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Heavy-fermion systems are modelled by the Periodic Anderson Model (PAM)
in the limit of infinite dimensions (d — oc), in which the local approximation for
the selfenergy or the Dynamical Mean-Field Theory (DMFT), respectively, be-
come exact. As a consequence, vertex corrections for transport quantities vanish,
which means that transport quantities like the conductivity (resistivity) and the
thermoelectric power can be calculated from the selfenergy. Different approxima-
tions are used to determine the selfenergy, namely the Second Order Perturbation
Theory (SOPT) for the PAM and a Modified Perturbation Theory (MPT) within
a DMFT-mapping of the PAM on an effective Single-Impurity Anderson Model
(SIAM). The MPT reproduces the SOPT for the STAM for weak interactions and
simultaneously fulfills the atomic limit. Both approximations yield an f-electron
spectral function at the chemical potential which is strongly temperature de-
pendent and decreases on a characteristic temperature scale T approaching a
constant value for high temperatures. This characteristic low temperature T
can be interpreted as the Kondo temperature within these approximations, but
T does not yet have the characteristic (exponential, non-analytic) dependence
on the model parameters expected from the Schrieffer—Wolff transformation. The
resistivity R(T) obtained shows qualitatively exactly the behavior, which is char-
acteristic for heavy-fermion systems, namely a low value for zero temperature,
a T? increase for low temperatures, a maximum exactly at T*, and R(T) de-
creases with increasing T for higher temperatures T' > T*. The thermoelectric
power obtained is absolutely very large (of the magnitude 10~* V/K), and it
has an extremum at a temperature, which scales linearly with T™; the absolute
value at the extremum even becomes larger with increasing 7. The influence of
impurity scattering (alloying) was also investigated treating the disorder within
the Coherent Potential Approximation (CPA). Possible extensions of these inves-
tigations to include crystal-field effects are discussed.
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1. Introduction

The unusual transport properties of Heavy Fermion Systems (HFS) con-
taining Ce and Yb ions are still not properly understood. Pure metallic HF'S,
for example CePd3 [1]|, CeCug [2], have a small zero temperature resistivity
R(T = 0), a sharp increase of R(T') for low temperature 7', a maximum at
some characteristic temperature 7%, and a R(T) decreasing with increas-
ing T, i.e. a Negative Temperature Coefficient (NTC), for higher tempera-
tures. Another interesting transport quantity is the Thermoelectric Power
(TEP); for early monographs on the TEP of metals and alloys see [3]. In
HFS the thermoelectric power S(T') is often non-monotonic, and in some
systems one observes a sign change at lowest temperatures [4-11]; above
100° K the thermopower can assume giant values, and much of the recent
interest in the heavy fermion thermo-electricity is due to the belief that some
of the new systems, with the thermopower larger than 150 4V /K, might be
useful for application. The low temperature behavior can be very sensitive
to alloying and external pressure. Substituting Ce-ions in stoichiometric
CePdj systems by non-magnetic La-ions creates “Kondo holes”, and a con-
centration of only a few percent may be sufficient to obtain a R(T') showing
only a NTC |2]. For the TEP the behavior with a negative minimum at low
temperatures and a broad positive high-temperature peak between 100° K
and 200° K in systems like CeCusySiy, [5], CeCuaGes, [7], CePdsySis, [7] can
change into a behavior with no sign change and two positive maxima or
a shoulder on the low temperature side of the large S(T') peak in systems
like Ce;_.Y.CusSis [8] or CeCuyGey under alloying or under external pres-
sure.

