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We discuss phase transitions and critical behavior deviating from the
standard scheme based on a mean-field theory renormalizing only the mass
of the critical excitations completed with a perturbative scaling renormal-
ization of the interaction strength. On examples of mean-field theories for
spin glasses and for quantum phase transitions we show that coupling con-
stants are relevant variables in these systems and are to be renormalized
already within the mean-field approximations.
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1. Introduction

Statistical many-particle systems can exhibit different equilibrium states
characterized by a number of macroscopic “order” parameters. Varying ex-
ternal conditions, such as temperature, pressure, magnetic field etc., we can
force the system to change the symmetry of the equilibrium state and to
pass from one state to another. If the symmetry and the order parameters
change continuously we speak about continuous phase transitions. They are
characterized by nonanalyticities in thermodynamic potentials or singular-
ities in correlation functions, i.e., derivatives of the free energy. Critical
points, where two or more phases meet, are hence accessible only by non-
perturbative methods. To describe the asymptotic behavior near the critical
points is one of the boldest challenges of statistical mechanics, since even
the simplest microscopic models are not exactly solvable apart from a few
exceptions.

Modern theory of critical phenomena is based on extraordinary features
of continuous transitions such as scaling, universality and the renormaliza-
tion group [1]. The theory of renormalizations that has developed from these
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concepts is at present the most advanced and sophisticated tool we have at
hand to study and understand critical behavior. To be able to employ the
scaling ideas and the renormalization group the system must obey specific
assumptions that can be called standard criticality. However, not all phase
transitions we observe and study fit the standard scheme. It is the aim of
this lecture to demonstrate on a few examples what problems we are facing
in cases that cannot be transformed to standard models of critical behav-
ior. We use two examples of phase transitions, one from classical and one
from quantum statistical mechanics, on which we demonstrate that even a
mean-field approximation does not obey the Landau criteria without which
we cannot apply the standard renormalization scheme.

2. Standard critical behavior

Critical points cannot be treated perturbatively and we always have to
start with a nonperturbative solution of a microscopic model. The simplest
solution providing a first quantitative information about phase transitions
and critical phenomena is a mean-field approximation. It is usually intro-
duced as a saddle-point approximation to a free-energy functional reducing
it to the Landau—Ginzburg expansion in the order parameter ¢ of the Gibbs
free energy that in momentum space reads
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Equilibrium solution is then obtained as a minimum of functional (1) with
respect to the variable ¢(q). The critical point is defined from vanishing of
the bare mass of the excitations u? — 0. A two-point correlation function,
being the inverse of the quadratic part of the r.h.s. of Eq. (1), diverges in
the long-wavelength limit [u(7)? + a?¢?] ! qj 00. The first important con-

clusion is that the mean-field approximation defines a diverging correlation
length ¢(T) = pu(T)~' — oo from the diverging two-point propagator.

In the ordered phase the bare mass y? < 0 and we have to renormalize
it so that the effective mass remains positive even in the ordered state:
w? = m? =+ %|<p|2. The mean-field theory must renormalize the mass of
the critical excitations. There is, however, no need for renormalization of the
interaction constant within the mean-field solution. The coupling constant
hence remains irrelevant in the mean-field picture.

Mean field is a nonperturbative approximation enabling to deal with
the singularities at the critical point. If it encompasses all divergences, it
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becomes asymptotically exact in the critical region. It is the case in high
spatial dimensions, above the upper critical dimension d,,, with many near-
est neighbors. However, in dimensions d < d,, = 4 fluctuations around the
mean-field order parameter get singular and new divergences emerge. In-
teraction constant A (charge) becomes relevant and must be renormalized
A — g =10,0,0) along with the mass to treat critical behavior properly.
Here I' is a four-point vertex function. This is achieved via a renormalized
perturbation expansion using scaling arguments and eventually with the aid
of the renormalization group [2]. Introducing the renormalized dimensionless
running coupling constant § = gm?~* we succeed to factorize all the diver-
gences as powers of the only diverging correlation length ¢ introduced in the
mean-field theory. The factorization enables one to single out the divergent
contributions, which leads to a universal behavior. Moreover, the fixed point
of the renormalized perturbation theory for the universal quantities (critical
exponents) remains in the weak-coupling regime, i.e., g, < 1.

3. Nonstandard critical behavior with classical statistics

The standard description of critical behavior outlined in the preceding
section can break down in more complex situations from various reasons.
First problem we may encounter is the specification of the relevant macro-
scopic phase space (order parameters) for the possible equilibrium states. If
our phase space is not large enough we end up with an unstable solution.
We demonstrate that this is the case when the standard approach is applied
to spin—glass models.

