# QUASI-TWO DIMENSIONAL FERMI SURFACES IN RARE EARTH AND URANIUM COMPOUNDS: $UX_2$ , CeTIn<sub>5</sub> AND UTGa<sub>5</sub>\*

Y. Ōnuki

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan Advanced Science Research Center, Japan Atomic Energy Research Institute Tokai, Ibaraki 319-1195, Japan

D. Aoki<sup>†</sup>, P. Wiśniewski, H. Shishido, S. Ikeda, Y. Inada R. Settai

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Y. TOKIWA, E. YAMAMOTO, Y. HAGA, T. MAEHIRA

Advanced Science Research Center, Japan Atomic Energy Research Institute Tokai, Ibaraki 319-1195, Japan

H. HARIMA

The Institute of Scientific and Industrial Research, Osaka University Ibaraki, Osaka 567-0047, Japan

 $M. \,\, Higuchi$ 

Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8571, Japan

A. Hasegawa

Faculty of Science, Niigata University, Niigata 950-2181, Japan

and H. Yamagami

Faculty of Science, Department of Physics, Kyoto Sangyo University Kita-ku, Kyoto 603-8555, Japan

(Received June 21, 2001)

We present the quasi-two dimensional Fermi surface studies in rare earth and uranium compounds such as  $UX_2$  (X: Bi, Sb, As and P) and  $RTIn_5$  (R: rare earth, T: Co, Rh and Ir), together with  $UTGa_5$ . The present quasi-two dimensionality is closely related to the magnetic unit cell and/or the unique crystal structure elongated along the tetragonal [001] direction, which bring about a flat Brillouin zone and produce cylindrical but highly corrugated Fermi surfaces along [001].

PACS numbers: 71.18.+y, 71.28.+a

<sup>\*</sup> Presented at the XII School of Modern Physics on Phase Transitions and Critical Phenomena, Lądek Zdrój, Poland, June 21–24, 2001.

 $<sup>^\</sup>dagger$  Present address: DRFMC-SPSMS, CEA, 38054 Grenoble Cedex 9, France.

## 1. Introduction

The f electrons of rare earth and uranium compounds exhibit a variety of characteristics including spin and valence fluctuations, heavy fermions and anisotropic superconductivity [1]. In these compounds, both the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo effect compete with each other. Competition between the RKKY interaction and the Kondo effect was discussed by Doniach in terms of a function of  $|J_{cf}| D(\varepsilon_F)$ , where  $|J_{cf}|$  is a magnitude of the magnetic exchange interaction and  $D(\varepsilon_F)$  is the electronic density of states at the Fermi energy  $\varepsilon_F$  [2]. Most of the cerium compounds order magnetically, because the RKKY interaction overcomes the Kondo effect at low temperatures. On the other hand, some cerium compounds such as CeCu<sub>6</sub> and CeRu<sub>2</sub>Si<sub>2</sub> indicate no long-range magnetic order, forming the heavy fermion state at low temperatures.

The heavy fermion state is roughly understood as follows. The 4f levels of the Ce ions are generally split into three Crystalline Electric Field (CEF)-doublets at high temperatures because the 4f electrons in the Ce compounds are almost localized in nature. At low temperatures, the magnetic entropy of the ground-state doublet in the 4f levels,  $R \ln 2$ , is expressed by integrating the magnetic specific heat  $C_{\rm m}$  in the form of  $C_{\rm m}/T$ over the temperature. When the magnetic specific heat  $C_{\rm m}$  is changed into the electronic specific heat  $\gamma T$  via the many-body Kondo effect, the heavy fermion state is formed below the Kondo temperature  $T_{\rm K}$ :  $\gamma = R \ln 2/T_{\rm K} \simeq$  $10^4/T_{\rm K} ({\rm mJ/K}^2 {\rm mol})$  [1,3]. In fact, the electronic specific heat coefficient  $\gamma$  and the Kondo temperature are 1600 mJ/K<sup>2</sup> mol and 5 K in CeCu<sub>6</sub>, and 350 mJ/K<sup>2</sup> mol and 20 K in CeRu<sub>2</sub>Si<sub>2</sub>, respectively.

