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PHASE TRANSITIONS WITH NONSTANDARDCRITICAL BEHAVIOR�Válav Jani²Institute of Physis, Aademy of Sienes of the Czeh RepubliNa Slovane 2, 18-221 Prague, Czeh Republi(Reeived June 21, 2001)We disuss phase transitions and ritial behavior deviating from thestandard sheme based on a mean-�eld theory renormalizing only the massof the ritial exitations ompleted with a perturbative saling renormal-ization of the interation strength. On examples of mean-�eld theories forspin glasses and for quantum phase transitions we show that oupling on-stants are relevant variables in these systems and are to be renormalizedalready within the mean-�eld approximations.PACS numbers: 05.70.Fh, 75.10.Nr, 75.10.Lp1. IntrodutionStatistial many-partile systems an exhibit di�erent equilibrium statesharaterized by a number of marosopi �order� parameters. Varying ex-ternal onditions, suh as temperature, pressure, magneti �eld et., we anfore the system to hange the symmetry of the equilibrium state and topass from one state to another. If the symmetry and the order parametershange ontinuously we speak about ontinuous phase transitions. They areharaterized by nonanalytiities in thermodynami potentials or singular-ities in orrelation funtions, i.e., derivatives of the free energy. Critialpoints, where two or more phases meet, are hene aessible only by non-perturbative methods. To desribe the asymptoti behavior near the ritialpoints is one of the boldest hallenges of statistial mehanis, sine eventhe simplest mirosopi models are not exatly solvable apart from a fewexeptions.Modern theory of ritial phenomena is based on extraordinary featuresof ontinuous transitions suh as saling, universality and the renormaliza-tion group [1℄. The theory of renormalizations that has developed from these� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3357)



3358 V. Jani²onepts is at present the most advaned and sophistiated tool we have athand to study and understand ritial behavior. To be able to employ thesaling ideas and the renormalization group the system must obey spei�assumptions that an be alled standard ritiality. However, not all phasetransitions we observe and study �t the standard sheme. It is the aim ofthis leture to demonstrate on a few examples what problems we are faingin ases that annot be transformed to standard models of ritial behav-ior. We use two examples of phase transitions, one from lassial and onefrom quantum statistial mehanis, on whih we demonstrate that even amean-�eld approximation does not obey the Landau riteria without whihwe annot apply the standard renormalization sheme.2. Standard ritial behaviorCritial points annot be treated perturbatively and we always have tostart with a nonperturbative solution of a mirosopi model. The simplestsolution providing a �rst quantitative information about phase transitionsand ritial phenomena is a mean-�eld approximation. It is usually intro-dued as a saddle-point approximation to a free-energy funtional reduingit to the Landau�Ginzburg expansion in the order parameter ' of the Gibbsfree energy that in momentum spae reads�['℄ = 12Xq (�(T )2 + �2q2)j'(q)j2+ �4!N2 Xqi '(q1)'(q2)'(q3)�'(q1 + q2 � q3)�: (1)Equilibrium solution is then obtained as a minimum of funtional (1) withrespet to the variable '(q). The ritial point is de�ned from vanishing ofthe bare mass of the exitations �2 ! 0. A two-point orrelation funtion,being the inverse of the quadrati part of the r.h.s. of Eq. (1), diverges inthe long-wavelength limit [�(T )2+�2q2℄�1�!q!01. The �rst important on-lusion is that the mean-�eld approximation de�nes a diverging orrelationlength �(T ) = �(T )�1 !1 from the diverging two-point propagator.In the ordered phase the bare mass �2 < 0 and we have to renormalizeit so that the e�etive mass remains positive even in the ordered state:�2 ! m2 = �2+ �6 j'j2. The mean-�eld theory must renormalize the mass ofthe ritial exitations. There is, however, no need for renormalization of theinteration onstant within the mean-�eld solution. The oupling onstanthene remains irrelevant in the mean-�eld piture.Mean �eld is a nonperturbative approximation enabling to deal withthe singularities at the ritial point. If it enompasses all divergenes, it



