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AN ANALYTICAL STRONG COUPLING APPROACHIN DYNAMICAL MEAN-FIELD THEORY�A.M. ShvaikaInstitute for Condensed Matter Physi
s, Natl. A
ad. S
i. Ukr.1 Svientsitskii, 79011 Lviv, Ukraine(Re
eived June 21, 2001)In the limit of in�nite spatial dimensions a thermodynami
ally 
onsis-tent theory of the strongly 
orrelated ele
tron systems, whi
h is valid forarbitrary value of the Coulombi
 intera
tion (U < 1), is built. For theHubbard model the total auxiliary single-site problem exa
tly splits intofour subspa
es, whi
h des
ribe Fermi and non-Fermi liquid 
omponents.Su
h analyti
al approa
h allows to 
onstru
t di�erent thermodynami
ally
onsistent approximations: alloy-analogy approximation, Hartree�Fo
k ap-proximation, and further, that whi
h des
ribes the self-
onsistent renormal-ization of the bosoni
 ex
itations (magnons and doublons).PACS numbers: 71.10.Fd, 71.15.Mb, 05.30.Fk, 71.27.+aIn the last de
ade a lot of the rigorous results in the theory of strongly
orrelated ele
tron systems are 
onne
ted with the development of the Dy-nami
al Mean-Field Theory (DMFT) proposed by Metzner and Vollhardt [1℄for the Hubbard model (see also [2℄ and referen
es therein). It maps latti
eproblem on the e�e
tive single impurity Anderson model with the general-ized partition fun
tion�̂ = e��Ĥ0T exp8<:� �Z0 d� �Z0 d� 0X� ��(� � � 0)ay�(�)a�(� 0)9=; ; (1)where ��(� � � 0) is an auxiliary Kadano��Baym �eld (single-site hopping)and for the Hubbard modelĤ0 = Un"n#��(n"+n#)�h(n"�n#) = Un"n#�X� ��n� =Xp �pX̂pp ; (2)� Presented at the XII S
hool of Modern Physi
s on Phase Transitions and Criti
alPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3415)



3416 A.M. Shvaikaand there are no restri
tions on the U value within this theory. Moreover,some 
lasses of binary-alloy-type models (e.g., the Fali
ov�Kimball model)
an be studied exa
tly within DMFT [3℄. But in the 
ase of the Hubbardmodel, the treatment of the e�e
tive single impurity Anderson model is very
ompli
ated and mainly 
omputer simulations are used, whi
h 
alls for thedevelopment of the analyti
al approa
hes [4℄. For the partition fun
tion (1)su
h approa
h 
an be build within a perturbation theory expansion in termsof the ele
tron hopping using a diagrammati
 te
hnique for Hubbard oper-ators [5℄, whi
h is based on the 
orresponding Wi
k theorem [6℄. In presentarti
le we supplement su
h strong-
oupling approa
h by the 
onsiderationof the bosoni
 �u
tuations.Conse
utive pairing of all o�-diagonal Hubbard operators Xpq is per-formed until we get the produ
t of the diagonal operators only. For thesingle impurity problem (1) and (2) all diagonal operators a
t at the samesite, their produ
ts 
an be redu
ed to the single operators and for the Hub-bard model our problem exa
tly splits into four subspa
es with �va
uumstates� jpi = j0i, j2i, j "i and j #i and only ex
itations, as fermioni
, asbosoni
, around these �va
uum states� are allowed. Finally, for the grand
anoni
al potential we get [5℄
a = � 1� lnXp e��
(p) ; (3)where 
(p) are the �grand 
anoni
al potentials� for the subspa
es. Now we
an �nd the single-ele
tron Green fun
tions byG(a)� (� � � 0) = Æ
aÆ��(� � � 0) =Xp wpG�(p)(� � � 0) ; (4)where G�(p)(� � � 0) are single-ele
tron Green fun
tions for the subspa
es
hara
terized by the �statisti
al weights�wp = e��
(p)Pq e��
(q) : (5)We 
an introdu
e irredu
ible parts of Green's fun
tions in subspa
es ��(p)by G�1�(p)(!�) = ��1�(p)(!�)� ��(!�) (6)and self-energies in subspa
es ��(p) (Dyson equation for the irredu
ibleparts) ��1�(p)(!�) = i!� + �� � Un(0)��(p) ���(p)(!�) ; (7)
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al Strong Coupling Approa
h : : : 3417where n(0)�(p) = � d�pd�� = 0 for p = 0; �� and 1 for p = 2; �. Here, self-energy��(p)(!�) depends on the hopping integral ��0(!�0) only through quantities	�0(p)(!�0) = G�0(p)(!�0)� ��0(p)(!�0) : (8)Now, one 
an re
onstru
t expressions for the grand 
anoni
al potentials
(p) in subspa
es from the known stru
ture of Green fun
tions:
(p) = �p � 1�X�� ln �1� ��(!�)��(p)(!�)�� 1�X�� ��(p)(!�)	�(p)(!�) + �(p) ; (9)where �(p) is some fun
tional, su
h that its fun
tional derivative with respe
tto 	 produ
es the self-energy:� Æ�(p)Æ	�(p)(!�) = ��(p)(!�) : (10)The se
ond term in (9) 
orresponds to the sum of the fermioni
 single loop
ontributions whereas the next ones des
ribe di�erent s
attering pro
esses.From the grand 
anoni
al potential (3) and (9) we get for mean valuesn� = �d
ad�� =Xp wpn�(p) ;n�(p) = n(0)�(p) + 1�X� 	�(p)(!�)� ��(p)��� ; (11)where in the last term the partial derivative is taken over �� not in quantities	 (8).Fali
ov�Kimball model 
orresponds to the 
ase of �#(!�) � 0 and, as aresult, �(p) � 0 and �"(p)(!�) � 0 whi
h immediately gives results of [3℄(see also [7℄).Presented above equations allow one to 
onstru
t di�erent thermody-nami
ally 
onsistent approximations.The simplest alloy-analogy approximation, whi
h is a zero-order approxi-mation within the 
onsidered approa
h, is to put �(p) = 0,��(p)(!�) = 0 and for the Green's fun
tion for the single impurity prob-lem one 
an obtain a two-pole expression (�pq = �p � �q)G(a)� (!�) = w0 + w�i!� � ��0 � ��(!�) + w2 + w��i!� � �2�� � ��(!�) : (12)
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oupling Hartree�Fo
k approximation takes into a