The de Haas-van Alphen (dHvA) effect provides a powerful tool for determining the topology of the Fermi surface, the cyclotron effective mass  $m_c^*$  and the scattering lifetime of the conduction electron. Here, the dHvA voltage  $V_{\rm osc}$  is obtained in the so-called  $2\omega$  detection of the field modulation method, following the Lifshitz-Kosevich formula: [1]

$$V_{\rm osc} = A \sin\left(\frac{2\pi F}{H} + \phi\right),\tag{1}$$

$$A \propto J_2(x)TH^{-1/2} \frac{\exp(-\alpha m_c^* T_D/H)}{\sinh(\alpha m_c^* T/H)},$$
(2)

$$\alpha = \frac{2\pi^2 c k_{\rm B}}{e\hbar}, \qquad (3)$$

and

$$x = \frac{2\pi Fh}{H^2},\tag{4}$$

where  $J_2(x)$  is the Bessel function which depends on the dHvA frequency F,

the modulation field h and the magnetic field strength H. The dHvA frequency  $F \left(=\frac{\hbar c}{2\pi e} S_{\rm F}\right)$  is proportional to the extremal (maximum or minimum) cross-sectional area  $S_{\rm F}$  of the Fermi surface and  $T_{\rm D} \left(=\frac{\hbar}{2\pi k_{\rm B}} \tau^{-1}\right)$  is the Dingle temperature which is inversely proportional to the scattering lifetime  $\tau$ .

Recently quasi-two dimensional Fermi surfaces were observed even in rare earth and uranium compounds. This quasi-two dimensionality is closely related to the magnetic unit cell and/or the crystal structure elongated along the *c*-axis of the tetragonal or hexagonal crystal structure, which bring about a flat Brillouin zone and produce cylindrical Fermi surfaces along the *c*-axis. Typical examples are UX<sub>2</sub> (X: Bi, Sb, As, P) [4] and CePtX(X:As, P) [5]. Furthermore, new heavy fermion superconductors of CeIrIn<sub>5</sub> and CeCoIn<sub>5</sub> or a pressure-induced superconductor of CeRhIn<sub>5</sub> with the tetragonal crystal structure are also quasi-two dimensional. We present in this paper quasitwo dimensional Fermi surfaces of UX<sub>2</sub> and CeTIn<sub>5</sub> (T: transition atom), together with UTGa<sub>5</sub>.

#### 2. dHvA studies in quasi-two dimensional compounds

# 2.1. Cylindrical Fermi surfaces formed by a flat magnetic Brillouin zone in uranium dipnictides

Uranium dipnictides UX<sub>2</sub> (X = Bi, Sb and As) crystallize in the tetragonal structure of anti-Cu<sub>2</sub>Sb type ( $D_{4h}^7$  or P4/nmm), where the crystal structure of UP<sub>2</sub> is slightly different from that of UX<sub>2</sub> [6]. They order antiferromagnetically. Magnetic moments of uranium ions are aligned ferromagnetically in the (001) planes, which are stacked along the [001] direction in an antiferromagnetic ( $\uparrow\downarrow$ ) sequence in UBi<sub>2</sub> [7]. In the case of USb<sub>2</sub>, UAs<sub>2</sub> and UP<sub>2</sub>, this sequence is ( $\uparrow\downarrow\downarrow\uparrow\uparrow$ ) [7–9]. It is worth mentioning here that the magnetic unit cell of USb<sub>2</sub>, UAs<sub>2</sub> and UP<sub>2</sub> is doubled with respect to the chemical unit cell along [001], which brings about a flat magnetic Brillouin zone. Here ordered moments and the Néel temperatures are  $\mu_{ord} = 2.1$ , 1.88, 1.61 and 2.0  $\mu_{\rm B}/\rm U$ , and  $T_{\rm N} = 183$ , 203, 273 and 201 K for X = Bi, Sb, As and P, respectively [10].

First we show the results of the dHvA effect in UBi<sub>2</sub>. Figure 1 shows the angular dependence of the dHvA frequency in UBi<sub>2</sub>. It follows the  $1/\cos\theta$ -dependence for the branch  $\beta$  or  $\beta'$  up to 81°. A solid line for these branches in Fig. 1 shows the  $1/\cos\theta$ -dependence. This result indicates that the branch  $\beta$  or  $\beta'$  originates from a cylindrical but slightly corrugated Fermi surface. In contrast to the branches  $\beta$  and  $\beta'$ , the dHvA frequency of the branch  $\alpha$  is almost constant against the field angle, meaning that the branch  $\alpha$  originates from a nearly spherical Fermi surface. We determined the cyclotron effective



Fig. 1. Angular dependence of the dHvA frequency in  $UBi_2$ .

mass  $m_c^*$  from the temperature dependence of the dHvA amplitude by using Eq. (2). The cyclotron mass was determined as  $9.2 m_0$  for the branch  $\alpha$ ,  $6.3 m_0$  for  $\beta'$  and  $4.4 m_0$  for  $\beta$ . The masses are rather large because the corresponding Fermi surfaces have small cross-sections.