Phase Transitions with Nonstandard Critial Behavior 3359beomes asymptotially exat in the ritial region. It is the ase in highspatial dimensions, above the upper ritial dimension du, with many near-est neighbors. However, in dimensions d < du = 4 �utuations around themean-�eld order parameter get singular and new divergenes emerge. In-teration onstant � (harge) beomes relevant and must be renormalized� ! g = � (0; 0; 0) along with the mass to treat ritial behavior properly.Here � is a four-point vertex funtion. This is ahieved via a renormalizedperturbation expansion using saling arguments and eventually with the aidof the renormalization group [2℄. Introduing the renormalized dimensionlessrunning oupling onstant bg = gmd�4 we sueed to fatorize all the diver-genes as powers of the only diverging orrelation length � introdued in themean-�eld theory. The fatorization enables one to single out the divergentontributions, whih leads to a universal behavior. Moreover, the �xed pointof the renormalized perturbation theory for the universal quantities (ritialexponents) remains in the weak-oupling regime, i.e., bg � 1.3. Nonstandard ritial behavior with lassial statistisThe standard desription of ritial behavior outlined in the preedingsetion an break down in more omplex situations from various reasons.First problem we may enounter is the spei�ation of the relevant maro-sopi phase spae (order parameters) for the possible equilibrium states. Ifour phase spae is not large enough we end up with an unstable solution.We demonstrate that this is the ase when the standard approah is appliedto spin�glass models.3.1. Mean-�eld theory of spin glasses � naive approahThe simplest model of spin glasses is a random-bond Ising model(Edwards�Anderson model). The averaged free energy is obtained fromthe averaging over the thermal �utuations and then over the on�gurationsof the spin�spin oupling that is assumed a Gaussian random variable. Aglobal mean-�eld theory an be onstruted from the limit d!1. The freeenergy for one on�guration of the spin�spin oupling redues in d = 1 tothe Thouless�Anderson�Palmer (TAP) representation with loal magnetiza-tions mi and internal magneti �elds �i as order (variational) parameters��F = 12Xi;j �Jijmimj + 14Xi;j �2J2ij(1�m2i )(1�m2j)�Xi �mi�i +Xi ln 2 osh � (h+ �i) (2)



3360 V. Jani²with � = 1=kBT . At equilibrium the internal magneti �eld is de�ned asa sum of an external �eld h and a loal magnetizations and in the leadingd!1 asymptotis it beomes a Gaussian random variable�i = Xj Jij �mj �mi�Jij(1�m2j)� ;h�i�jiav = Æi;jXl J2ilm2l = Æi;jJ2qEA ; (3)where qEA is the Edwards�Anderson order parameter and the averaging isover the loal random variables �i. Performing the averaging of the TAP overon�gurations of the spin�spin oupling Jij we end up with the Sherrington��Kirkpatrik (SK) solution with the only marosopi, translationally in-variant parameter qEA = hm2i iav. This solution is, however, unstable at lowtemperatures, sine the marosopi phase spae to whih we redued theproblem in the mean-�eld approximation is too small [3℄.3.2. Mean-�eld theory of spin glasses � sophistiated approahTo extend the marosopi phase spae in the Sherrington�Kirkpatrikmodel we an either try to average the TAP free energy numerially and workwith nonloal quantities or we have to improve our redution of the problemto a single-site theory in a more sophistiated way. Parisi proposed the well-known replia-symmetry breaking solution within the replia approah tothe averaging proedure where he introdued an order-parameter funtionq(x), x 2 [0; 1℄ with the property qEA = q(1) [4℄. This solution ontains arather arti�ial mathematial trik the physial meaning of whih has notbeen fully understood.A more diret way to �nd the relevant marosopi phase spae in trans-lationally invariant (averaged) loal variables is to utilize the notion of theso-alled real replias [5℄. The idea of real replias is based on the exis-tene of a number of quasi-equilibrium solutions in the spin�glass phase.We asribe to eah solution independent spin variables and hene repliatethe initial spin Hamiltonian. We further introdue an in�nitesimal oupling�ab between the replias �H = 12Pa6=bPi �abSai Sbi . After averaging overthermal �utuations we obtain a TAP-like free energy with � real replias��F� = �Xa=1(12Xi;j �Jijmaimaj + 14Xi;j �2J2ij �1� (mai )2� �1� (maj )2��Xi mai "��ai + (�J)2 a�1Xb=1 �abmbi#� 12N(�J)2 a�1Xb=1(�ab)2)



