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MONTE CARLO SIMULATIONS OF PHASETRANSITIONS IN THE THREE-DIMENSIONALASHKIN�TELLER MODEL�G. Musiaªy, L. D�bski and G. KamieniarzInstitute of Physis, A. Mikiewiz UniversityUmultowska 85, 61-614 Pozna«, Poland(Reeived June 21, 2001)The Monte Carlo simulations allowing a distintion between the 1stand the 2nd order phase transitions in the three-dimensional Ashkin�Tellerspin-lattie model, a system with three order parameters, are desribed.The applied method allows a preise loation of points on the phase dia-gram. Some ritial points on the phase boundaries have been alulatedin the regions omplementary to the results reently desribed in literature.PACS numbers: 75.10.Hk, 75.30.Kz, 75.40.Mg1.Ashkin and Teller [1℄ have introdued a model of a four-omponent sys-tem by generalization of Ising model, whih an be interpreted as a two-omponent system. Fan [2℄ has shown, that this four-omponent model anbe expressed in terms of Ising spins, with two spins si and �i at eah lattiesite (i.e. si and �i are variables that an take values +1 or �1), so an beinterpreted as two superimposed Ising models. One of them is desribed inspin variables si and the other in variables �i and in both models there areexlusively two-spin interations of a onstant magnitude J2 between thenearest neighbors only. Simultaneously, these two di�erent models are ou-pled by four-spin interation of a onstant magnitude J4, also only betweenouples of spins residing at the nearest neighboring lattie sites. Thus, theHamiltonian of this model is��H = H =X[i;j℄fK2(sisj + �i�j) +K4si�isj�jg ; (1)� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.y e-mail: gmusial�spin.amu.edu.pl (3439)



3440 G. Musiaª, L. D�bski, G. Kamieniarzwhere � = (kBT )�1, [i; j℄ denotes summation over nearest neighboring lat-tie sites and Ki = �Ji=kBT , with i = 2 or 4 and T is the temperature.This is a model with three order parameters: hsi, h�i and hs�i where thesymbol h: : :i denotes the thermal average.The standard Ashkin�Teller (AT) model in three-dimensions has beenanalyzed by the short series analysis and (for the �rst time) by the MonteCarlo (MC) method by Ditzian et al. [3℄ to obtain the approximate phasediagram. Besides Ditzian's results at present we have more preise results ofArnold et al. [4℄ and D�ebski [5℄ in the narrow ranges of the model parameters.For the detailed disussion of the 3D AT phase diagram we refer the readerto these papers.The aim of this paper is to present the Monte Carlo simulations and someresults for the 1st and 2nd order phase transition points in the (K4;K2)diagram. The positions of these points should be alulated with a su�ientpreision (omparable to that in [4℄) beause of the appearane of triritialand bifuration points in the diagram. The applied MC method based onBinder umulants [6℄ analysis enables us to distinguish transitions of the 1storder from these of the 2nd order in the three-dimensions system with manyorder parameters.We have generated equilibrium on�gurations of the �nite-size ubi sam-ples of spins of the volume L3 (10 � L � 26) for �xed values of the modelparameters. Periodi boundary onditions were imposed and thermalizationof the initial on�gurations was applied. The 48- and 64-bit random numbergenerators were used.Gibbs distribution was sampled using the Metropolis algorithm [7℄.We started with some initial on�guration � of spins, and a new on�g-uration � 0 of the system was generated from � by the repetitive appliationof the importane sampling proedure when �ipping suessive spins on thelattie. In order to deide whether to aept a single spin��ip or not, weompared the energies of the new and old on�gurations. If the energyhange E� 0�E� was negative, then the new on�guration was automatiallyaepted; if, however, it was positive, the new on�guration was aeptedwith a probability e��(E� 0�E� ). Physially it means that both on�gura-tions are in equilibrium and none of them arises at the expense of another.When eah spin of the sample has been visited one, we arried out oneMonte Carlo Step (MCS). This proedure ensures the satisfation of theaessibility riterion.Using this method, we generated on�gurations whih allowed us to al-ulate physial quantities in a diret way. The phase transition point T wasdetermined [6, 8, 9℄ from the analysis of the fourth order umulantQL = hM2�i2LhM4�iL ; (2)