Next we show the dHvA results for USb<sub>2</sub>. Figure 2 shows the angular dependence of the dHvA frequency in USb<sub>2</sub>. It follows the  $1/\cos\theta$ -dependence for branches  $\alpha$ ,  $\gamma$ ,  $\delta$  and  $\varepsilon$ . These results also indicate that branches  $\alpha$ ,  $\gamma$ ,  $\delta$  and  $\varepsilon$  originate from cylindrical but slightly corrugated Fermi surfaces. The cyclotron mass was determined as  $3.8 m_0$  for the branch  $\alpha$ ,  $6.0 m_0$  for  $\gamma$ ,  $3.8 m_0$  for  $\delta$  and  $2.0 m_0$  for  $\varepsilon$ .

The Fermi surfaces in UBi<sub>2</sub> consist of a cylindrical Fermi surface named  $\beta$  and a spherical one named  $\alpha$ . The volume of the cylindrical Fermi surface occupies 4.8 % of the magnetic Brillouin zone, whereas the spherical Fermi surface occupies 9.9 %. As the magnetic unit cell contains two molecules of UBi<sub>2</sub>, UBi<sub>2</sub> is a compensated metal with equal carrier numbers of electrons and holes. If we assume that there are one spherical hole-Fermi surface and two cylindrical electron-Fermi surfaces in the Brillouin zone, the number of carriers is well compensated, where the holes and the electrons occupy 9.9 % and 9.6 % of its volume, respectively. We show in Fig. 3 (a) a Brillouin zone and the corresponding Fermi surfaces.



Fig. 2. Angular dependence of the dHvA frequency in  $USb_2$ .



Fig. 3. Schematic magnetic Brillouin zone and the Fermi surfaces (a) for the branches  $\alpha$  and  $\beta$  in UBi<sub>2</sub> (b) for the branches  $\alpha$ ,  $\gamma$ ,  $\delta$  and  $\varepsilon$  in USb<sub>2</sub>.

Furthermore we calculated the  $\gamma$  value from these Fermi surfaces. The estimated  $\gamma$  values from the branches  $\alpha$  and  $\beta$  are  $\gamma_{\alpha} = 8.1$  and  $\gamma_{\beta} = 4.9 \,\mathrm{mJ/K^2}$  mol, respectively. The total  $\gamma$  value is thus  $\gamma_{m_c^*} = \gamma_{\alpha} + 2\gamma_{\beta} = 18 \,\mathrm{mJ/K^2}$  mol, which is in good agreement with  $20 \,\mathrm{mJ/K^2}$  mol determined from the specific heat measurement.

A very flat magnetic Brillouin zone is realized in the antiferromagnetic state of  $USb_2$ , although the Brillouin zone in the paramagnetic state is the same as that in  $UBi_2$ . It is thus expected that the Fermi surface in  $USb_2$  is approximately the same as that in  $UBi_2$  in the paramagnetic state, although it is modified in the antiferromagnetic state due to the flat magnetic Brillouin zone.

From the angular dependence of the dHvA frequency in Fig. 2, it is seen that all the Fermi surfaces are cylindrical in USb<sub>2</sub>. The detected cylindrical Fermi surfaces occupy in the magnetic Brillouin zone 16.8% for the branch  $\alpha$ , 7.9% for the branch  $\gamma$ , 5.4% for the branch  $\delta$  and 3.3% for the branch  $\varepsilon$ . As the magnetic unit cell contains four molecules of USb<sub>2</sub>, USb<sub>2</sub> is a compensated metal with equal carrier numbers of electrons and holes. To compensate the numbers of the carriers, we assume as follows:

one hole-Fermi surface from the branch  $\alpha$ , one hole-Fermi surface from the branch  $\delta$ , two electron-Fermi surfaces from the branch  $\gamma$  and two electron-Fermi surfaces from the branch  $\varepsilon$ .