Phase Transitions with Nonstandard Critial Behavior 3361+Xi lnTr exp8<:12(�J)2 �Xa6=b �abSai Sbi + � �Xa=1 (h+ �ai )Sai9=; : (4)This free energy ontains exept for the loal magnetizations mai and in-ternal magneti �elds �ai also averaged overlap loal suseptibilities �ab =hhSai Sbi iiav � hmai iavhmbi iav, (a 6= b) as order parameters. The internal mag-neti �elds are again Gaussian random variables�ai = Xj Jijmaj � �J2 �Xb=1mbi�ab ;h�ai �bjiav = Æi;jXl J2ilmalmbl = Æi;jJ2qab ; (5)where qaa = qEA. Free energy (4) an in priniple be diretly averaged withde�nitions (5). However, the number of real replias � is not �xed and infat it must be in�nite for the equilibrium state [5℄. The limit � !1 an bereahed without Ansatz only suessively through �nite number of replias.Only in this way we an guess the symmetry in the phase spae with qab and�ab as order parameters. It is straightforward to derive expliit formulas forthe ase of two real replias. The averaged free energy density reads2f2 = ��2 (1� q0)2 + ��1 �q1 + �12 �� 1� Z d�1d�22� exp���21 + �222 � ln 2 fe++ + e��g ; (6)where we set J = 1 and denoted e� = expf��2�1g and+ = osh24�0�2h+sq0 � q21q0 �1 +�pq0 + q1pq0� �21A35 ;� = osh24�0�sq0 � q21q0 �1 ��pq0 � q1pq0� �21A35 :Stationarity equations for the variational parameters q0; q1 and �1 are easilyderived. The atual order parameters in the low-temperature phase are �1and �1 = q0 � q1 determining the de Almeida�Thouless (AT) instabilityline.One an easily verify that below the AT line the SK solution(�1 = �1 = 0) is unstable and di�erent real replias are oupled. How-ever, even the simplest mean-�eld approximation beyond SK does not �t



3362 V. Jani²the standard sheme of ritial behavior. First, there is no apparent di-vergent propagator from whih we ould read o� the diverging orrelationlength. Seond, the mean-�eld approximation renormalizes simultaneouslyboth e�etive mass (averaged squared magnetization) and the interationstrength (overlap suseptibility). Third, the free energy is not symmetriw.r.t. re�etion f2(�1) 6= f2(��1) and the Landau expansion does not hold.Last, but not least, the free energy is maximized w.r.t. q0;�1 and minimizedw.r.t. �1. We are faing a deliate mini�max problem where we have to �nda state with the lowest free energy among the stable states.4. Mean-�eld desription of quantum phase transitionsQuantum phase transitions, in partiular in itinerant models of interat-ing fermions, display ritial behavior with anomalous properties, sine thetransitions are not driven by temperature but by the interation strength.Hene from the very beginning the oupling onstant beomes a relevantvariable that must be renormalized even in the mean-�eld approximation.We thus have a signi�ant de�etion from the standard sheme. We showon the example of a transition to the spin-�ip state (transverse antiferro-magneti order in an external magneti �eld) that one has to renormal-ize two-partile vertex funtions (e�etive interation) so as to onstrut amean-�eld theory of the Landau type beyond the weak-oupling regime.4.1. Weak-oupling limitThe only existing mean-�eld theory for quantum phase transitions withtwo or more relevant non-ommuting operators is the BCS theory of the su-peronduting phase [6℄. It is the standard weak-oupling mean-�eld theoryas in lassial physis with the exeption that it does not de�ne a divergingtwo-point orrelation funtion.To desribe a transverse magneti order of the Hubbard model in anexternal magneti �eld with two relevant non-ommuting operators Sz; S�we use the Nambu spinor formalism to aount for anomalous propagatorsthat do not onserve spin. We introdue Nambu spinors	Q;k = ( Q=2+k" ) Q=2�k#; 	 yQ;k = �yQ=2+k" yQ=2�k#� (7)and a propagator being a 2� 2 matrixGQ(k; z) = 1(z + x"k)(z + x#�k)� �?Q��?Q " z + x#�k �?Q��?Q z + x"k # : (8)We used an abbreviation x�k := (� � U2 n) + �(B + U2m) � "(Q=2 + �k).Here � is the hemial potential, U is the Hubbard sreened interation,



