
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 10 Speial Issue
FALICOV�KIMBALL MODELSOF COLLECTIVE PHENOMENA IN SOLIDS(A CONCISE GUIDE)�Janusz J�drzejewskiInstitute of Theoretial Physis, University of WroªawM. Borna 6, 50-204 Wroªaw, PolandandDepartment of Theoretial Physis, University of �ód¹Pomorska 149/153, 90-236 �ód¹, Polandand Romuald Lema«skiW. Trzebiatowski Institute of Low Temperature and Struture ResearhPolish Aademy of SienesP.O.Box 1410, 50-950 Wroªaw, Poland(Reeived June 21, 2001)32 years have passed sine Faliov and Kimball proposed a model oforrelated eletrons attempting to explaine suh ooperative phenomenaas metal�insulator transitions in some solids. We present a telegraph-stylereview of the development of the theory and appliations of models based onthe Faliov and Kimball idea whih has taken plae during the last 15 yearsof inreased interest in these models. The list of olletive phenomena thathave been disussed in the framework of Faliov�Kimball models inludesrystallization, segregation, phase separation, formation of moleules, �uxphases, mixed-valene states, Peierls instability and metal-insulator transi-tions. We point out new trends and some open problems.PACS numbers: 71.10.�w
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3244 J. J�drzejewski, R. Lema«ski1. The �Ising model� of interating quantum quasipartilesand a glimpse of its history1.1. The originOne of the most intriguing features of solids, like for instane transition-metal or rare-earth ompounds, are metal�insulator transitions. They areobserved when external fators like temperature, pressure or ompositionare varied [1℄. Several mehanisms have been proposed to explain metal�insulator transitions, all based on the assumption that it is su�ient toonsider only the eletron subsystem of a solid. Clearly, suh e�ets are outof reah of band theories of solids. That is why all the onsidered meha-nisms agree in one respet, namely a theory of a metal�insulator transitionhas to be based on a model of an interating eletron gas (or more preisely,interating quasipartile gas). Probably the �rst idea, nowadays knownas the Mott�Hubbard mehanism, was that the eletron�eletron intera-tion is apable of hanging the nature of eletroni states from loalizedto itinerant, and the basi model studied was the Hubbard model and re-lated ones [2℄. This approah turned out to be rather unsuessful beauseof enormous tehnial di�ulties. Another mehanism was proposed byFaliov and Kimball [3℄. An analysis of experimental data for transition-metal and rare-earth ompounds led them to put forward a new idea. Namely,they suggested that the metal�insulator transitions in these ompounds o-ur due to a hange in the oupation numbers of two sorts of eletron states,extended Bloh-like states and loalized states entered at the sites of themetalli ions in the rystal, while these states remain basially unhanged.This mehanism of metal�insulator transitions is nowadays referred to asthe harge-transfer mehanism [4℄.1.2. The �bakbone Hamiltonian�The simplest Hamiltonian that grasps the idea of Faliov�Kimball, andis referred to as the Hamiltonian of the one-band spinless Faliov�KimballModel (FKM), is H� = T�+V�, where T� stands for the hopping energy ofspinless itinerant fermions that hop on a �nite portion of a Bravais lattie(or just a �nite graph) � with j�j sites, and V� is the interation energybetween the itinerant fermions and loalized (immobile) partiles (with anystatistis). In terms of reation and annihilation operators a�x; ax of a fermionat a site x of �, the T� term readsT� = � Xx;y2� txya�xay; (1)with the hopping amplitudes txy being matrix elements of a j�j � j�j Her-mitian matrix t�. The lattie � is assumed to be of the alternant type, i.e.,



