MAGNETIC PHASE TRANSITIONS IN THE TbTX₂ COMPOUNDS $(T-d-ELECTRON ELEMENTS, X = Sb, Ge)^*$

M. Kolenda, B. Penc, A. Szytuła

Institute of Physics, Jagellonian University Reymonta 4, 30-059 Kraków, Poland

A. Oleś

DPNT, Academy of Mining and Metallurgy Al. Mickiewicza 30, 30-059 Kraków, Poland

A. GIL

DMNS, Pedagogical University Waszyngtona 4/8, 42-200 Częstochowa, Poland

M. Hofmann

BENSC, Hahn-Meitner Institute 14 109 Berlin-Wannsee, Germany

AND A. ZYGMUNT

W. Trzebiatowski Institute of Low Temperature and Structure Research Polish Academy of Sciences P.O. Box 1410, 50-422 Wrocław, Poland

(Received June 21, 2001)

The microscopic nature of the magnetic phase transitions in ordered states observed in $TbTSb_2$ (T = Cu, Pd) and $TbTGe_2$ (T = Pt, Ir) are discussed on the basis of neutron diffraction and magnetometric measurements.

PACS numbers: 75.25.+z, 75.30.Kz, 75.50.Ee

^{*} Presented at the XII School of Modern Physics on Phase Transitions and Critical Phenomena, Lądek Zdrój, Poland, June 21–24, 2001.

1. Introduction

In this paper the results of the magnetic and neutron diffraction measurements of the TbTSb₂ (T = Cu, Pd) and TbTGe₂ (T = Ir, Pt) are discussed. These compounds crystallize in different types of crystal structure, such as the tetragonal ZrCuSi₂-type (space group P4/nmm) [1] for TbTSb₂ compounds and YIrGe₂-type (space group Immm) [2] for TbTGe₂ compounds. In the first structure the Tb atoms occupy one site while in the second they occupy two nonequivalent crystallographic positions. These compounds are antiferromagnets with a complicated phase situation in an ordered phase.

Magnetic susceptibility and magnetization data were collected using the vibrating-sample and SQUID magnetometers. Neutron diffraction patterns were obtained at the BER II reactor (BENSC, Hahn-Meitner Institute, Berlin). The Rietveld-type program FULLPROF [3] was used for processing these data.

2. $TbTSb_2$ (T = Cu, Pd) compounds

With an increasing temperature the following magnetic phases in TbCuSb₂ appear:

- between 1.4 and 4.4 K the Tb moments form a collinear antiferromagnetic structure described by the propagation vector $\boldsymbol{k} = (\frac{1}{2}, 0, 0)$,
- between 4.4 and 5.8 K the magnetic ordering is sine-wave modulated with $\mathbf{k} = (0.4227, 0, 0)$,
- between 5.8 K and the Néel temperature equal to 9 K the magnetic order is again a collinear antiferromagnetic described by $\boldsymbol{k} = (0, \frac{1}{4}, \frac{1}{2})$.

The magnetic moment of Tb, equal at T = 1.4 K to 7.80(5) $\mu_{\rm B}$ is parallel to the [110] direction in the first two phases and to the [100] for the last one.

Magnetic peaks observed on the neutron diffraction pattern of TbPdSb₂ taken at T = 1.4 K are indexed as satellite pairs $(\pm \mathbf{k})$ with the propagation vector $\mathbf{k} = k_y \mathbf{b}^* + k_z \mathbf{c}^*$ $(k_y = 0.772, k_z = \frac{1}{2})$. An analysis of the magnetic intensities reveals that the Tb³⁺ magnetic moments are parallel to the *c*-axis. The magnetic moment is given by $\mu(\mathbf{r}) = \mu_0 \sin(2\pi \mathbf{k} \cdot \mathbf{r} + \varphi_0)$ where amplitude μ_0 equals 8.61(6) $\mu_{\rm B}$, \mathbf{r} is the position of rare earth atom and φ_0 is the phase. Two different models of the magnetic structure dependent of the phase φ_0 are possible for $\varphi_0 = \frac{\pi}{4}$ (Fig. 1(a)) and for $\varphi_0 = \frac{\pi}{2}$ (Fig. 1(b)).