The electron-Fermi surfaces thus occupy 22 % and the hole-Fermi surfaces occupy 22 %, well compensated. Figure 3 (b) shows the flat magnetic Brillouin zone and the corresponding Fermi surfaces in USb<sub>2</sub>. The  $\gamma$  value is also consistent with this scheme of the Fermi surfaces.

Experimental results are summarized as follows:

- (1) The Fermi surfaces of UBi<sub>2</sub> are found to consist of one spherical Fermi surface and two cylindrical ones.
- (2) Each Fermi surface in UBi<sub>2</sub> splits into two cylindrical Fermi surfaces in USb<sub>2</sub>, which are well explained by the band-folding procedure in a flat magnetic Brillouin zone.
- (3) The quasi-two-dimensional character of these Fermi surfaces is mainly due to the conduction electrons in the U-plane, including the 5f electrons because the cyclotron mass is large.

## 2.2. Quasi-two dimensional Fermi surface originated from the unique tetragonal crystal structure in RTIn<sub>5</sub> and UTGa<sub>5</sub>

CeRhIn<sub>5</sub> orders antiferromagnetically below  $T_{\rm N} = 3.8$  K, whereas superconductivity was observed under pressure, p > 1.6 GPa [11]. It was also reported that CeIrIn<sub>5</sub> and CeCoIn<sub>5</sub> are heavy fermion superconductors at ambient pressure [12–15]. The transition temperature  $T_{\rm c}$  and the  $\gamma$  value are 0.4 K and 680 mJ/K<sup>2</sup> mol in CeIrIn<sub>5</sub>, and 2.3 K and 300-1000 mJ/K<sup>2</sup> mol in CeCoIn<sub>5</sub>. Here, the  $\gamma$  value in CeCoIn<sub>5</sub> is about 300 mJ/K<sup>2</sup> mol at  $T_{\rm c}$  but increases with decreasing the temperature, reaching about 1000 mJ/K<sup>2</sup> mol at 0.1 K, which was obtained by the specific heat measurement in magnetic fields [15].

These characteristic properties in CeTIn<sub>5</sub> are closely related to the unique tetragonal crystal structure (P4/mmm #123  $D_{4h}^1$ ) with alternating layers of CeIn<sub>3</sub> and TIn<sub>2</sub> (T: Co, Rh and Ir), stacked sequentially along the [001] direction (*c*-axis), as shown in Fig. 4.



Fig. 4. Tetragonal crystal structure of RTIn<sub>5</sub>.

First we will show the dHvA experiment for a non-4f reference compound LaRhIn<sub>5</sub> [16]. Figure 5(a) shows the angular dependence of the dHvA frequency. The dHvA branches  $\alpha_i$  (i=1, 2 and 3) as well as  $\beta_2$  follow roughly the 1/cos  $\theta$ -dependence, where  $\theta$  means a field angle tilted from [001] to [100] or [110]. This angular dependence claims that the corresponding Fermi surface is nearly cylindrical.

Figure 5(b) shows the theoretical dHvA frequency calculated in the scheme of the FLAPW method within the local-density approximation. The magnitude and angular dependence of the dHvA frequency in Fig. 5(a) are the same as theoretical ones in Fig. 5(b), except dHvA branch  $\varepsilon_1$ .



Fig. 5. (a) Angular dependence of the dHvA frequency and (b) the theoretical one in LaRhIn<sub>5</sub>.

These dHvA branches are well identified by the theoretical Fermi surface in Fig. 6. The dHvA branches  $\alpha_i$  are due to a band 15-electron Fermi surface whose topology is nearly cylindrical but is highly corrugated, having maximum and minimum cross-sections. Branches  $\beta_i$  are also due to a highlycorrugated band 14-electron Fermi surface. This Fermi surface has a convex part stretching along the [110] direction. This is a main reason why the dHvA frequency of branch  $\beta_1$  has a minimum at about  $\theta = 30^\circ$ , tilted from [001] to [100] or [110]. Branches  $\varepsilon_i$  are due to a band 13-hole Fermi surface, forming a network or a lattice. The orbit  $\varepsilon_1$  in Fig. 6(a) was, however, not detected experimentally, which is most likely due to the damping of the dHvA amplitude based on a curvature factor of this Fermi surface.

