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JORDAN�WIGNER FERMIONS AND THE SPIN 1=2ANISOTROPIC XY MODEL ON A SQUARE LATTICE�Oleg Derzhkoa;b Johannes Rihter and Taras VerkholyakaaInstitute for Condensed Matter Physis1 Svientsitskii Street, L'viv-11, 79011, UkrainebChair of Theoretial Physis, Ivan Franko National University of L'viv12 Drahomanov Street, L'viv-5, 79005, UkraineInstitut für Theoretishe Physik, Universität MagdeburgP.O. Box 4120, D-39016 Magdeburg, Germany(Reeived June 21, 2001)Using the two-dimensional Jordan�Wigner fermionization we alulatethe thermodynami quantities of the (spatially anisotropi) square-lattiespin 1=2 anisotropi XY (XZ) model. We ompare the results of di�er-ent approahes for the ground-state and thermodynami properties of themodel.PACS numbers: 75.10.�bTwo-dimensional (2D) quantum spin models have been extensively stud-ied during last years mainly beause it is believed that they may be of use fordesribing the magneti properties of CuO2 layers in the high-temperaturesuperondutors [1℄. There exist a number of analytial approahes fora study of the thermodynami properties of 2D quantum spin models, e.g.,the onventional spin-wave analysis, the Green funtion tehnique, the ap-proah based on the 2D Jordan�Wigner fermionization as well as the oupledluster method, the orrelated basis funtion method et. In what followswe onsider the spin 1=2 anisotropi XY model on a spatially anisotropisquare lattie within the framework of the sheme based on the 2D Jordan�Wigner fermionization and ompare the results derived for the ground-stateand thermodynami quantities with the exat ones (1D limit, square-lattie� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3427)



3428 O. Derzhko, J. Rihter, T. VerkholyakIsing model) and the preditions of other approximate theories. The per-formed alulations yield an impression about the region of validity of someapproahes usually applied for a study of thermodynamis of 2D quantumspin models.We start from a model of N ! 1 spins 1=2 on a spatially anisotropisquare lattie governed by the anisotropi XY HamiltonianH = 1Xi=0 1Xj=0�J�(1 + )sxi;jsxi+1;j + (1� )syi;jsyi+1;j�+J?�(1 + )sxi;jsxi;j+1 + (1� )syi;jsyi;j+1��: (1)Here J and J? = RJ are the exhange interations between the neighbour-ing sites in a row and a olumn, respetively (for onreteness we assumeboth to be positive), and the parameter  ontrols the anisotropy of the ex-hange interation. Making use of the 2D Jordan�Wigner fermionization andadopting a mean-�eld treatment of the phase fators whih appear after thefermionization [2, 3℄ we perform onsequently the Fourier and Bogolyubovtransformations to arrive at the following Hamiltonian of noninteratingspinless fermions whih represent the initial spin model (1)H = X0k 2X�=1��(k)��+k;��k;� � 12� ; (2)�1(k) = q(J? os ky + J os kx)2 + (J sinkx + J? sinky)2 ;�2(k) = q(J? os ky � J os kx)2 + (J sinkx � J? sinky)2 ;(the prime denotes that k in the thermodynami limit varies in the region�� � kx � �, �� + jkxj � ky � � � jkxj). The Helmholtz free energy persitef = � 12� �Z�� dkx2� �Z�� dky2� �ln�2 osh ��1(k)2 �+ln�2 osh ��2(k)2 �� ; (3)yields the thermodynami properties of the spin model (1). In Fig. 1 we plotthe ground-state energy per site of the spin model (1), (2) (dotted urves)in omparison with the exat results if R = 0 (1D XY model) or  = 1(square-lattie Ising model) and the spin-wave theory result for  = 0, R = 1(spatially isotropi square-lattie isotropi XY model). Eq. (3) ontains theexat result in 1D limit (Fig. 1(b)), however, deviates notieably from the



Jordan�Wigner Fermions and the Spin 1=2: : : 3429exat result for  = 1 (ompare the urves 3 in Fig. 1(a)). For  = 0,R = 1 Eq. (3) yields the result whih di�ers from the spin-wave theorypredition denoted by the full irles. (The outomes of di�erent numerialapproahes (see [4℄) lie within the full irles.) From the exat alulationfor  = 1 [5℄ we know that the temperature dependene of the spei� heatexhibits a logarithmi singularity. Obviously, the Jordan�Wigner fermions(2), (3) annot reprodue this peuliarity inherent in the spin model.
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Fig. 1. The ground-state energy per site for the square-lattie spin 1=2 anisotropiXY model (1) e0 versus R (a) (1 �  = 0, 2 �  = 0:5, 3 �  = 1) and e0versus ; (b) (1 � R = 0, 2 � R = 0:5, 3 � R = 1); exat results (solid urves)and the approximate results obtained on the basis of (2) (dotted urves); the fullirles orrespond to the spin-wave result for  = 0, R = 1.It is worth to remind here that the onventional spin-wave theory wasoriginally thought to be unsatisfatory for quantum XY models [6℄. How-ever, the authors of the paper [7℄ showed that onsidering the XZ rather



