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The extended Hubbard model with pair-hopping (intersite charge ex-
change) interaction is studied. The effects of phase fluctuations on the
s-wave superconductivity of this system are discussed within the Kosterlitz—
Thouless scenario. For two-dimensional (SQ) lattice the evolution of the
superconducting critical temperature T¢, the pair formation temperature
T, and the Uemura-type plots (i.e. the plots of T, vs superfluid stiffness at
T = 0) with pairing strength is determined.

PACS numbers: 74.20.-z, 71.28.+d, 74.25.Ha

1. General formulation

The extended Hubbard model with pair hopping interaction i.e. the so-
called Penson—-Kolb—Hubbard (PKH) model is one of the conceptually sim-
plest phenomenological models for studying correlations and for description
of superconductivity of narrow band systems with short-range, almost un-
retarded pairing [1,2]. The model Hamiltonian has the form:
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where ¢ is the single electron hopping integral, U is the on-site density—

density interaction, J is the pair hopping (intersite charge exchange) inter-
action, y is the chemical potential, the limit (ij) restricts the sum to nearest
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neighbors (nn). The Peierls factors in Eq. (1) account for the coupling of
electrons to the magnetic field via its vector potential A(7):
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and e is the electron charge.

In the absence of the U term the Hamiltonian (1) reduces to the Penson—
Kolb (PK) model [3-5], whereas for J = 0 and U < 0 one gets the Hamilto-
nian of the Attractive Hubbard (AH) model [6-8].

Till now the PKH model has been investigated only in a few particular
limits [1,2]. The main efforts concerned the ground state properties of the
model in one dimension (d = 1) at half-filling (n = 1) [2]. For d-dimensional
hypercubic lattices the ground state diagrams of the Penson-Kolb-Hubbard
model have been determined by means of the (broken symmetry) Hartree—
Fock Approximation (HFA) and by the slave-boson mean field method in
Ref. [1]. At half filling the diagrams are shown to consist of at least nine
different phases including superconducting states, site and bond-located an-
tiferromagnetic and charge-density-waves states, as well as mixed phases
with coexisting site and bond orderings. The stability range of the bond-
type orderings shrinks with increasing lattice dimensionality d and for d = oo
the phase diagram involves exclusively site-located orderings.

In this paper we extend the investigations of the PKH model to the
case of finite temperatures. We will focus on the two-dimensional case with
arbitrary particle concentration (0 < n < 2) and J > 0 and discuss the
effects of phase fluctuations on the superconducting state of this system. We
will not analyse here the magnetic orderings which can develop in a definite
range of U > 0, J > 0 and n at T' = 0, and compete with superconductivity.
Our analysis is based on the (broken symmetry) HFA and the Kosterlitz—
Thouless (K-T) theory for d = 2 superfluid [5,7-10].

For A = 0 the free energy of the Superconducting (S) phase Fg is calcu-
lated to be:
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and the superconducting order parameter zs = 1/N . (¢; cit), the Fock
term p = 1/4N > . Yk (czgck(» and p are determined by the equations
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where By = \/e2 4+ A2 gy =ep—p, A= (-U+ Jo)zs, Jo=2J, e =
—t g, t=t+2pJ/z, v = 2y, coskq, & = z,y,..., z is the number of
nearest neighbours (z = 4 for SQ lattice) 8 = 1/kpT.

From Eqgs (3) one can calculate the HFA transition temperature T}, at
which the gap amplitude vanishes (A — 0) and which gives the estimation
of the pair-formation temperature [8].

Due to fluctuation effects the superconducting phase transition will occur
at the critical temperature T being lower than T},. For d = 2 lattice the Tt
can be derived within the K-T theory [7,9], using the K-T relation for the
universal jump of the superfluid stiffness pg at Tt

2 knT, = i (T2). @

The superfluid stiffness (helicity modulus) pg, being directly related to the
London penetration depth A, calculated within HFA-RPA scheme, is given
by
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2. Results and discussion

We have performed a quite extensive (analytical and numerical) analysis
of the thermodynamic and electromagnetic properties of the superconduct-
ing phase of the model (1) for d-dimensional hypercubic lattices (d > 2) and
arbitrary electron concentration (0 < n < 2) [10]. For SQ lattice examples of
the evolution of T, and T}, with a change of interaction parameters for fixed
n are shown in Figs 1 and 2, whereas Fig. 3 shows the plots of transition
temperatures as a function of n.