Next, the dHvA experiment for CeRhIn<sub>5</sub> was carried out in the antiferromagnetic state [16,17]. Figure 7 shows the angular dependence of the dHvA frequency. Main three branches are named  $\beta_2$ ,  $\alpha_1$ , and  $\alpha_3$ . To identify these branches, we compare them to those of LaRhIn<sub>5</sub> and CeCoIn<sub>5</sub>, as shown in Fig. 8. If the 4*f* electrons in CeRhIn<sub>5</sub> are localized and the Fermi surface



Fig. 6. Theoretical (a) band 13-hole, (b) band 14-electron and (c) band 15-electron Fermi surfaces in LaRhIn<sub>5</sub>.



Fig. 7. Angular dependence of the dHvA frequency in CeRhIn<sub>5</sub>.

is not affected by the small magnetic Brillouin zone, the Fermi surface in CeRhIn<sub>5</sub> should be the same as that of LaRhIn<sub>5</sub>. On the other hand, if the 4f electrons are itinerant as in CeIrIn<sub>5</sub> and CeCoIn<sub>5</sub>, the Fermi surface of CeRhIn<sub>5</sub> should be the same as that of CeCoIn<sub>5</sub>. Note that the topology of the Fermi surface is approximately the same between CeIrIn<sub>5</sub> and CeCoIn<sub>5</sub>, which were well explained by the 4f-itinerant model as shown below [18,19].

A dHvA frequency with  $F=6.13 \times 10^3$  T of branch  $\beta_2$  in CeRhIn<sub>5</sub> is the same as  $6.13 \times 10^3$  T in LaRhIn<sub>3</sub>, but is smaller than  $7.35 \times 10^3$  T in CeCoIn<sub>5</sub>. The dHvA frequencies of branches  $\alpha_1$  and  $\alpha_{2,3}$  in CeRhIn<sub>5</sub> are also the same as those of LaRhIn<sub>5</sub>, but are smaller than those of CeCoIn<sub>5</sub>, as shown in Fig. 8.



Fig. 8. Angular dependence of main dHvA frequencies in (a) LaRhIn<sub>5</sub>, (b) CeRhIn<sub>5</sub> and (c) CeCoIn<sub>5</sub>.

From these experimental results we can conclude that the contribution of the 4f electrons to the volume of the Fermi surface in CeRhIn<sub>5</sub> is negligibly small. We note that there are so many dHvA branches in CeRhIn<sub>5</sub> compared to those in LaRhIn<sub>5</sub>. This might be approximated by a band-folding procedure where the paramagnetic Fermi surface of CeRhIn<sub>5</sub>, which is almost the same as that of LaRhIn<sub>5</sub>, is folded into a small magnetic Brillouin zone based on a large magnetic unit cell, producing small Fermi surfaces. Branches  $\beta_2$ ,  $\alpha_1$  and  $\alpha_{2,3}$  are most likely formed by the conduction electrons which break through the antiferromagnetic Brillouin zone boundary and circulate around the original paramagnetic Fermi surface and/or some of these branches are not affected by the magnetic Brillouin zone.

On the other hand, the cyclotron effective mass of CeRhIn<sub>5</sub> is large compared to that of LaRhIn<sub>5</sub>. The cyclotron mass is 5.5  $m_0$  in branch  $\beta_2$ , 6.0  $m_0$  in branch  $\alpha_1$  and 3.5  $m_0$  in branch  $\alpha_{2,3}$ . The corresponding mass in LaRhIn<sub>5</sub> is 0.73  $m_0$ , 0.69  $m_0$  and 0.51&0.64  $m_0$ , respectively. The ratio of the mass of CeRhIn<sub>5</sub> to that of LaRhIn<sub>5</sub> is about 7–9. On the other hand, the ratio of the  $\gamma$  value of CeRhIn<sub>5</sub> to that of LaRhIn<sub>5</sub> is about 9, where  $\gamma \simeq 50$  mJ/K<sup>2</sup> mol in CeRhIn<sub>5</sub> and 5.7 mJ/K<sup>2</sup> mol in LaRhIn<sub>5</sub>. Both ratios are approximately consistent. These experimental results are almost the same as the recent results in CeRhIn<sub>5</sub> [20,21]. For example, main branches  $\beta_2$  and  $\alpha_{2,3}$  were observed:  $F=6.120\times10^3$  T ( $m_c^*=6.1\pm0.3 m_0$ ) and  $F=3.600\times10^3$  T ( $m_c^*=4.6\pm1.0 m_0$ ), respectively.