Faliov�Kimball Models of Colletive Phenomena in Solids 3245it onsists of two sublatties �0, �e suh that the nearest neighbours of asite on one sublattie belong to the other one. Moreover, the hopping ampli-tudes txy are nonzero if and only if sites x; y belong to di�erent sublatties.Typially, � is a piee of a d-dimensional hyperubi lattie and then �0, �eare the odd and even sublatties, respetively, and txy assumes a real valuet > 0 if x and y are nearest neighbour sites and vanishes otherwise. Theinteration energy V� an be expressed in terms of oupation number op-erators of itinerant fermions, nx = a�xax, and oupation number operatorsof loalized partiles, w(x):V� = �2UXx2�w(x)nx: (2)Apparently, the oupation number operators of loalized partiles, w(x),ommute with H�, thus they an be looked upon as a lassial �eld takingvalues from the set of natural numbers; in the ase of fermions w(x) anbe simply 0 or 1. Sine the itinerant partiles are fermions, for a �xed setof oupation numbers w(x), in the literature of the model referred to asthe on�guration of loalized partiles, the Hamiltonian H� is a seond-quantized form of a one-partile Hamiltonian h� = t� + 2UW�, where t�is a Hermitian matrix with xy matrix element equal to txy and W� is adiagonal j�j � j�j matrix with xx matrix elements equal to w(x).1.3. The e�etive interationThe most onvenient Gibbs ensemble to study suh systems as FKM isthe grand-anonial ensemble and the grand-anonial partition funtion ofFKM has the formZ� = Xfw(x)gTr exp[��(H� � �iNi � �lNl)℄ ; (3)where � is the inverse temperature and �i (Ni), �l (Nl) are the hemialpotentials (total partile numbers) of itinerant and loalized partiles, re-spetively, and Tr stands for the trae over the fermion-partile Fok spae.There is diret interation neither between the itinerant partiles nor be-tween the loalized ones, still the simple on-site interation between thetwo kinds of partiles involved indues a ompliated, many-body and long-range e�etive interation within eah group of partiles. This e�etiveinteration is most easily de�ned for the loalized partiles. Denoting it byF�(�; �i; �l;W�), we have the following de�ning formula (see [11℄)Z� = Xfw(x)g exp[��F�(�; �i; �l;W�)℄ ; (4)



3246 J. J�drzejewski, R. Lema«skiwhih implies in turn the following ompat form of F�(�; �i; �l;W�)F�(�; �i; �l;W�) = ���1Tr ln osh ��h� � �i2 ���lXx2�w(x)� j�j�i2 � ��1j�j ln 2 : (5)In the above formula Tr stands for the trae over the j�j-dimensional one-partile state-spae. There are not many instanes in physis literature,where an e�etive interation an be written expliitly. Thus, it is a remark-able fat that in the Faliov�Kimball model it an be not only determinedbut also desribed by suh a simple formula. Without exaggeration, onean say that studies of phase diagrams, that have been arried out up tonow, an be onsidered as studies of the above e�etive interation, to largeextent in the � !1 limit.1.4. The history loop: from solid state theory, via statistial mehanisto solid state theoryThe �rst 15 years (1970�1985) of studies of FKM and related models, anbe lassi�ed as a solid-state theory era. The interest of researhers was di-reted mainly towards suh phenomena as metal�insulator transitions [3,5�7℄and mixed-valene phenomena; see [1℄ for review of the results obtained inthat period and an extensive list of referenes (however some general, modeloriented studies were also arried on [8℄). The approximate methods used(typially, various deoupling shemes in the Green funtion tehnique) didnot result in a lear view of the situation, a great deal of onfusion arised. Abreak through in the studies of FKM models ourred in 1986, when two pa-pers, one by Brandt and Shmidt [9℄ and another by Kennedy and Lieb [10℄appeared. The papers ontained mathematial arguments proving the exis-tene of a phase transition in FKM. These two papers renewed interest in themodel and started the deade, 1986�1996, of intensive researh whih an benamed the statistial mehanis/mathematial physis era of the researh ofthe model. The ahievements of this deade are summarized in an exellentand omprehensive review by Gruber and Maris [11℄, who ontributed agreat deal to the theory of FKM. In 1989 another important developmenttook plae, namely Brandt and Mielsh [12℄ notied that in the appropriatelimit of in�nitely dimensional lattie the Green funtions tehnique appliedto FKM does not result in an in�nite hain of oupled equations but leadsto a �nite number of equations, that is, in this limit the FKM is exatlysolvable. There are good reasons to believe that the results obtained in thatlimit for FKM are lose to those whih hold in the three-dimensional systemand even in the two-dimensional one [13,14℄. This ahievement was the �rst