2. Models

It is well accepted that the basic electronic properties of HFS are de-
scribed by the periodic Anderson model, which contains a conduction band,
strongly correlated f-levels localized at the sites of a lattice simulating the
rare-earth or actinide ions, and a hybridization between f-states and con-
duction electron states. For real rare earth or actinide atoms or ions the
f-shells are highly degenerate, namely 14-fold degenerate in the bare (hy-
drogen like) atom, which is splitted into a 6- and an 8-fold degenerate level
due to spin-orbit coupling, and this degeneracy is further reduced in a crys-
tal due to crystalline electric fields so that the lowest f-level may be only
two-fold degenerate. But the Crystal Field (CF) split level is thermally
accessible so that taking into account only a two-fold degenerate f-level is
probably not sufficient to account for the full temperature dependence of
the relevant physical quantities.
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Nevertheless, for the actual calculations presented in this paper the stan-
dard PAM with only a two-fold degeneracy of the f-levels has been used, i.e.
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where €, = 2t 27:1 cos(kja) denotes the band electron dispersion (¢ — near-
est neighbor hopping, a — lattice constant), for which a tight-binding model
on a simple-cubic lattice in dimension d is assumed. To calculate transport
quantities one needs also the current operator, and for the current operator
being consistent with the PAM the component in z-direction is given by
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(1 — imaginary unit, ¢ — hopping, a — lattice constant).

The influence of alloying with non-HFS systems can be studied by con-
sidering the following generalization of the PAM
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where

o Ey with probability 1 —c, (5)
R Ef+ AE;  with probability — ¢.

For large AF; the f-level remains unoccupied meaning physically that
there is no rare-earth ion at this site with probability ¢, which corresponds
to the concentration of the non-rare-earth constituent.
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Being interested in transport quantities two-particle Green functions for
the PAM have to be calculated. To calculate the conductivity we start from
the Kubo formula for the (diagonal element of the) frequency (w-) dependent
conductivity (tensor), which (according to standard linear response theory
[12-14]) is given by the current—current response function:
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The static conductivity can be obtained as the zero frequency (w — 0)
limit of the dynamical conductivity and then the TEP follows by means of
the standard Mott relation [15]. So one must determine two-particle Green
functions of the kind < clggcﬁa;c}%g,cﬁa, >,. Using standard relations of
many-body theory [12] the two-particle Green functions can be obtained
from (products of) one-particle Green functions and additional vertex cor-

rections. The one-particle Green functions are defined by
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(with a, b € {c, f}). The f-electron selfenergy is defined by:
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and for the model(s) defined above one has to expect a correlation- (inter-
action-) and a disorder- (impurity-) contribution to the selfenergy:

Eiy(2) = T (2) + Eg}lp(z) : (10)

3. Approximations

We study the PAM in the limit of infinite dimension d — oc, t — 0
keeping dt? = const. [16]; in this limit certain simplifications become exact,
which extremely simplify practical calculations. It has been shown [17] that
these simplifications are already a reasonable additional approximation for
realistic dimension d = 3, i.e. 3-dimensional systems behave already similar
as systems in the mathematical limit d — oo. The most important simplifi-
cation is that the selfenergy becomes site-diagonal (k-independent), i.e. the
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so called “local approximation” becomes exact for large dimension d and is
a reasonable approximation for d = 3. Consistent with the site diagonality of
the self energy is the vanishing of vertex corrections for the current—current
response functions. Then the static (zero frequency) conductivity is simply

given by [18] Yo
_etatl , B df
Our = 57—t /dE( —dE> L(E), (11)

where « is the lattice constant, d the dimension, ¢ the hopping matrix element
of the band electrons, f(E) the Fermi function, and the function L(F) is
defined by
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is the band electron Green function of the PAM and X (z) the (k-indepen-
dent) f-electron selfenergy. The TEP is also determined by the function
L(FE) according to [15]
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Therefore, in the limit d — oo the transport quantities of interest can be
obtained from the one-particle Green functions or the (k-independent) self-
energy alone.