We would like to clarify the 4f-electronic nature in CeCoIn<sub>5</sub>. Figure 9 shows the angular dependence of dHvA frequency in CeCoIn<sub>5</sub>. The dHvA branches in Fig. 9(a) are well identified by the 4f-itinerant band model, where Figure 9(b) shows the angular dependence of the theoretical dHvA frequency in CeCoIn<sub>5</sub>. Main branches  $\alpha_i$  and  $\beta_i$  in Fig. 9 are identified by theoretical Fermi surfaces in Fig. 10.



Fig. 9. (a) Angular dependence of the dHvA frequency and (b) the theoretical one in  $CeCoIn_5$ .

Fermi surfaces in CeCoIn<sub>5</sub> are similar to those of LaRhIn<sub>5</sub>, although the size of each Fermi surface is different between them. A similar relation is present between the Fermi surface of Pb with four valence electrons and that of Al with three valance electrons. If one 4f-electron in each Ce site becomes a conduction electron in CeCoIn<sub>5</sub>, the volume of the band 13-hole Fermi surface in LaRhIn<sub>5</sub>, shown in Fig. 6(a), is shrunken, changing into two kinds of small closed Fermi surfaces in CeCoIn<sub>5</sub>, as shown in Fig. 10(a). Correspondingly, the band 14- and 15-electron Fermi surfaces are expanded



Fig. 10. Theoretical Fermi surfaces in CeCoIn<sub>5</sub>.

in volume. The band 14- and 15-electron Fermi surfaces in Fig. 6(b) and (c) are changed into Fermi surfaces in Fig. 10(b) and (c), respectively. This is a reason why the dHvA frequencies of  $\beta_i$  and  $\alpha_i$  in CeCoIn<sub>5</sub> are larger than those in LaRhIn<sub>5</sub>.



Fig. 11. (a) Temperature dependence of the specific heat  $C_{\rm e}$  in the form of  $C_{\rm e}/T$  under H=0, 6 and 8 T. (b) Field dependence of the cyclotron mass in CeCoIn<sub>5</sub>.

As shown in Fig. 11, the cyclotron mass of CeCoIn<sub>5</sub> is extremely large. For example, the mass of  $\beta_i$  is about 80  $m_0$  at 10 T. The cyclotron mass is strongly field-dependent, where 80  $m_0$  at 10 T is reduced to 50  $m_0$  at 16 T for branch  $\beta_i$  [19]. A large cyclotron mass over 100  $m_0$  is expected at lower fields than 10 T, consistent with the specific heat coefficient in magnetic fields. Similar dHvA results are obtained in CeIrIn<sub>5</sub> [18].

UTGa<sub>5</sub> (T: transition atom) has also the HoCoGa<sub>5</sub>-type tetragonal crystal structure as in RTIn<sub>5</sub>. Here we present dHvA results in a series of UTGa<sub>5</sub>, namely Pauli paramagnets of UFeGa<sub>5</sub> and UCoGa<sub>5</sub>, and an antiferromagnet UPtGa<sub>5</sub>.

We show in Fig. 12(a) the angular dependence of the dHvA frequency in UFeGa<sub>5</sub> [22], together with the theoretical one in Fig. 12(b). Branches  $\alpha_i$  show roughly a 1/cos $\theta$ -dependence of the dHvA frequency. Branches  $b_i$ are disconnected in the angular dependence, indicating a multiply-connected Fermi surface. The origin of these detected dHvA branches is well explained on the basis of the theoretical Fermi surfaces in Fig. 13. Namely, branches  $\alpha_i$  are due to a highly corrugated but cylindrical Fermi surface, and  $a_i$  and  $b_i$  are due to a lattice like structure in the band 15.



Fig. 12. Angular dependence of the (a) dHvA frequency and (b) the theoretical one in UFeGa<sub>5</sub>.

We will compare the Fermi surface of UFeGa<sub>5</sub> with valence electrons of U( $5f^{3}6d^{1}7s^{2}$ ), Fe( $3d^{6}4s^{2}$ ) and Ga( $4s^{2}4p^{1}$ ) to that of CeCoIn<sub>5</sub> with valence electrons of Ce( $4f^{1}5d^{1}6s^{2}$ ), Co( $3d^{7}4s^{2}$ ) and In( $5s^{2}5p^{1}$ ). CeCoIn<sub>5</sub> is a compensated metal with equal volumes of electron- and hole-Fermi sur-



Fig. 13. Fermi surface of (a) band 14-holes, (b) band 15-electrons in UFeGa<sub>5</sub>.