3.1. Mean-field theory of spin glasses — naive approach

The simplest model of spin glasses is a random-bond Ising model
(Edwards—Anderson model). The averaged free energy is obtained from
the averaging over the thermal fluctuations and then over the configurations
of the spin—spin coupling that is assumed a Gaussian random variable. A
global mean-field theory can be constructed from the limit d — oo. The free
energy for one configuration of the spin—spin coupling reduces in d = oo to
the Thouless—Anderson—Palmer (TAP) representation with local magnetiza-
tions m; and internal magnetic fields n; as order (variational) parameters

1 1
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with § = 1/kgT. At equilibrium the internal magnetic field is defined as
a sum of an external field h and a local magnetizations and in the leading
d — oo asymptotics it becomes a Gaussian random variable

ni = ZJZJ m; mZ/BJZ](l_ )] )

(ninj)av = & ,]Zszl 8i g qea (3)

where g is the Edwards—Anderson order parameter and the averaging is
over the local random variables ;. Performing the averaging of the TAP over
configurations of the spin—spin coupling J;; we end up with the Sherrington—
—Kirkpatrick (SK) solution with the only macroscopic, translationally in-
variant parameter qga = (m?)ay. This solution is, however, unstable at low
temperatures, since the macroscopic phase space to which we reduced the
problem in the mean-field approximation is too small [3].

3.2. Mean-field theory of spin glasses — sophisticated approach

To extend the macroscopic phase space in the Sherrington—Kirkpatrick
model we can either try to average the TAP free energy numerically and work
with nonlocal quantities or we have to improve our reduction of the problem
to a single-site theory in a more sophisticated way. Parisi proposed the well-
known replica-symmetry breaking solution within the replica approach to
the averaging procedure where he introduced an order-parameter function
q(z), x € [0,1] with the property gua = ¢(1) [4]. This solution contains a
rather artificial mathematical trick the physical meaning of which has not
been fully understood.

A more direct way to find the relevant macroscopic phase space in trans-
lationally invariant (averaged) local variables is to utilize the notion of the
so-called real replicas [5]. The idea of real replicas is based on the exis-
tence of a number of quasi-equilibrium solutions in the spin—glass phase.
We ascribe to each solution independent spin variables and hence replicate
the initial spin Hamiltonian. We further introduce an infinitesimal coupling
1% between the replicas AH = %Za;ﬁb 3, nabSast. After averaging over
thermal fluctuations we obtain a TAP-like free energy with v real replicas
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This free energy contains except for the local magnetizations m{ and in-
ternal magnetic fields 7{ also averaged overlap local susceptibilities X% =
((SESP)) oy — (m&)av (M) ay, (a # b) as order parameters. The internal mag-
netic fields are again Gaussian random variables
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where ¢%* = gga. Free energy (4) can in principle be directly averaged with
definitions (5). However, the number of real replicas v is not fixed and in
fact it must be infinite for the equilibrium state [5]. The limit ¥ — oo can be
reached without Ansatz only successively through finite number of replicas.
Only in this way we can guess the symmetry in the phase space with ¢%® and
x® as order parameters. It is straightforward to derive explicit formulas for

the case of two real replicas. The averaged free energy density reads

2f2 = —g(l—%)?—i‘ﬁm (ql-i-%)
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where we set J = 1 and denoted e+ = exp{4/2x1} and

2
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Stationarity equations for the variational parameters qg, q; and x are easily
derived. The actual order parameters in the low-temperature phase are xi
and Ay = g9 — q1 determining the de Almeida-Thouless (AT) instability
line.

One can easily verify that below the AT line the SK solution
(A1 = x1 = 0) is unstable and different real replicas are coupled. How-
ever, even the simplest mean-field approximation beyond SK does not fit
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the standard scheme of critical behavior. First, there is no apparent di-
vergent propagator from which we could read off the diverging correlation
length. Second, the mean-field approximation renormalizes simultaneously
both effective mass (averaged squared magnetization) and the interaction
strength (overlap susceptibility). Third, the free energy is not symmetric
w.r.t. reflection fo(x1) # fo(—x1) and the Landau expansion does not hold.
Last, but not least, the free energy is maximized w.r.t. qg, 41 and minimized
w.r.t. x1. We are facing a delicate mini-max problem where we have to find
a state with the lowest free energy among the stable states.

4. Mean-field description of quantum phase transitions

Quantum phase transitions, in particular in itinerant models of interact-
ing fermions, display critical behavior with anomalous properties, since the
transitions are not driven by temperature but by the interaction strength.
Hence from the very beginning the coupling constant becomes a relevant
variable that must be renormalized even in the mean-field approximation.
We thus have a significant deflection from the standard scheme. We show
on the example of a transition to the spin-flip state (transverse antiferro-
magnetic order in an external magnetic field) that one has to renormal-
ize two-particle vertex functions (effective interaction) so as to construct a
mean-field theory of the Landau type beyond the weak-coupling regime.

