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MONTE CARLO SIMULATIONS OF PHASE
TRANSITIONS IN THE THREE-DIMENSIONAL
ASHKIN-TELLER MODEL*
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The Monte Carlo simulations allowing a distinction between the 1st
and the 2nd order phase transitions in the three-dimensional Ashkin—Teller
spin-lattice model, a system with three order parameters, are described.
The applied method allows a precise location of points on the phase dia-
gram. Some critical points on the phase boundaries have been calculated
in the regions complementary to the results recently described in literature.

PACS numbers: 75.10.Hk, 75.30.Kz, 75.40.Mg

1.

Ashkin and Teller [1] have introduced a model of a four-component sys-
tem by generalization of Ising model, which can be interpreted as a two-
component system. Fan |2] has shown, that this four-component model can
be expressed in terms of Ising spins, with two spins s; and o; at each lattice
site (i.e. s; and o; are variables that can take values +1 or —1), so can be
interpreted as two superimposed Ising models. One of them is described in
spin variables s; and the other in variables o; and in both models there are
exclusively two-spin interactions of a constant magnitude Jo between the
nearest neighbors only. Simultaneously, these two different models are cou-
pled by four-spin interaction of a constant magnitude Jy, also only between
couples of spins residing at the nearest neighboring lattice sites. Thus, the
Hamiltonian of this model is

—-BH=H = Z{K2(sisj + O'Z'O'j) + K4$i0i3j0'j}a (1)
[4.]
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where 8 = (kgT)~", [i, ] denotes summation over nearest neighboring lat-
tice sites and K; = —J;/kgT, with ¢ = 2 or 4 and T is the temperature.
This is a model with three order parameters: (s), (o) and (so) where the
symbol (...) denotes the thermal average.

The standard Ashkin—Teller (AT) model in three-dimensions has been
analyzed by the short series analysis and (for the first time) by the Monte
Carlo (MC) method by Ditzian et al. [3] to obtain the approximate phase
diagram. Besides Ditzian’s results at present we have more precise results of
Arnold et al. [4] and Debski [5] in the narrow ranges of the model parameters.
For the detailed discussion of the 3D AT phase diagram we refer the reader
to these papers.

The aim of this paper is to present the Monte Carlo simulations and some
results for the 1st and 2nd order phase transition points in the (K4, Ko9)
diagram. The positions of these points should be calculated with a sufficient
precision (comparable to that in [4]) because of the appearance of tricritical
and bifurcation points in the diagram. The applied MC method based on
Binder cumulants [6] analysis enables us to distinguish transitions of the 1st
order from these of the 2nd order in the three-dimensions system with many
order parameters.

We have generated equilibrium configurations of the finite-size cubic sam-
ples of spins of the volume L3 (10 < L < 26) for fixed values of the model
parameters. Periodic boundary conditions were imposed and thermalization
of the initial configurations was applied. The 48- and 64-bit random number
generators were used.

Gibbs distribution was sampled using the Metropolis algorithm [7].
We started with some initial configuration 7 of spins, and a new config-
uration 7’ of the system was generated from 7 by the repetitive application
of the importance sampling procedure when flipping successive spins on the
lattice. In order to decide whether to accept a single spin—flip or not, we
compared the energies of the new and old configurations. If the energy
change E, —FE,. was negative, then the new configuration was automatically
accepted; if, however, it was positive, the new configuration was accepted
with a probability e #(E~~E7)  Physically it means that both configura-
tions are in equilibrium and none of them arises at the expense of another.
When each spin of the sample has been visited once, we carried out one
Monte Carlo Step (MCS). This procedure ensures the satisfaction of the
accessibility criterion.

Using this method, we generated configurations which allowed us to cal-
culate physical quantities in a direct way. The phase transition point T, was
determined [6,8,9] from the analysis of the fourth order cumulant
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where (M[); denotes the n-th power of the order parameter (@), with
a = s, 0 or so, averaged over an assembly of independent samples of the
size L x L x L. For T > T, and L > &, where ¢ denotes the correlation
length, @, tends towards 1/3 which corresponds to a Gaussian distribution.
For T < T, and L > &, Qr, tends to 1. For L < &, Oy, varies only weakly
with temperature and linear dimension, and stays very close to the constant
value Q). For the three-dimensions Ising model @ = 0.6233(4) [9, 10], the
value achieved at the critical point in the limit L — oo. This behavior of
the cumulant is useful for determination of T,. One may plot Q, versus T
for various L’s and estimate T, from the intersection point of these curves
(see [6,9] and the papers cited therein).

Since T' appears in our Hamiltonian only in couplings K;, i=2 or 4, for
2nd order phase transitions it is convenient to use the following form of the
finite-size expansion of Qr(K) [9,10]

Qr(K) = Q+a1(K—K¢) LY +as(K— K )L 4. .. +b LY + by LY2 +. .. (3)

where a; and b; are non-universal coefficients, yo = d — 2y, d = 3 is the
dimensionality and y; = 1.587(2), y, = 2,4815(15), y; = —0.82(6) are the
pertinent renormalization exponents. This formula allows a precise location
of a continuous phase transition points.