Except of the weak coupling regime there is a strong influence of the
phase fluctuations on the superconducting pairing and the results show a
clear separation of the energy scales for the pair formation (~ kgT}) and
the phase coherence (~ kpTt). The K-T transition temperature T, can be
much lower than T}, and for U < 0, Jy > 0 the highest reduction is observed
at small electron concentrations (cf. e.g. Fig. 3(a) and Ref. [5]). Notice also
that the difference between T}, and T, strongly increases with the increase
of on-site attraction U < 0 (¢f. Fig. 1).
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Fig. 1. Transition temperatures for the Penson—Kolb—Hubbard (PKH) model plot-
ted as a function of U/B for n = 0.75 and several fixed values of Jy/B = 0.5; 1.0.
Solid and dashed lines denote T, and T},, respectively. SQ lattice, B = 8t is the
bandwidth.

In the region between T}, and T. one has a state of incoherent s-wave
pairs. In this state the pseudo-gap in the quasiparticle energy spectrum will
open up and the system will exhibit non-Fermi liquid properties.

In Fig. 2 we have compared the plots of T, and T}, vs interaction for the
PK (U =0, J > 0) (Fig. 2(b)) and AH (U < 0, J =0) (Fig. 2(a)) models.
Except for the weak coupling limit the interaction dependences of T, are very
different in these two models. This is due to the nonlocal pairing mechanism
(intersite charge exchange) which makes the dynamics of electron pairs in the
PK model to be qualitatively different from that in the AH model [1,5,6] and
results in different thermodynamic and electrodynamic properties of both
models. In the AH model with increasing |U| the T, increases exponentially
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Fig. 2. Transition temperatures as a function of increasing interactions for (a) the
AH model (U < 0, Jo =0) and (b) the PK model (Jy > 0, U = 0) plotted for SQ
lattice and n = 0.5. Denotations as in Fig. 1.
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Fig. 3. Transition temperatures for the PKH model plotted as a function of n for
Jo/B =0.5and (a) U/B =0, (b) U/B = 0.3. SQ lattice, B = 8t is the bandwidth.

for small |U|, then it goes through a round maximum and it decreases as
t2/|U| for large coupling (cf. Fig. 2(a)). Analogous behavior is found for
the thermodynamic critical field H¢(0) [6,8]. On the contrary, in the PK
model there is no maximum of 7, and H2(0) at intermediate .J/t and both
these quantities increase linearly with J for large coupling (¢f. Fig. 2(b) and
Refs [1,5]).

Within the K-T scenario we have also derived the Uemura-type plots
for the superconducting phase of the model, and examples of the T, vs 1/)?
plots with controlling variable n (fixed Jo/B, U = 0) are shown in Fig. 4.
Similar plots have been recently deduced for the AH model [8] and the
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Fig.4. The Uemura-type plots: 2kgT./B vs A3/\?, with the controlling variable
n, for U = 0 and several fixed values of Jy/B. The straight dashed line gives
an upper bound for the phase ordering temperature mps(0)/2. A2/A\? = 4ps/B,

A3 = (he/e)?/(4nB).
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extended Hubbard model with intersite attraction [11,12]. Except for weak
coupling limit the T, vs 1/A\? curves have a shape similar to the experimental
Uemura’s plots [13,14] obtained for various classes of the short-coherence
length (“exotic”) superconductors, including the cuprates, bismuthates and
the organic materials, and for small n the points follow the universal 7pg(0)/2
line. One should stress that analogous plots with T}, cannot account for the
scaling [5,8,11,12].
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