faces. If the band 14-hole Fermi surface in  $CeCoIn_5$  is almost fully occupied by an electron and also the volume of the band 15-electron Fermi surface is slightly enlarged, these Fermi surfaces correspond to the band 14-small hole Fermi surfaces and the band 15-large electron ones, respectively, in UFeGa<sub>5</sub>. In CeCoIn<sub>5</sub> we could not observe the lattice-structure like band 15-electron Fermi surface, while the corresponding Fermi surface was detected completely in UFeGa<sub>5</sub>. We suppose that the lattice-structure like band 15-Fermi surface is not present and/or is changed into small closed Fermi surfaces in CeCoIn<sub>5</sub>.

The 5f electrons in UFeGa<sub>5</sub> are highly itinerant compared to the 4f electrons in CeCoIn<sub>5</sub>. The cyclotron mass in UFeGa<sub>5</sub> is relatively large: 9.2, 4.6 and 8.0  $m_0$  for  $\alpha_i$  (*i*=1, 2 and 3), respectively.

In UCoGa<sub>5</sub> we observed dHvA branches with small dHvA frequencies, as shown in Fig. 14. This means that UCoGa<sub>5</sub> is a semimetal. The Fermi surface most likely consists of small band 15-hole Fermi surfaces and small band 16-electron Fermi surfaces, because one more valence electron is added, compared to that in UFeGa<sub>5</sub>. In fact, a volume of one ellipsoidal Fermi surface (branch *a*) is equal to a volume of two pieces of ellipsoidal Fermi surfaces (branch *b*) and four pieces of ellipsoidal Fermi surfaces (branch *c*):  $V_a = 2V_b + 4V_c$  ( $V_a$ =0.0059  $V_{\rm BZ}$ ,  $V_b$ =0.0019  $V_{\rm BZ}$  and  $V_c$ =0.0005  $V_{\rm BZ}$ ), where  $V_{\rm BZ}$  is a volume of the Brillouin zone.

Finally we show in Fig. 15 the angular dependence of the dHvA frequency in an antiferromagnet UPtGa<sub>5</sub> with  $T_{\rm N}=25$  K and an ordered moment of  $0.25 \,\mu_{\rm B}/\rm{U}$ . Most of the dHvA branches indicate the  $1/\cos\theta$ -dependence, claiming cylindrical Fermi surfaces. The magnetic unit cell of UPtGa<sub>5</sub> is doubled with respect to the chemical unit cell along [001], which brings about a flat magnetic Brillouin zone as in USb<sub>2</sub>. This is a main reason on the existence of the cylindrical Fermi surfaces in UPtGa<sub>5</sub>. The cyclotron mass is in the range of 10 to 25  $m_0$  for [001], reflecting the  $\gamma$  value of 57 mJ/K<sup>2</sup> mol.



Fig. 14. Angular dependence of the dHvA frequency in UCoGa<sub>5</sub>.



Fig. 15. Angular dependence of the dHvA frequency in UPtGa<sub>5</sub>.

#### 3. Concluding remark

High-quality single crystals, low temperatures and strong magnetic fields are fundamentally necessary to demonstrate the dHvA measurement for the strongly correlated electron systems. At present, the carrier with a large cyclotron mass over 100  $m_0$  is detected in the dHvA experiment for CeRu<sub>2</sub>Si<sub>2</sub>, UPt<sub>3</sub> and CeCoIn<sub>5</sub>, reflecting the  $\gamma$  value of 57 mJ/K<sup>2</sup> mol.

Quasi-two dimensionality in rare earth and uranium compounds is closely related to the magnetic unit cell and/or the unique crystal structure as well as the corresponding electronic state. In UX<sub>2</sub>, the conduction electrons are 5f, 6d and 7s electrons in the U-plane. It is expected that these conductive U-planes are separated by the nearly non-conductive X-planes, bringing about the quasi-two dimensional electronic state. The magnetic unit cell, doubled with respect to the chemical unit cell along [001], enhances two dimensionality because the unit length along [001] in the Brillouin zone becomes half and correspondingly each Fermi surface is band-folded in the flat Brillouin zone.

The similar quasi-two dimensionality is also realized in the unique tetragonal crystal structure of RTIn<sub>5</sub> and UTGa<sub>5</sub>. It was demonstrated that the topology of the Fermi surface in UFeGa<sub>5</sub> is well explained by the 5f-itinerant band model, compared to that in CeCoIn<sub>5</sub>. This indicates that the 5felectrons are itinerant as the 3d electrons, while the 4f electrons become itinerant via the many-body Kondo effect at low temperatures. A different mechanism between them results in a different cyclotron effective mass between them.