To confirm the 1st order character of the transition point (together with
the above mentioned cumulant Q7)) we calculate another fourth order cu-
mulant V7, defined by [6]

(E")1
3(E?)7

Vi=1- (4)
where (E™) [, denotes the n-th moment of the internal energy F averaged over
an assembly of independent samples of the size L x L x L. The cumulant
V7, is extremely useful in distinguishing the 1st order phase transitions from
these of the 2nd order. For the 2nd order phase transition V7, = 2/3 in the
limit L — oo and it remains fixed even for T' # T, [6], whereas varying T
for the 1st order phase transitions, V7, has a minimum VLmin at T =T.(L).
Moreover [6]

2(E1 + EY) .
3(E? + E%)2° (5)

in the limit L — oo. Here Ex = E(T — T¢|1+). Thus when the latent heat
E, — E_ tends to zero, VLmin approaches a value 2/3, as described above
for the continuous phase transitions. It is also important that the functions
Vit and K;(Te(L)) versus L~ are linear [6], which allows a determination
of the limit value V2" and the true critical value of the couplings K;. These
considerations were carried out for a system with a single order parameter.

Vi =1 -
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We have generalized the use of the cumulant Vi, for a system with many
order parameters. To determine the phase transition connected with the
order parameter (s), the moments (E™); in the cumulant (4) should be
calculated only for the interactions between spins s (the first term in the
Hamiltonian (1)). Analogously, we investigate the phase transitions con-
nected with the order parameter (o), whereas when calculating the moments
(E™)1, in (4) for the transitions connected with the order parameter (so), we
have to take into account only interactions between the spins so (the third
term in the Hamiltonian (1)). It is worth noting that when one takes into
regard all the interactions included in the Hamiltonian (1) then the quantity
V1, manifests the averaged behavior of all order parameters in the system.

In the simulations we have always applied thermalization of the initial
configurations and it is enough to take 10° to 10° MCS for this purpose.
Then we calculate k partial averages of the moments (M2)r, and (E"), for
a=s, o and so usually after each 10xkx 105 MCS with k=6 to 30 depen-
ding on L and how far from the critical value of K; we are. The factor 10
reflects the fact that for the calculation of a partial average we take results
only every 10th MCS to avoid correlations between sampled configurations
of spins in the system.

To illustrate the MC method performance, we have carried out our sim-
ulations for the AT model on the three-dimensions simple cubic lattice and
for the regions of the parameter space (K4, K9) where the phase transitions
are expected to be of the 1st and of the 2nd order, obtaining some prelimi-
nary results. To investigate the positions of the phase transition points we
have used (s), (o) and (so) as an order parameter. In practice, as suggested
by Binder [11], we calculated Root Mean Square (RMS) value of an order
parameter to avoid trouble with a restricted ensemble.

Our results are presented in Table I and they are more accurate than
those of Ditzian et.al. [3]. We have observed the presence of the latent heat
on the line of the transitions from the (s0)fer to the paramagnetic phase
for K4 < 0, what is the main difference when compared to the results in [3].
Moreover, the results for K4 = 0.19 clearly show that there are two tricritical
points in this region: one on the line of the transitions from the (s )¢ to
the paramagnetic phase and another one on the line of the transitions from
the (8)ferro to the paramagnetic phase.

Our results are complementary to those recently obtained in litera-
ture [4,5]. Moreover, our results in the vicinity of the bifurcation and tricrit-
ical points for K4 > 0 shift the former to smaller values of K4 than indicated
in 3], probably to the Potts point. In the vicinity of these points, the simula-
tions have to be performed extremely carefully. Using the method presented
here, we plan to consider the rest of the phase diagram of the 3D AT model,
which is still not fully resolved and rises many interesting points.
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TABLE 1

The couplings K4, Ko and the order of the phase transition points in the 3D
Ashkin—Teller model obtained from our Monte Carlo simulations.

Ky

K>

Order

The line of the transitions from the (5o )ferro to the paramagnetic phase:

—0.085
—0.055
0.175
0.190
0.203
0.210
0.217

0.2492(3)
0.2394(3)

0.14791(3)
0.13947(3)
0.1184(2)
0.0991(2)
0.0663(3)

1st
1st
1st
1st
2nd
2nd
2nd

The line of the transitions from the (s)ferro to the paramagnetic phase:

—0.162
—0.145
—0.085
—0.055
0.175
0.190
0.246
0.440

0.2736(3)
0.268(2)
0.2492(3
0.2394(3
0.14791(3)
0.13949(3)

(3)
0. 11142(3)

2nd
2nd
2nd
2nd
1st
2nd
2nd
2nd

The line of the transitions from the (50 )antiferro t0 the paramagnetic phase:

—0.340
-0.313
—0.266
—0.230

0.3345(2)
0.2957(2)
0.2078(5)
0.0912(5)

2nd
2nd
2nd
2nd
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