ount the �rst
orre
tions into the self energy in the form��(p)(!�) = U �n�(p) � n(0)�(p)� ;n�(p) = n(0)�(p) + 1�X� 	�(p)(!�) (13)whi
h gives for the Green's fun
tion a four-pole expression:G(a)� (!�) =Xp wpi!� + �� � Un��(p) � ��(!�) : (14)Now, grand 
anoni
al potentials in the subspa
es (9) are determined byfun
tional �(p) = U �n�(p) � n(0)�(p)��n��(p) � n(0)��(p)� : (15)Expression (14) possesses the 
orre
t Hartree�Fo
k limit for the small Co-ulombi
 intera
tion U and ele
tron or hole 
on
entrations. On the otherhand, in the same way as an alloy-analogy solution, it des
ribes the metal�insulator transition with the 
hange of U . In [5, 8℄ it was shown that themain 
ontributions 
ome from the subspa
es p = 0 or 2, that des
ribe theFermi-liquid 
omponent, for the low ele
tron (n � 1) or hole (2 � n � 1)
on
entrations, respe
tively, (�overdoped regime� of high-T
's) and p ="; #,that des
ribe the non-Fermi-liquid 
omponent, 
lose to half �lling (n � 1)(�underdoped regime�). At low temperatures the Fermi-liquid 
omponentis in the ferromagneti
 (Stoner) state, while the non-Fermi-liquid one isantiferromagneti
 
lose to half-�lling.In order to go beyond the Hartree�Fo
k approximation one has to 
on-sider, besides the fermioni
 ex
itations, also the bosoni
 ones [5℄ whi
h 
or-respond to the 
reation and annihilation of the doublons (pairs of ele
trons),des
ribed by the X̂20 and X̂02 operators, for subspa
es p = 0; 2 and magnons,des
ribed by the X̂"# and X̂#" operators, for p ="; #. The single loop 
ontri-butions of su
h bosoni
 ex
itations 
an be summed up and one 
an obtain�(p) = 1�Xm ln h1� U �1� U ~D���(p)(!m)� ~����(p)(!m)i ; (16)where ~D���(p)(!m) = 1i!m � �20 � U 1� P� �	�(p)(!�) +	��(p)(!�)� ; (17)~����(p)(!m) = � 1�X� 	�(p)(!�)	��(p)(!m��) (18)
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h : : : 3419for subspa
es p = 0; 2 and~D���(p)(!m) = 1i!m � ���� � U 1� P� �	��(p)(!�)�	�(p)(!�)� ; (19)~����(p)(!m) = � 1�X� 	�(p)(!�)	��(p)(!��m) (20)for subspa
es p = �; ��, whi
h give for mean values the following expressionn�(p) = n(0)�(p) + 1�X� 	�(p)(!�)� 1�Xm U2 ~D2���(p)(!m)~����(p)(!m)1� U �1� U ~D���(p)(!m)� ~����(p)(!m) : (21)Now the self-energy 
ontains the frequen
y dependent part��(p)(!�) = U �n��(p) � n(0)��(p)�+ ~��(p)(!�) ; (22)~��(p)(!�) = U2 1�Xm �1� U ~D���(p)(!m)� ~����(p)(!m)� ~D���(p)(!m)1� U �1� U ~D���(p)(!m)� ~����(p)(!m)�� 	��(p)(!m��); for p = 0; 2	��(p)(!��m); for p = �; �� ; (23)that des
ribes the 
ontributions from the doublons for the Fermi liquid 
om-ponent (p = 0; 2) and magnons for the non-Fermi liquid one (p ="; #) withthe renormalized spe
trum determined by the zeros of denominator in (23).Expression (16) for fun
tional �(p) has the same form as the 
orre
tionto free energy in the theory of the Self-Consistent Renormalization (SCR)of spin �u
tuations by Moriya [9℄. But in our 
ase it des
ribes 
ontributionsfrom the single-site bosoni
 (magnon or doublon) �u
tuations with spe
i�
renormalization fun
tions di�erent for di�erent subspa
es. Spin �u
tuationsgive the main 
ontribution 
lose to half �lling in the non-Fermi liquid regimebut for small ele
tron (n � 1) or hole (2 � n � 1) 
on
entrations the
ontributions from the doublon (
harge) �u
tuations must be taken intoa

ount.
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