The present work was financially supported by a Grant-in-Aid for Scientific Research COE(10CE2004) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture.

## REFERENCES

- Y. Onuki, T. Goto, T. Kasuya, Mater. Sci. Technol., Vol. 3A, Chap. 7, ed. K.H.J. Buschow VCH, Weinheim 1991, p. 545.
- [2] S. Doniach, *Physica* **B91**, 231 (1977).
- [3] Y. Onuki, Y. Inada, H. Ohkuni, R. Settai, N. Kimura, H. Aoki, Y. Haga, E. Yamamoto, *Physica* B280, 276 (2000).
- [4] D. Aoki, P. Wiśniewski, K. Miyake, N. Watanabe, Y. Inada, R. Settai, E. Yamamoto, Y. Haga, Y. Onuki, *Philos. Mag.* B80, 1517 (2000).
- [5] R. Settai, Y. Yoshida, A. Yamaguchi, Y. Onuki, S. Yoshii, M. Kasaya, H. Harima, K. Takegahara, J. Phys. Soc. Jpn. 68, 3615 (1999).

- [6] P. Wiśniewski, D. Aoki, N. Watanabe, R. Settai, Y. Haga, E. Yamamoto, Y. Ōnuki, J. Phys. Soc. Jpn. 70, 278 (2001).
- [7] J. Leciejewicz, R. Troć, A. Murasik, A. Zygmunt, *Phys. Status Solidi* 22, 517 (1967).
- [8] R. Troć, J. Leciejewicz, R. Ciszewski, Phys. Status Solidi 15, 515 (1966).
- [9] A. Oleś, J. Phys. 26, 561 (1965).
- [10] G. Amoretti, A. Blaise, J. Mulak, J. Magn. Magn. Mater. 42, 65 (1984).
- [11] H. Hegger, C. Petrovic, E.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, *Phys. Rev. Lett.* 84, 4986 (2000).
- [12] J.D. Thompson, R. Movshovich, N.J. Curro, P.C. Hammel, M.F. Hundley, M. Jaime, P.G. Pagliuso, J.L. Sarrao, C. Petrovic, Z. Fisk, F. Bouquet, R.A. Fisher, printed in *J. Magn. Magn. Mater.* (ICM'2000, Recife, Brazil).
- [13] R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, J.L. Sarrao, *Phys. Rev. Lett.* 86, 5152 (2001).
- [14] C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, *Europhys. Lett.* 53, 354 (2001).
- [15] C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001).
- [16] H. Shishido, R. Settai, D. Aoki, S. Ikeda, N. Nakamura, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato, Y. Onuki, submitted to *J. Phys. Soc. Jpn.*
- [17] T. Takeuchi, T. Inoue, K. Sugiyama, D. Aoki, Y. Tokiwa, Y. Haga, K. Kindo, Y. Ōnuki, J. Phys. Soc. Jpn. 70, 877 (2001).
- [18] Y. Haga, Y. Inada, H. Harima, K. Oikawa, M. Murakawa, H. Nakawaki, Y. Tokiwa, D. Aoki, H. Shishido, S. Ikeda, N. Watanabe, Y. Ōnuki, *Phys. Rev.* B63, 060503(R) (2001).
- [19] R. Settai, H. Shishido, S. Ikeda, Y. Murakawa, M. Nakashima, D. Aoki, Y. Haga, H. Harima, Y. Onuki, J. Phys.: Condens. Matter 13, L627 (2001).
- [20] A.L. Cornelius, A.J. Arko, J.L. Sarrao, M.F. Hundley, Z. Fisk, *Phys. Rev.* B62, R14181 (2000).
- [21] D. Hall, E. Palm, T. Murphy, S. Tozer, E. Miller-Ricci, L. Peabody, C.Q.H. Li, U. Alver, R.G. Goodrich, J.L. Sarrao, P.G. Pagliuso, J.M. Wills, Z. Fisk, preprint.
- [22] Y. Tokiwa, T. Maehira, S. Ikeda, Y. Haga, E. Yamamoto, A. Nakamura Y. Ōnuki, M. Higuchi, A. Hasegawa, submitted to J. Phys. Soc. Jpn.