3430 O. Derzhko, J. Rihter, T. Verkholyakthan the XY Hamiltonian one gets within the spin-wave theory satisfatoryresults of the same quality as for the Heisenberg Hamiltonian. Following thisidea we perform the rotation of the spin axes sx ! �sz, sy ! sx, sz ! �syand onsider instead of (1) the following HamiltonianH = 1Xi=0 1Xj=0�J�(1� )sxi;jsxi+1;j + (1 + )szi;jszi+1;j�+J?�(1� )sxi;jsxi;j+1 + (1 + )szi;jszi;j+1��: (4)Proeeding further with (4) in the desribed above manner and assuming(for onreteness) antiferromagneti long-range order while deoupling thequarti fermioni terms [8℄ we get instead of (2) the following HamiltonianH =X0k 2X�=1��(k)��+k;��k;� � 12�+N (1 + ) (J + J?)m2; (5)�1;2(k) =2qA2+B2+C2+D2+M2�2p2ABCD+A2D2+B2C2+M2(B2+D2) ;A = 1� 4 J? os ky;B = 1� 4 J? sinky;C = 1� 4 J sinkx;D = 1� 4 J os kx;M = (1 + ) (J + J?)m;where m is determined self-onsistently by minimizing the Helmholtz freeenergy per site2 (1 + ) (J + J?)m= 14 �Z�� �Z�� dk(2�)2 ���1(k)�m tanh ��1(k)2 + ��2(k)�m tanh ��2(k)2 � : (6)



Jordan�Wigner Fermions and the Spin 1=2: : : 3431In Fig. 2 we plot the ground-state energy of the spin model (4) � (6)(dashed urves). The results based on Eqs. (5), (6) for  = 1 reprodue theexat result for square-lattie Ising model (urve 3 in Fig. 2(a)) as well asthe spin-wave theory predition for  = 0, R = 1. However, the result basedon Eqs. (5), (6) for R = 0 does not oinide with the exat one in 1D limit(urve 1 in Fig. 2(b)).
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Fig. 2. The same as in Fig. 1 for the XZ Hamiltonian (4); the approximate resultsobtained on the basis of (5), (6) are shown by dashed urves.To summarize, we have alulated the thermodynami quantities for thespin 1=2 anisotropi XY (XZ) model on a spatially anisotropi square lattieusing the 2D Jordan�Wigner fermionization. To reveal a quality of theresults obtained within the framework of this approah we have omparedthem with the exat results available in 1D limit and extremely anisotropiexhange interation limit (Ising interation). We have found that althoughthere is an agreement with the spin-wave theory and other approximate



3432 O. Derzhko, J. Rihter, T. Verkholyakapproahes a disagreement with the exat results may be notieable. Thus,the question about the quality of the results based on the 2D Jordan�Wignerfermionization (as well as, e.g., of the spin-wave theory results) remainsstill open and requires further studies. Moreover, for arbitrary values ofanisotropy parameter  ( 6= 1) for R 6= 0 a omparison with the exatdiagonalization data and results of other numerial approahes is desirable.The authors thank T. Krokhmalskii for helpful disussions on this topi.The present study was partly supported by the DFG projet 436 UKR17/7/01. O.D. aknowledges the kind hospitality of the Magdeburg Uni-versity in the summer of 2001 when this paper was ompleted.REFERENCES[1℄ M.A. Kastner, R.J. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys. 70,897 (1998).[2℄ Y.R. Wang, Phys. Rev. B43, 3786 (1991).[3℄ O. Derzhko, J. Phys. Stud. (L'viv) 5, 49 (2001).[4℄ E. Loh Jr., D.J. Salapino, P.M. Grant, Phys. Rev. B31, 4712 (1985);C.J. Hamer, T. Hövelborn, M. Bahhuber, J. Phys. A32, 51 (1999);D.J.J. Farnell, M. L. Ristig, ond-mat/0105386.[5℄ D.C. Mattis, The Theory of Magnetism II. Thermodynamis and StatistialMehanis, Ed. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1985.[6℄ D.C. Mattis, The Theory of Magnetism I. Statis and Dynamis, Ed. Springer-Verlag, Berlin, Heidelberg, New York 1981, Chapter 5.[7℄ G. Gomez-Santos, J.D. Joannopoulos, Phys. Rev. B36, 8707 (1987).[8℄ T. Kennedy, E.H. Lieb, B.S. Shastry, Phys. Rev. Lett. 61, 2582 (1988).