Faliov�Kimball Models of Colletive Phenomena in Solids 3247sign of the omebak of the solid-state era in about a deade. In late nineties,after about a quarter of a entury, again the main questions studied weresuggested by the solid-state physis. The possibility of alulating responsefuntions without unontrolled approximations (like deoupling shemes ofGreen funtions), in the limit of in�nite dimensionality, for the �rst timeopened possibilities of omparing theory with experimental data measuredin suh systems as for instane NiI2, as has been shown by Freeriks andoworkers [4, 15℄. Thus, the story of FKM seems to be a lassi exampleof the spiral of development. We have found out the level of interest inFaliov�Kimball models, as measured by the number of those papers peryear whih ontain the key-word Faliov�Kimball model, to give a quantita-tive representation of the desribed above history loop, see Fig. 1.

Fig. 1.2. Faliov�Kimball models � extensions of the�bakbone Hamiltonian�2.1. Changes of quantum statistisKennedy and Lieb [10℄ disussed already the e�et of replaing the itin-erant fermions by itinerant bosons. They have desribed the ground stateof itinerant bosons and have shown that the phase transition, they found inthe fermioni ase, disappears. Some more information about the bosoniground state an be found in [16℄. If, however, instead of bosons one takeshard-ore bosons (their reation and annihilation operators satisfy the a-



3248 J. J�drzejewski, R. Lema«skinonial antiommutation relations if both operators involved in the antiom-mutator are labeled by the same site and they ommute if they are labeledby di�erent sites), then, as shown by Gruber et al. [17℄, the properties ofthe modi�ed model are, in many respets, analogous to the original one.Replaing fermions by hard-ore bosons is a highly nontrivial step, sineeven for a �xed on�guration of loalized partiles H� fails to be a seondquantized form of a one-partile Hamiltonian.2.2. Modi�ations of latties and/or hopping amplitudesof itinerant partilesGruber et al. [17℄ studied the FKM on the triangular lattie. In the samepaper omplex hopping amplitudes, whose phase an be related with anexternal magneti �eld ating on moving harged partiles (Lorentz fore),were taken into aount. Reently, one an observe an inreased interest inmodels with so alled orrelated hopping, i.e. with the hopping amplitudestxy depending on the loalized-partile oupation numbers at sites x and y[18, 19℄. 2.3. Additional degrees of freedomOne an onsider for instane many bands of itinerant fermions [20, 21℄and supply both kinds of partiles with spin [22℄, whih an be di�erent forthe itinerant and loalized partiles [23℄.2.4. Modi�ations of loalized-partile oupation numbersThe variables fw(x)gx2� taking values from the set f1; 0;�1g or takingany real value have been studied by Lebowitz and Maris [24℄ while Gruberand Maris onsidered them to represent a vetor �eld [11℄.2.5. Additional interations of loalized partilesBrandt et al. [22℄ studied an extension of FKM, where both kinds ofpartiles had spin 1=2, so there were two kinds of the loalized-partile ou-pation numbers: w+(x) and w�(x). They introdued an on-site interationof the form Px2�w+(x)w�(x). In [24℄, where ontinuous variables w(x) havebeen onsidered, an interation of the form Px2�w2(x) have been taken intoaount.



