechanics, FKM is a two-component system governed by a unique
interaction parameter, say U/t. The ultimate goal would be to determine
the grand canonical (or canonical) phase diagram in the four-dimensional
space with a coordinate system whose axes are labeled by the two chemi-
cal potentials, p;, p; (or, in the canonical ensemble, by the corresponding
particle densities of the itinerant and localized particles), the unique inter-
action parameter U/t and the inverse temperature . The regions occupied
by pure phases would contain information about the localized-particle con-
figurations and the state of the itinerant particles. This is, of course, hardly
achievable. The obtained results refer only to some sections of the complete
phase diagram. Typically, one finds zero-temperature and a fixed U/t-value
sections (ground-state phase diagrams), with a limited region in the plane
of the chemical potentials (particle densities), for instance, a vicinity of the
hole—particle symmetry point or the region where the neutrality condition is
satisfied (i.e. for U < 0 the densities of the itinerant and localized particles
are equal). Moreover, in most papers only the configurations or long-range
orders in the subsystem of localized particles are determined while the state
of the itinerant particles remains unknown.

Concerning the dependence of phase diagrams on the unique interaction
parameter U/t, rigorous results that hold for all values of this parameter
were obtained only at the hole—particle symmetry point and in its vicin-
ity [10,25]. Away from the symmetry point the existing phase diagrams
have been obtained by means of numerical methods, while analytical, rigor-
ous results are limited to the weak coupling regime or the strong coupling
one. The weak coupling regime is notoriously difficult (see open problems),
thus the vast majority of non numerical results refers to the strong coupling
regime. Concerning numerical work, many interesting results have been ob-
tained by means of restricted phase diagrams, first obtained in [26], and
then in [27-29]|. In the strong coupling regime, the 1/U-expansion of the
effective interaction at the zero-temperature limit, and the corresponding
phase diagram, has been first constructed by Gruber et al. [30] and, then
made rigorous and extended by Kennedy and coworkers [31,32]. Remarkable
results in the strong coupling limit, but restricted to one-dimensional FKM,
have been obtained by Lemberger [33]. Recently, powerful methods of con-
structing effective interactions have been developed, see for instance [34,35],
which extend considerably the class of FKM-like models that can be studied
by means of rigorous methods.
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4. Collective phenomena that have been discussed in the
framework of Falicov—Kimball models

In this section we simply give a list of most important, in our view, appli-
cations of the FKM and its extensions for describing collective phenomena
in solids. Even brief descriptions of the items of this list would exceed the
limits for volume of this concise guide. Therefore, we supply the reader with
relevant references (but we do not pretend to give a complete list) and advice
also consulting the Gruber and Macris review [11].

e Crystallization [10,27-33]

e Segregation [27,33,36-39]

e Phase separation [28,29,40-42]

e Formation of molecules [27-29]

e Effects of magnetic flux and flux phases [17,43|
e Effects of additional degrees of freedom [4,22, 44|
e Effects of correlated hopping [18,19,45,46]

e Peierls instability [24]

e Mixed-valence transitions [47-49|

e Metal-insulator transitions [4,50,51]

5. New trends

The dynamic mean field theory appears to be particularly successful
when applied to the FKM, since within its formalism both thermodynamic
and dynamic properties of the system, including correlation functions of
localized and itinerant particles, could be calculated exactly in the limit of
large dimensions [12,23,52] (but rigorous results concerning itinerant-particle
correlation functions are still scarce, see [24,53,54]). As a result, many fi-
nite temperature characteristics of the model, including e.g. susceptibilities
against external forces or transport properties could be determined [55,56].
The theory opens new opportunities for modeling strongly correlated elec-
tron systems, where calculated quantities could be compared and verified by
experimental measurements. In our opinion, studies in this direction will be
dominating in coming years.
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6. Open problems

No doubt, physical problems of interest can be formulated as questions
about the nature of metal-insulator or mixed-valence transitions etc. But
to answer these and related questions we have to extend our knowledge of
FKM phase diagrams. Here are some technical problems that require further
studies:

e Perturbation theory for small coupling U in dimensions d > 1; the
d =1 case has been done in [42].

e Properties of non-neutral (not half-filled) system; there are some nu-
merical results [27-29] and the results for strong coupling that refer to
segregation [33,36-39].

e The influence of additional degrees of freedom, like spin, on the phase
diagrams is almost not known; see [4,22,44| for the results in this
direction, which signal important new effects.

