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In the limit of infinite spatial dimensions a thermodynamically consis-
tent theory of the strongly correlated electron systems, which is valid for
arbitrary value of the Coulombic interaction (U < o0), is built. For the
Hubbard model the total auxiliary single-site problem exactly splits into
four subspaces, which describe Fermi and non-Fermi liquid components.
Such analytical approach allows to construct different thermodynamically
consistent approximations: alloy-analogy approximation, Hartree—Fock ap-
proximation, and further, that which describes the self-consistent renormal-
ization of the bosonic excitations (magnons and doublons).

PACS numbers: 71.10.Fd, 71.15.Mb, 05.30.Fk, 71.27.+a

In the last decade a lot of the rigorous results in the theory of strongly
correlated electron systems are connected with the development of the Dy-
namical Mean-Field Theory (DMFT) proposed by Metzner and Vollhardt [1]
for the Hubbard model (see also [2] and references therein). It maps lattice
problem on the effective single impurity Anderson model with the general-
ized partition function
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where (,(7 — 7') is an auxiliary Kadanoff-Baym field (single-site hopping)
and for the Hubbard model
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and there are no restrictions on the U value within this theory. Moreover,
some classes of binary-alloy-type models (e.g., the Falicov-Kimball model)
can be studied exactly within DMFT [3]. But in the case of the Hubbard
model, the treatment of the effective single impurity Anderson model is very
complicated and mainly computer simulations are used, which calls for the
development of the analytical approaches [4]. For the partition function (1)
such approach can be build within a perturbation theory expansion in terms
of the electron hopping using a diagrammatic technique for Hubbard oper-
ators [5], which is based on the corresponding Wick theorem [6]. In present
article we supplement such strong-coupling approach by the consideration
of the bosonic fluctuations.

Consecutive pairing of all off-diagonal Hubbard operators XP? is per-
formed until we get the product of the diagonal operators only. For the
single impurity problem (1) and (2) all diagonal operators act at the same
site, their products can be reduced to the single operators and for the Hub-
bard model our problem exactly splits into four subspaces with “vacuum
states” [p) = |0), |2), | 1) and | |) and only excitations, as fermionic, as
bosonic, around these “vacuum states” are allowed. Finally, for the grand
canonical potential we get [5]
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where {2, are the “grand canonical potentials” for the subspaces. Now we
can find the single-electron Green functions by

GW(r—1) = 5< E pr n(T =1, (4)

where G, ) (7 — 7') are single-electron Green functions for the subspaces
characterized by the “statistical weights”
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We can introduce irreducible parts of Green’s functions in subspaces =,
by

P)

G;(lp) (wy) =5 (,1,) (wp) = Colwy) (6)
and self-energies in subspaces X, (Dyson equation for the irreducible
parts)

5_;) (wu) =Wy + fo — Un((—:)(zg) - Ea(p) (wu) s (7)
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where n((fo&) = g:p =0 for p = 0,6 and 1 for p = 2,0. Here, self-energy

Yg(p)(wy) depends on the hopping integral (,/(w,) only through quantities

Psr (p) (wir) = Go'(p) (wyr) — S5l (p) (W) - (8)

Now, one can reconstruct expressions for the grand canonical potentials

{2(p) in subspaces from the known structure of Green functions:

Q( = )\ - —Zln — (o wl/)ua(p)(wll)]
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where @, is some functional, such that its functional derivative with respect
to ¥ produces the self-energy:
09 ()

W = Ea(p) (wy) . (10)

The second term in (9) corresponds to the sum of the fermionic single loop
contributions whereas the next ones describe different scattering processes.
From the grand canonical potential (3) and (9) we get for mean values
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where in the last term the partial derivative is taken over u, not in quantities
v (8).

Falicov-Kimball model corresponds to the case of (|(w,) =0 and, as a
result, @) = 0 and Xy (wy) = 0 which immediately gives results of [3]
(see also [7]).

Presented above equations allow one to construct different thermody-
namically consistent approximations.

The simplest alloy-analogy approrimation, which is a zero-order approxi-
mation within the considered approach, is to put &y = 0,
Yo(p)(wy) = 0 and for the Green’s function for the single impurity prob-
lem one can obtain a two-pole expression (Apy = Ap — Ag)

wo + We wy + Wg
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3418 A.M. SHVAIKA

Strong coupling Hartree—Fock approzimation takes into account the first
corrections into the self energy in the form

0
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No(p) = n((f()p) + E Z Y5 (p) (wy) (13)

which gives for the Green’s function a four-pole expression:

(a) — Wp
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Now, grand canonical potentials in the subspaces (9) are determined by

functional o "
By =U (no.(p) — na(p)> (na.(p) — nﬁ(p)) . (15)

Expression (14) possesses the correct Hartree-Fock limit for the small Co-
ulombic interaction U and electron or hole concentrations. On the other
hand, in the same way as an alloy-analogy solution, it describes the metal—
insulator transition with the change of U. In [5,8] it was shown that the
main contributions come from the subspaces p = 0 or 2, that describe the
Fermi-liquid component, for the low electron (n < 1) or hole (2 —n <« 1)
concentrations, respectively, (“overdoped regime” of high-T¢’s) and p =1, |,
that describe the non-Fermi-liquid component, close to half filling (n ~ 1)
(“underdoped regime”). At low temperatures the Fermi-liquid component
is in the ferromagnetic (Stoner) state, while the non-Fermi-liquid one is
antiferromagnetic close to half-filling.

In order to go beyond the Hartree—Fock approximation one has to con-
sider, besides the fermionic excitations, also the bosonic ones [5] which cor-
respond to the creation and annihilation of the doublons (pairs of electrons),
described by the X20 and X02 operators, for subspaces p = 0,2 and magnons,
described by the XM and X4 operators, for p =1, |. The single loop contri-
butions of such bosonic excitations can be summed up and one can obtain

1 =~ ~
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for subspaces p = 0,2 and

= 1

Dy (wm) = 19
OIS — U5 [Zat (@) — Zog(@))] (19)

. 1

Xoo(p)(Wm) = _EZ Po ) (Wy) Y (p) (Wo—m) (20)

for subspaces p = o, , which give for mean values the following expression

_ 0 1
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Now the self-energy contains the frequency dependent part
Tty (@) = U () = 10 ) + Foir (@) (22)

B ,1 (1 + U[)U('f(p) (wm)> )Zaﬁ(p) ((’Jm) + Daa(p) (wm)

m 1-U (1 + Ul~)m—,(p) (wm)> )Za&(p) (Wm)

> wﬁ(p) (wm—u)a for p=10,2
Vsp)(Wy—m), forp=o0,5

: (23)

that describes the contributions from the doublons for the Fermi liquid com-
ponent (p = 0,2) and magnons for the non-Fermi liquid one (p =t1,]) with
the renormalized spectrum determined by the zeros of denominator in (23).

Expression (16) for functional @) has the same form as the correction
to free energy in the theory of the Self-Consistent Renormalization (SCR)
of spin fluctuations by Moriya [9]. But in our case it describes contributions
from the single-site bosonic (magnon or doublon) fluctuations with specific
renormalization functions different for different subspaces. Spin fluctuations
give the main contribution close to half filling in the non-Fermi liquid regime
but for small electron (n < 1) or hole (2 — n < 1) concentrations the
contributions from the doublon (charge) fluctuations must be taken into
account.
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