The temperature dependence of the magnetic peak intensities 000^{\pm} and 010^{-} (Fig. 2) gives the Néel temperature at 11 K. Over a whole temperature region at the angles near two narrow magnetic peaks a broad peak connected with the short-range order is observed. An intensity of this peak increases with an increase of the temperature and reaches a maximum above T_N .

Fig. 1. Magnetic structures of TbPdSb₂ for φ_0 equal to $\frac{\pi}{4}$ (a) and $\frac{\pi}{2}$ (b).

Fig. 2. Temperature dependence of the TbPdSb₂ diffraction patterns between 1.4 and 15 K. Angular range $2\theta = 6^{\circ}-24^{\circ}$. The inset shows the temperature dependence of the magnetic peaks 000^{\pm} (Δ) and 010^{-} (\circ) and the broad peaks (\blacktriangle).

3. TbTGe₂ (T = Pt, Ir) compounds

The temperature dependence of the magnetic susceptibility has several following temperatures:

• $T_{\rm N} = 24.2$ K, $T_{t1} = 11.4$ K and $T_{t2} = 7$ K for TbPtGe₂ and $T_{\rm N} = 10.2$ K and $T_{t1} = 9$ K for TbIrGe₂.

Neutron diffraction data indicate that the following models of the magnetic structures can be constructed:

- in both compounds below $T_{\rm N}$ the Tb moments in the 4(i) sublattice: $\boldsymbol{\mu}_1(0,0,z), \, \boldsymbol{\mu}_2(0,0,\bar{z}), \, \boldsymbol{\mu}_3(\frac{1}{2},\frac{1}{2},\frac{1}{2}+z) \text{ and } \boldsymbol{\mu}_4(\frac{1}{2},\frac{1}{2},\frac{1}{2}-z)$ form collinear antiferromagnetic arrangement. The orientation of magnetic moments is: $+\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 + \boldsymbol{\mu}_3 - \boldsymbol{\mu}_4$. The Tb moment is equal to 7.5(1) $\boldsymbol{\mu}_{\rm B}$ at 15 K in TbPtGe₂ and it is 5.1(2) $\boldsymbol{\mu}_{\rm B}$ at 9.4 K in TbIrGe₂ and parallel to the *b*-axis. The Tb moments in 4(*h*) site $(0, y, \frac{1}{2}; 0, \bar{y}, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}+y, 0; \frac{1}{2}, \frac{1}{2}-y, 0)$ are not ordered,
- below T_{t1} the magnetic order in 4(i) sublattice does not change while in TbPtGe₂ at the 4(h) site the Tb moments equal to 6.7(2) $\mu_{\rm B}$ at 8.8 K form a sine-wave-modulated structure with the wave vector $\boldsymbol{k} = (0.2677, 0.1312, 0.6989)$; they form an antiferromagnetic arrangement with the orientation of magnetic moments $+\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 - \boldsymbol{\mu}_3 + \boldsymbol{\mu}_4$ in the crystal unit cell and they lie in the b-c plane.

In TbPtGe₂ below T_{t2} the Tb moments localized at the 4(*h*) site form a new sine-wave modulated structure with the $\mathbf{k} = (0.2584, 0, 0.5895)$. The Tb moment equal to 9.0(2) $\mu_{\rm B}$ at 1.5 K lies in the *a*-*b* plane.

In TbIrGe₂ the Tb moments equal to 8.4(2) $\mu_{\rm B}$ at 1.5 K form a collinear antiferromagnetic structure with the $\boldsymbol{k} = (\frac{1}{2}, \frac{1}{2}, 0)$. The Tb magnetic moments lie in the *a*-*c* plane and have the $+\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 + \boldsymbol{\mu}_3 - \boldsymbol{\mu}_4$ orientation.

4. Discussion

The exchange interactions and Crystalline Electric Field (CEF) are the two factors that influence the stability of magnetic ordering of the rare-earth magnetic moments in these compounds. Because of the large interatomic distances, for example in TbTSb₂ compounds a R-R distances are about ~4 Å in plane and ~5.5 Å between planes, the exchange interactions between the localized 4f electrons are indirect and they are probably mediated via the conduction electrons (RKKY model). This type of exchange interactions favours a long-range oscillator type ordering, while magnetocrystalline anisotropy connected with the CEF favours an uniaxial magnetic ordering. The magnetic structures of TbCuSb_2 indicate a strong magnetocrystalline anisotropy in the basal plane [7]. In the low temperature commensurate and incommesurate phases the Tb magnetic moment is parallel to the [110] direction while in the high temperature phase it lies along the [100] direction.