Phase Transitions with Nonstandard Critial Behavior 3363and "(k) stands for the lattie dispersion relation. Momentum Q deter-mines propagation of the �Cooper pair�, n;m are the partile oupationand magnetization in the Hartree approximation, and �?Q is the anomalousorder parameter desribing the ordered phase.The mean-�eld theory in the weak-oupling regime amounts to theHartree deoupling that in the Nambu formalism leads to a BCS equation�?Q = �?Q UN Xk  f(E+Q;k)E+Q;k � f(E�Q;k)E�Q;k ! (9)with a new dispersion 2E�Q;k = �(x"k + x#�k) �q(x"k � x#�k)2 + 4�?Q��?Q, Ndenotes the number of lattie sites.4.2. Quantum phase transitions beyond weak ouplingBCS mean-�eld approximation from the preeding subsetion �ts theLandau mean-�eld approah to ontinuous transitions only in the weak-oupling regime U ! 0, sine it uses the Hartree deoupling. In this limitthe quantum �utuations are suppressed, sine interation annot be used asa parameter ontrolling the transition. Genuine quantum ritiality lies be-yond the weak-oupling regime. To onstrut an adequate mean-�eld theorywe have to go beyond the Hartree deoupling. In fat we have to renormal-ize two-partile vertex funtions. In intermediate oupling one an use theso-alled FLEX approximations summing multiple two-partile satteringsof the same type [7℄. To this purpose we need two-partile propagators. Theeletron�hole propagator in the Nambu formalism beomes a 4 � 4 matrixthat an be represented asY ��0��0 (q; i�m) = 1�N Xkn G��0 (k + q; i!n + i�m)G��0 (k; i!n) : (10)Here !n = (2n + 1)�, �m = 2m� are fermioni and bosoni Matsubarafrequenies, respetively. The one-partile propagators are no longer theHartree ones and we haveG(k; z) = 1D(Q;k; z) " z + x#Q(k; z) �?Q(k; z)��?Q(k; z) z + x"Q(k; z) # (11)with D(Q;k; z) = (z + x"Q(k; z))(z + x#Q(k; z))� �?Q(k; z)��?Q(k; z) andx�Q(k; z) := � + �B � "(Q=2 + �k) � ��Q(k; z). For onsistene we had tointrodue one-eletron normal and anomalous self-energies � and �?.



3364 V. Jani²The generating funtional for the interating part of the grand potentialin the FLEX approximation an be formally represented asfU = 12�N Xqm �Tr ln h1 +dUY (q; i�m)i+ 14Tr dUY (q; i�m)dUY y(q; i�m)� ;(12)where the interation (two-partile vertex) matrix expliitly is�dUY ���0��0 := U 26664 �Y #"#" �Y #"## �Y ###" �Y ####Y ""#" Y ""## Y "##" Y "###Y #""" Y #""# Y ##"" Y ##"#�Y """" �Y """# �Y "#"" �Y "#"# 37775 : (13)We an now expand (12) in lowest orders of the anomalous funtions (or-der parameters) and obtain a Landau-like dynamial mean-�eld theory ofquantum phase transitions for intermediate oupling. The de�ning mean-�eld equation beomes a homogeneous integral equation for the anomalousfuntion �?Q(k; i�m). BCS equation (9) is revealed only in linear order of theinteration strength U . 5. ConlusionsWe tried to demonstrate that although the standard renormalization ap-proah to ritial phenomena onsisting of mean-�eld & saling is a powerfultool it is far from being omplete. There are a number of situations wherethis sheme breaks down. Suh a situation ours when the interation on-stant beomes relevant in the ritial region from the very beginning. Weare then unable to extrat a diverging orrelation length from the two-pointpropagator and have to renormalize simultaneously both the mass and theinteration strength in the mean-�eld approah. This situation does not �tthe standard sheme and new tehniques must be developed to deal withthis ritiality. Not even is lear whether in nonstandard transitions we re-veal a universal behavior, sine divergent ontributions to the two-partilefuntions annot be deoupled from the �nite, regular terms [8℄.REFERENCES[1℄ L.P. Kadano�, Statistial Physis: Statis, Dynamis and Renormalization,World Sienti�, Singapore 1999.[2℄ J.J. Binney, N.J. Dowrik, A.J. Fisher, M.E.J. Newman, The Theory of CritialPhenomena, Clarendon Press, Oxford 1992.
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