But a full exact solution of the PAM is not possible even in infinite di-
mensions and one needs additional approximations. We have applied the
standard selfconsistent second order perturbation theory with respect to the
Coulomb correlation U. The SOPT is the simplest non-trivial extension
of the Hartree—Fock approximation, and it has the advantage that Fermi
liquid properties (Luttinger sum rules) are automatically fulfilled within
this approach. Furthermore, a selfconsistent mapping on an effective single-
impurity Anderson model, i.e. the “dynamical mean-field theory” becomes
exact in infinite dimensions [19]. The DMFT selfconsistency relation reads
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Here the “bath” Green function A(z) (i.e. the effective STAM conduction
band Green function) has to be determined selfconsistently. The selfenergy
for the effective STAM has to be determined either by numerical methods
(quantum Monte Carlo or numerical renormalization group) or by a suitable
approximation for the STAM. We have applied the “modified perturbation
theory”, which starts from the following Ansatz [20-22]

OzEJScOPT(z)
1— BEOPT ()

Sp(2) = Unj_g + (16)

where Z?OPT(z) is the STAM selfenergy in second order in U relative to the
Hartree—Fock solution and the parameters «, 8 can be determined by the
condition that the atomic limit (of vanishing V') and an additional criterion
(Fermi liquid sum rule, reproduction of the first four moments) are fulfilled.
The MPT has the advantage that it is exact up to order U? and the atomic
limit is fulfilled simultaneously.

Concerning the disorder contribution to the selfenergy the coherent po-
tential approximation (CPA) becomes exact in the large-d limit. Therefore,
the exact selfconsistency relation for the impurity selfenergy reads

im ERf
imp oy , 17
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where the bar denotes the configurational average. For AE; — oo, i.e. for
non-magnetic impurities with unoccupied f-shell, this leads to [23]

TP (2) = By — GT() (18)
R z

where ¢ is the concentration of the impurities.

4. Results

Within the SOPT the selfenergy imaginary part at the Fermi energy
vanishes at zero temperature T in accordance with the Luttinger theorem
leading to a mass enhancement of the quasi particles at low temperatures,
i.e. “heavy quasiparticles” are easily reproduced within this approach. As
a consequence the f-electron Density Of States (DOS) at the chemical po-
tential p is strongly temperature dependent and decreases on a character-
istic low temperature scale T* towards an asymptotic T-independent value.
Therefore, T* can be defined as the half width of the T-dependent part of the
f-DOS at . This temperature T™ can be interpreted as Kondo temperature;
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however, within the SOPT treatment it is not yet of the correct (Schrieffer—
Wolff) form and magnitude, which cannot be expected in a weak-coupling
expansion like the SOPT.

When calculating the T-dependence of the resistivity R(T) = 1/04,
from (11), one obtains for most choices of the parameters the following
characteristic behavior: A residual resistivity approaching zero for T — 0,
a T?-dependence for very low T as expected for Fermi liquids, a nearly lin-
ear increase with increasing T for T < T*, a maximum of R(T) exactly
at T*, and an R(T') decreasing with increasing T (and thus behaving sim-
ilarly as in the case of incoherent scattering from magnetic impurities) for
T > T*. This can be seen from Fig. 1, where we show R(T") for the model
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Fig. 1. Temperature dependence of the resistivity R(T") obtained withion the SOPT
for the PAM for different hybridizations, a total number of 2.2 electrons per site,
and an f-electron number of ny = 1.1.

with 2.2 electrons per site, an f-occupancy ny = 1.1, and for different hy-
bridization V. For fixed other parameters the hybridization V determines
the low temperature scale T*. The calculations are performed for U = 1.
Remarkably, as long as there is a maximum in R(T) it is very close to T™* as
determined by the f-DOS criterion described above. For too large V and T*
(and corresponding less strong mass enhancement) there is no longer a true
maximum but only a plateau behavior in R(T).

Corresponding results for the thermopower are shown in Fig. 2. Here,
S(T') is measured in units of kp/e ~ 86,V /K. Obviously S(T) is strongly
temperature dependent and absolutely very large, namely of the magnitude



3352 G. CzYCHOLL

0.2

-0.2

I
CO0O0O000
woNOUIrW

e O m O % X +

-0.4

-0.6

Thermopower S(T)

-0.8

-1

-1.2

0 0.2 0.4 0.6 0.8 1 1.2 14

Fig. 2. Temperature dependence of the resistivity R(T") obtained within the SOPT
for the PAM for different hybridizations, a total number of 2.2 electrons per site,
and an f-electron number of ny = 1.1.