In TbPdSb₂, over a wide temperature range of temperatures up to the Néel temperature a coexistence of long and short range magnetic order is observed. It suggests that the magnetic ordering could be similar to that for $\varphi_0 = \frac{\pi}{2}$ presented in Fig. 1(b). The magnetic moment in center of the tetragonal cell $(\frac{1}{2}; \frac{1}{2}; \frac{1}{2})$ is frustrated and does not give a contribution to the lon g range order. Such a frustration of the magnetic moment is observed in the CeNi₂Sn₂ compound [4].

An influence of the Crystal Electric Field (CEF) is described by the Hamiltonian:

$$H_{\rm CEF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^4 O_4^4 + B_6^0 O_6^0,$$

where O_n^m are the Stevens operators and B_n^m are the CEF parameters defined by Hutchings [5]. The B_n^m values determined for the tetragonal $\operatorname{RT}_2\operatorname{Si}_2$ compounds indicate that the B_2^0 parameter is dominant [6]. The direction of the magnetic moment with reference to the tetragonal *c*-axis is connected with the sign of the B_2^0 parameter. The magnetic moment is parallel to the *c*-axis if $B_2^0 < 0$ and it is perpendicular to the *c*-axis if the $B_2^0 > 0$ [7]. The determined direction of the magnetic moment suggests the negative value of the B_2^0 parameter for T = Pd and positive for T = Cu. The change of the direction of the magnetic moment with a change of temperature observed in TbCuSb₂ indicates an influence of higher-order terms [5].

The different orderings are observed in TbTGe₂ (Pt, Ir) compounds. In both compounds the Tb moments in 4(h) and 4(i) sublattices order magnetically at different temperatures. The 4(i) sublattice orders directly below the Néel temperature.

A distribution of the magnetic moments in the 4(i) sublattice (see Fig. 3) indicates that the exchange field induced by the Tb moments in 4(i) sublattice carries over the 4(h) sublattice. It causes that the Tb moments in 4(h) and 4(i) sublattices order in different temperatures and form a different types of structure.

In both sublattices the Tb magnetic moments have different directions. In the 4(i) sublattice the moments are parallel to the *b*-axis which suggests that the B_2^0 parameter is negative, while in the 4(h) sublattice the Tb moments are in the *a*-*b* plane in TbPtGe₂ and in the *a*-*c* plane in TbIrGe₂ which indicates different values of the B_n^m parameters for different T elements.

Fig. 3. Projection of the magnetic structure of TbPtGe₂ and TbIrGe₂ in the temperature range $T_{t1} < T < T_N$.

This work was supported by the European Commission under the Access to Research, Infrastructures of the Human Potential Program (contract number HPRI-CT-1999-00020) and by the Polish State Committee for Scientific Research (KBN), grant no. 2 P03B 107 15.

REFERENCES

- O. Sologub, K. Hiebl, P. Rogl, H. Nöel, O. Bodak, J. Alloy. Compd. 210, 153 (1994).
- [2] M. Francois, G. Venturini, E. McRae, B. Malaman, B. Roques, J. Less-Common Met. 128, 249 (1987).
- [3] J. Rodriguez-Carvajal, *Physica* **B192**, 55 (1993).
- [4] J. Pierre, B. Lambert-Andron, R.V. Skolozdra, J. Rodriguez-Carvajal, K. Kaczmarska, *Physica* B202, 143 (1994).
- [5] N.T. Hutchings, Solid State Physics 16, 227 (1964).
- [6] A. Szytuła, J. Leciejewicz, Handbook on the Physics and Chemistry of Rare Earths, Vol. 12, Ed. North Holland, Amsterdam 1989, p. 133.
- J.E. Greedan, V.U.S. Rao, J. Solid State Chem. 6, 387 (1973); J.E. Greedan,
 V.U.S. Rao, J. Solid State Chem. 8, 386 (1973).