4.1. Weak-coupling limit

The only existing mean-field theory for quantum phase transitions with
two or more relevant non-commuting operators is the BCS theory of the su-
perconducting phase [6]. It is the standard weak-coupling mean-field theory
as in classical physics with the exception that it does not define a diverging
two-point correlation function.

To describe a transverse magnetic order of the Hubbard model in an
external magnetic field with two relevant non-commuting operators S%, S*
we use the Nambu spinor formalism to account for anomalous propagators
that do not conserve spin. We introduce Nambu spinors

— R N ¥
Yok = (cq/aikt) cQia—kir  Yor = (CQ/2+kT CQ/Q—k¢> (7)
and a propagator being a 2 X 2 matrix
4 1
1 24z, N
GQ(sz) = 1 1 =1 ~L * @ 0 (8)
(Z+xk)(z+x7k) —ngig | "Q zZ 4z

We used an abbreviation 2§ := (u — Yn) + o(B + Ym) — £(Q/2 + ok).
Here p is the chemical potential, U is the Hubbard screened interaction,
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and e(k) stands for the lattice dispersion relation. Momentum @ deter-
mines propagation of the “Cooper pair”, n,m are the particle occupation
and magnetization in the Hartree approximation, and né is the anomalous
order parameter describing the ordered phase.

The mean-field theory in the weak-coupling regime amounts to the
Hartree decoupling that in the Nambu formalism leads to a BCS equation

.U f(E(;S,k) f(Eé,k)
emieN zk:: ( Bor  Bou )

with a new dispersion 2E$,k = —(IL + aci_k) + \/(x,t — Iik)Q + 47]57’]5, N
denotes the number of lattice sites.

4.2. Quantum phase transitions beyond weak coupling

BCS mean-field approximation from the preceding subsection fits the
Landau mean-field approach to continuous transitions only in the weak-
coupling regime U — 0, since it uses the Hartree decoupling. In this limit
the quantum fluctuations are suppressed, since interaction cannot be used as
a parameter controlling the transition. Genuine quantum criticality lies be-
yond the weak-coupling regime. To construct an adequate mean-field theory
we have to go beyond the Hartree decoupling. In fact we have to renormal-
ize two-particle vertex functions. In intermediate coupling one can use the
so-called FLEX approximations summing multiple two-particle scatterings
of the same type [7]. To this purpose we need two-particle propagators. The
electron—hole propagator in the Nambu formalism becomes a 4 x 4 matrix
that can be represented as

ro 1 / . . .
Yoo (@,ivm) = AN Z G (k + q,iwp + ivy) Gy (K, iwy,) - (10)
kn
Here w, = (2n + 1), vy, = 2mn are fermionic and bosonic Matsubara

frequencies, respectively. The one-particle propagators are no longer the
Hartree ones and we have

__ 1 z+3h(k,2) gk, 2)
) = DQika) | mokz) otk o)

(11)
with D(Q;k, 2) = (2 + 2 (k. 2)) (2 + 7 (k. 2)) — 1§ (k, 2)7gy (k. 2) and
zg(k,z) == p+ 0B —e(Q/2 + ok) — Xg(k,z). For consistence we had to
introduce one-electron normal and anomalous self-energies ¥ and 7.
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The generating functional for the interacting part of the grand potential
in the FLEX approximation can be formally represented as

1 — . 1 — . —t .
fo = g ; {Trln [1 + UV (q,ivm)| + 7T UY (q.ivn)TY (q,zl/m)} ,
(12)
where the interaction (two-particle vertex) matrix explicitly is
" " " "
RO Y 1 )
Tt Tt 71 1
_—\OC Y Y. Y, Y
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We can now expand (12) in lowest orders of the anomalous functions (or-
der parameters) and obtain a Landau-like dynamical mean-field theory of
quantum phase transitions for intermediate coupling. The defining mean-
field equation becomes a homogeneous integral equation for the anomalous
function néj(k, iVm). BCS equation (9) is revealed only in linear order of the
interaction strength U.

5. Conclusions

We tried to demonstrate that although the standard renormalization ap-
proach to critical phenomena consisting of mean-field & scaling is a powerful
tool it is far from being complete. There are a number of situations where
this scheme breaks down. Such a situation occurs when the interaction con-
stant becomes relevant in the critical region from the very beginning. We
are then unable to extract a diverging correlation length from the two-point
propagator and have to renormalize simultaneously both the mass and the
interaction strength in the mean-field approach. This situation does not fit
the standard scheme and new techniques must be developed to deal with
this criticality. Not even is clear whether in nonstandard transitions we re-
veal a universal behavior, since divergent contributions to the two-particle
functions cannot be decoupled from the finite, regular terms [8].
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