Monte Carlo Simulations of : : : 3441where hMn� iL denotes the n-th power of the order parameter h�i, with� = s, � or s�, averaged over an assembly of independent samples of thesize L � L � L. For T > T and L � �, where � denotes the orrelationlength, QL tends towards 1=3 whih orresponds to a Gaussian distribution.For T < T and L � �, QL tends to 1. For L � �, QL varies only weaklywith temperature and linear dimension, and stays very lose to the onstantvalue Q. For the three-dimensions Ising model Q = 0:6233(4) [9, 10℄, thevalue ahieved at the ritial point in the limit L ! 1. This behavior ofthe umulant is useful for determination of T. One may plot QL versus Tfor various L's and estimate T from the intersetion point of these urves(see [6, 9℄ and the papers ited therein).Sine T appears in our Hamiltonian only in ouplings Ki, i=2 or 4, for2nd order phase transitions it is onvenient to use the following form of the�nite-size expansion of QL(K) [9, 10℄QL(K) = Q+a1(K�K)Lyt+a2(K�K)2L2yt+: : :+b1Lyi+b2Ly2+: : : (3)where ai and bi are non-universal oe�ients, y2 = d � 2yh, d = 3 is thedimensionality and yt = 1:587(2), yh = 2; 4815(15), yi = �0:82(6) are thepertinent renormalization exponents. This formula allows a preise loationof a ontinuous phase transition points.To on�rm the 1st order harater of the transition point (together withthe above mentioned umulant QL) we alulate another fourth order u-mulant VL de�ned by [6℄ VL = 1� hE4iL3hE2i2L ; (4)where hEniL denotes the n-th moment of the internal energy E averaged overan assembly of independent samples of the size L � L � L. The umulantVL is extremely useful in distinguishing the 1st order phase transitions fromthese of the 2nd order. For the 2nd order phase transition VL = 2=3 in thelimit L ! 1 and it remains �xed even for T 6= T [6℄, whereas varying Tfor the 1st order phase transitions, VL has a minimum V minL at T = T(L).Moreover [6℄ V minL = 1� 2(E4+ +E4�)3(E2+ +E2�)2 ; (5)in the limit L ! 1. Here E� = E(T ! Tj�). Thus when the latent heatE+ � E� tends to zero, V minL approahes a value 2=3, as desribed abovefor the ontinuous phase transitions. It is also important that the funtionsV minL and Ki(T(L)) versus L�d are linear [6℄, whih allows a determinationof the limit value V min1 and the true ritial value of the ouplings Ki. Theseonsiderations were arried out for a system with a single order parameter.



3442 G. Musiaª, L. D�bski, G. KamieniarzWe have generalized the use of the umulant VL for a system with manyorder parameters. To determine the phase transition onneted with theorder parameter hsi, the moments hEniL in the umulant (4) should bealulated only for the interations between spins s (the �rst term in theHamiltonian (1)). Analogously, we investigate the phase transitions on-neted with the order parameter h�i, whereas when alulating the momentshEniL in (4) for the transitions onneted with the order parameter hs�i, wehave to take into aount only interations between the spins s� (the thirdterm in the Hamiltonian (1)). It is worth noting that when one takes intoregard all the interations inluded in the Hamiltonian (1) then the quantityVL manifests the averaged behavior of all order parameters in the system.In the simulations we have always applied thermalization of the initialon�gurations and it is enough to take 105 to 106 MCS for this purpose.Then we alulate k partial averages of the moments hMn� iL and hEn�iL for�=s, � and s� usually after eah 10�k�106 MCS with k=6 to 30 depen-ding on L and how far from the ritial value of Ki we are. The fator 10re�ets the fat that for the alulation of a partial average we take resultsonly every 10th MCS to avoid orrelations between sampled on�gurationsof spins in the system.To illustrate the MC method performane, we have arried out our sim-ulations for the AT model on the three-dimensions simple ubi lattie andfor the regions of the parameter spae (K4;K2) where the phase transitionsare expeted to be of the 1st and of the 2nd order, obtaining some prelimi-nary results. To investigate the positions of the phase transition points wehave used hsi, h�i and hs�i as an order parameter. In pratie, as suggestedby Binder [11℄, we alulated Root Mean Square (RMS) value of an orderparameter to avoid trouble with a restrited ensemble.Our results are presented in Table I and they are more aurate thanthose of Ditzian et.al. [3℄. We have observed the presene of the latent heaton the line of the transitions from the hs�iferro to the paramagneti phasefor K4 < 0, what is the main di�erene when ompared to the results in [3℄.Moreover, the results forK4 = 0:19 learly show that there are two triritialpoints in this region: one on the line of the transitions from the hs�iferro tothe paramagneti phase and another one on the line of the transitions fromthe hsiferro to the paramagneti phase.Our results are omplementary to those reently obtained in litera-ture [4,5℄. Moreover, our results in the viinity of the bifuration and tririt-ial points for K4 > 0 shift the former to smaller values of K4 than indiatedin [3℄, probably to the Potts point. In the viinity of these points, the simula-tions have to be performed extremely arefully. Using the method presentedhere, we plan to onsider the rest of the phase diagram of the 3D AT model,whih is still not fully resolved and rises many interesting points.



Monte Carlo Simulations of : : : 3443TABLE IThe ouplings K4, K2 and the order of the phase transition points in the 3DAshkin�Teller model obtained from our Monte Carlo simulations.K4 K2 OrderThe line of the transitions from the hs�iferro to the paramagneti phase:�0:085 0.2492(3) 1st�0:055 0.2394(3) 1st0.175 0.14791(3) 1st0.190 0.13947(3) 1st0.203 0.1184(2) 2nd0.210 0.0991(2) 2nd0.217 0.0663(3) 2ndThe line of the transitions from the hsiferro to the paramagneti phase:�0:162 0.2736(3) 2nd�0:145 0.268(2) 2nd�0:085 0.2492(3) 2nd�0:055 0.2394(3) 2nd0.175 0.14791(3) 1st0.190 0.13949(3) 2nd0.246 0.12003(3) 2nd0.440 0.11142(3) 2ndThe line of the transitions from the hs�iantiferro to the paramagneti phase:�0:340 0.3345(2) 2nd�0:313 0.2957(2) 2nd�0:266 0.2078(5) 2nd�0:230 0.0912(5) 2ndThe authors wish to thank Professor J. Rogiers for valuable disussions.Thanks are also due to the Pozna« Superomputing and Networking Centerfor the aess to the SGI Power Challenge and SGI Origin 3200C super-
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