REFERENCES

[1] D.I. Khomskii, Quantum Theory of Solids, Mir, Moscow 1982.
[2] G. Czycholl, Phys. Rep. 143, 277 (1986).
[3] L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969).
[4] W. Chung, J.K. Freericks, Phys. Rev. B57, 11955 (1998).
[5] R. Ramirez, L.M. Falicov, J.C. Kimball, Phys. Rev. B2, 3383 (1970).
[6] M. Plischke, Phys. Rev. Lett. 28, 361 (1972).
[7] D.K. Ghosh, Solid State Commun. 22, 379 (1977).
[8] A. Trias, R. Ramirez, W. Kiwi, Phys. Rev. B19, 5877 (1979).
[9] U. Brandt, R. Schmidt, Z. Phys. B63, 45 (1986).
[10] T. Kennedy, E.H. Lieb, Physica A138, 320 (1986).
[11] C. Gruber, N. Macris, Helv. Phys. Acta 69, 850 (1996).
[12] U. Brandt, C. Mielsch, Z. Phys. B75, 365 (1989).
[13] J.K. Freericks, Phys. Rev. B47, 9263 (1993).
[14] J.K. Freericks, Phys. Rev. B48, 14797 (1993).
[15] J.K. Freericks, V. Zlati¢, Phys. Rev. B58, 322 (1998).
[16] J.R. Parreira, Physica A248, 213 (1998).
[17] C. Gruber, N. Macris, A. Messager, D. Ueltschi, J. Stat. Phys. 86, 57 (1997).
[18] K. Michielsen, H. De Raedt, Phys. Rev. B59, 4565 (1999).



3252 J. JEDRZEJEWSKI, R. LEMANSKI

[19] D. Thanh-Hai, T. Minh-Tien, J. Phys.: Condens. Maiter 13, 5625 (2001).
[20] T.A. Kaplan, Phys. Rev. B4, 1278 (1971).

[21] L. Craco, Phys. Rev. B59, 14837 (1999).

[22] U. Brandt, A. Fledderjohann, G. Hiilsenbeck, Z. Phys. B81, 409 (1990).

[23] V. Zlati¢, J.K. Freericks, R. Lemanski, G. Czycholl, Philos. Mag. B81, 1443
(2001).

[24] J.L. Lebowitz, N. Macris, J. Stat. Phys. 76, 91 (1994).

[25] J.L. Lebowitz, N. Macris, Rev. Math. Phys. 6, 927 (1994).

[26] J. Jedrzejewski, J. Lach, R. Lyzwa, Physica A154, 529 (1989).

[27] C. Gruber, D. Ueltschi, J. Jedrzejewski, J. Stat. Phys. 76, 125 (1994).
[28] Z. Gajek, J. Jedrzejewski, R. Lemariski, Physica A223, 175 (1996).

[29] G.I. Watson, R. Lemanski, J. Phys.: Condens. Matter 7, 9521 (1995).
[30] C. Gruber, J. Jedrzejewski, P. Lemberger, J. Stat. Phys. 66, 913 (1992).
[31] T. Kennedy, Rev. Math. Phys. 6, 901 (1994).

[32] K. Haller, T. Kennedy, J. Stat. Phys. 102, 15 (2001).

[33] P. Lemberger, J. Phys. A 25, 15 (1992).

[34] C. Borgs, R. Kotecky, D. Ueltschi, Commun. Math. Phys. 181, 409 (1996).
[35] N. Datta, R.F. Fernandez, J. Frohlich, J. Stat. Phys. 96, 545 (1999).
[36] U. Brandt, J. Low Temp. Phys. 84, 477 (1991).

[37] J.K. Freericks, C. Gruber, N. Macris, Phys. Rev. B60, 1617 (1999).

[38] J.K. Freericks, R. Lemariski, Phys. Rev. B61, 13438 (2000).

[39] J.K. Freericks, E.H. Lieb, D. Ueltschi, math-ph/0107003.

[40] T. Kennedy, J. Stat. Phys. 91, 829 (1998).

[41] B.M. Letfulov, Eur. Phys. J. B11, 423 (1999).

[42] J.K. Freericks, C. Gruber, N. Macris, Phys. Rev. B53, 16189 (1996).
[43] Ch. Gruber, D. Ueltschi, Physica A232, 616 (1996).

[44] P. FarkaSovsky, Phys. Rev. B54, 11261 (1996).

[45] A. Schiller, Phys. Rev. B60, 15660 (1999).

[46] J.E. Hirsch, Physica B199-200, 366 (1994).

[47] G. Czycholl, Phys. Rev. B59, 2642 (1999).

[48] T. Portengen, T. Ostreich, L.J. Sham, Phys. Rev. Lett. 76, 3384 (1996).
[49] P. FarkaSovsky, Physica B230-232, 493 (1997).

[50] K. Michielsen, Phys. Rev. B50, 4283 (1994).

[51] P. FarkaSovsky, J. Phys.: Condens. Matter 7, 9775 (1995).

[52] U. Brandt, M.P. Urbanek, Z. Phys. B89, 297 (1992).

[53] N. Macris, C.-A. Piguet, J. Phys. A 32, 749 (1999).

[54] A. Messager, Physica A279, 408 (2000).

[55] J.K. Freericks, T.P. Devereaux, R. Bulla, Acta Phys. Pol. B32, 3219 (2001).
[56] V. Zlati¢, J.K. Freericks, Acta Phys. Pol. B32, 3253 (2001).