Faliov�Kimball Models of Colletive Phenomena in Solids 32493. Phase diagrams for the �bakbone Hamiltonian�The vast majority of papers devoted to FKM and its extensions is, upto now, onerned with equilibrium properties. Even the riteria for metal�insulator transitions refer usually to equilibrium [10℄; only reently, in thed ! 1 limit, a riterium based on the ondutivity, de�ned in the frame-work of the linear response theory, was used [4℄. From the point of view ofstatistial mehanis, FKM is a two-omponent system governed by a uniqueinteration parameter, say U=t. The ultimate goal would be to determinethe grand anonial (or anonial) phase diagram in the four-dimensionalspae with a oordinate system whose axes are labeled by the two hemi-al potentials, �i, �l (or, in the anonial ensemble, by the orrespondingpartile densities of the itinerant and loalized partiles), the unique inter-ation parameter U=t and the inverse temperature �. The regions oupiedby pure phases would ontain information about the loalized-partile on-�gurations and the state of the itinerant partiles. This is, of ourse, hardlyahievable. The obtained results refer only to some setions of the ompletephase diagram. Typially, one �nds zero-temperature and a �xed U=t-valuesetions (ground-state phase diagrams), with a limited region in the planeof the hemial potentials (partile densities), for instane, a viinity of thehole�partile symmetry point or the region where the neutrality ondition issatis�ed (i.e. for U < 0 the densities of the itinerant and loalized partilesare equal). Moreover, in most papers only the on�gurations or long-rangeorders in the subsystem of loalized partiles are determined while the stateof the itinerant partiles remains unknown.Conerning the dependene of phase diagrams on the unique interationparameter U=t, rigorous results that hold for all values of this parameterwere obtained only at the hole�partile symmetry point and in its viin-ity [10, 25℄. Away from the symmetry point the existing phase diagramshave been obtained by means of numerial methods, while analytial, rigor-ous results are limited to the weak oupling regime or the strong ouplingone. The weak oupling regime is notoriously di�ult (see open problems),thus the vast majority of non numerial results refers to the strong ouplingregime. Conerning numerial work, many interesting results have been ob-tained by means of restrited phase diagrams, �rst obtained in [26℄, andthen in [27�29℄. In the strong oupling regime, the 1=U -expansion of thee�etive interation at the zero-temperature limit, and the orrespondingphase diagram, has been �rst onstruted by Gruber et al. [30℄ and, thenmade rigorous and extended by Kennedy and oworkers [31,32℄. Remarkableresults in the strong oupling limit, but restrited to one-dimensional FKM,have been obtained by Lemberger [33℄. Reently, powerful methods of on-struting e�etive interations have been developed, see for instane [34,35℄,whih extend onsiderably the lass of FKM-like models that an be studiedby means of rigorous methods.



3250 J. J�drzejewski, R. Lema«ski4. Colletive phenomena that have been disussed in theframework of Faliov�Kimball modelsIn this setion we simply give a list of most important, in our view, appli-ations of the FKM and its extensions for desribing olletive phenomenain solids. Even brief desriptions of the items of this list would exeed thelimits for volume of this onise guide. Therefore, we supply the reader withrelevant referenes (but we do not pretend to give a omplete list) and adviealso onsulting the Gruber and Maris review [11℄.� Crystallization [10, 27�33℄� Segregation [27, 33, 36�39℄� Phase separation [28, 29, 40�42℄� Formation of moleules [27�29℄� E�ets of magneti �ux and �ux phases [17, 43℄� E�ets of additional degrees of freedom [4, 22, 44℄� E�ets of orrelated hopping [18, 19, 45, 46℄� Peierls instability [24℄� Mixed-valene transitions [47�49℄� Metal�insulator transitions [4, 50, 51℄5. New trendsThe dynami mean �eld theory appears to be partiularly suessfulwhen applied to the FKM, sine within its formalism both thermodynamiand dynami properties of the system, inluding orrelation funtions ofloalized and itinerant partiles, ould be alulated exatly in the limit oflarge dimensions [12,23,52℄ (but rigorous results onerning itinerant-partileorrelation funtions are still sare, see [24, 53, 54℄). As a result, many �-nite temperature harateristis of the model, inluding e.g. suseptibilitiesagainst external fores or transport properties ould be determined [55,56℄.The theory opens new opportunities for modeling strongly orrelated ele-tron systems, where alulated quantities ould be ompared and veri�ed byexperimental measurements. In our opinion, studies in this diretion will bedominating in oming years.
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