50-100 xV/K. It has an extremum (negative minimum in the plot) at a
temperature Ty, which scales linearly with T%, i.e. Ty = AT*. For the
parameters used for the figure we have A =~ 0.5, but the exact value of
A depends on the other parameters (U, ns etc.) This extremum in S(T')
also exists in the situation when the resistivity R(T) exhibits no maximum
but only a plateau behavior. The absolute value |S(T7)| at the extremum
even slightly increases with increasing T, i.e. according to this result it is
not necessarily the most “heavy” fermion systems which exhibit the largest
values of the TEP. In any case, in the low temperature regime T < T* this
approach yields a TEP of the correct absolute magnitude and the qualitative
behavior, in particular an extremum, which is characteristic for the TEP
experimentally observed in many heavy fermion systems. Of course, for
intermediate and high T the features due to the CF splitting cannot be
reproduced within this SOPT treatment of the PAM, as only the two-fold
degenerate PAM was used, which has no higher CF-split f-levels included.
Results for another set of parameters are shown in the following fig-
ures. Here I chose E positive (i.e. within the upper half of the conduction
band) and a total filling of 2.4. Then the conduction band is more than
half filled, which has influence on the zero temperature sign of S(T'), and
the f-occupation is smaller than 1. The resistivity shows again the charac-
teristic behavior mentioned above with a maximum and a NTC. The TEP,
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Resistivity for different f-level energies E_f
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Fig. 3. Temperature dependence of the resistivity R(T") obtained within the SOPT
for the PAM for different f-level positions E for hybridization V' = 0.5 and a total

number of 2.4 electrons per site.

Thermopower for different f-level energies E_f
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Fig.4. Temperature dependence of the thermopower S(T') obtained within the
SOPT for the PAM for different f-level positions Ey for hybridization V' = 0.5 and

a total number of 2.4 electrons per site.
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however, is negative for small 7" and has a change of sign at low tempera-
tures 7T', so it is qualitatively similar as that observed experimentally in some
HFS. Increasing Ey (with respect to the conduction band center) leads to
smaller f-occupations, i.e. to a transition from the Kondo into the more
mixed valence regime, and may simulate the influence of external pressure.
Obviously the negative low-7T minimum of S(7") becomes more shallow with
increasing F¢, and for even larger E; (not shown in the figure) it disappears
and only a positive TEP is obtained, which may have some fine structure at
very low T'. Note that the TEP is zero for temperature T = 0 also within
the used approximation; the apparant non-zero value of S(7T') for small T is
due to the finite temperature resolution of the presented calculations, which
for numerical reasons have not yet been done at the lowest temperatures
T <0.02.

5. Conclusion

The most characteristic features observed in the T-dependence of the re-
sistivity and the thermopower of HF'S can qualitatively be reproduced within
simple approximations of the PAM, in particular within the U-perturbation
approach, i.e. the SOPT. It has been shown already for the resistivity [23]
that also the effects of alloying can be reproduced; applications of this inves-
tigation (using additionally the CPA for disordered systems) to the TEP are
presently in progress. Applications of the MPT within the DMFT scheme
(recently done but not presented in this manuscript) can give qualitatively
similar behavior, only the characteristic low temperature T* comes out dif-
ferent within the MPT approach than within the SOPT. I expect that the
proper inclusion of orbital degeneracy and crystal field effects will allow for
the description and understanding also of the details in the low T" behavior
of the thermoelectric power.

I acknowledge the contributions of my former and present coworkers and
students H. Schweitzer, S. Wermbter, K. Wermbter, R. Tietze, M. Buck and
C. Grenzebach and many stimulating discussions with V. Zlatic.
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