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MONTE CARLO SIMULATIONS OF PHASETRANSITIONS IN THE THREE-DIMENSIONALASHKIN�TELLER MODEL�G. Musiaªy, L. D�bski and G. KamieniarzInstitute of Physi
s, A. Mi
kiewi
z UniversityUmultowska 85, 61-614 Pozna«, Poland(Re
eived June 21, 2001)The Monte Carlo simulations allowing a distin
tion between the 1stand the 2nd order phase transitions in the three-dimensional Ashkin�Tellerspin-latti
e model, a system with three order parameters, are des
ribed.The applied method allows a pre
ise lo
ation of points on the phase dia-gram. Some 
riti
al points on the phase boundaries have been 
al
ulatedin the regions 
omplementary to the results re
ently des
ribed in literature.PACS numbers: 75.10.Hk, 75.30.Kz, 75.40.Mg1.Ashkin and Teller [1℄ have introdu
ed a model of a four-
omponent sys-tem by generalization of Ising model, whi
h 
an be interpreted as a two-
omponent system. Fan [2℄ has shown, that this four-
omponent model 
anbe expressed in terms of Ising spins, with two spins si and �i at ea
h latti
esite (i.e. si and �i are variables that 
an take values +1 or �1), so 
an beinterpreted as two superimposed Ising models. One of them is des
ribed inspin variables si and the other in variables �i and in both models there areex
lusively two-spin intera
tions of a 
onstant magnitude J2 between thenearest neighbors only. Simultaneously, these two di�erent models are 
ou-pled by four-spin intera
tion of a 
onstant magnitude J4, also only between
ouples of spins residing at the nearest neighboring latti
e sites. Thus, theHamiltonian of this model is��H = H =X[i;j℄fK2(sisj + �i�j) +K4si�isj�jg ; (1)� Presented at the XII S
hool of Modern Physi
s on Phase Transitions and Criti
alPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.y e-mail: gmusial�spin.amu.edu.pl (3439)



3440 G. Musiaª, L. D�bski, G. Kamieniarzwhere � = (kBT )�1, [i; j℄ denotes summation over nearest neighboring lat-ti
e sites and Ki = �Ji=kBT , with i = 2 or 4 and T is the temperature.This is a model with three order parameters: hsi, h�i and hs�i where thesymbol h: : :i denotes the thermal average.The standard Ashkin�Teller (AT) model in three-dimensions has beenanalyzed by the short series analysis and (for the �rst time) by the MonteCarlo (MC) method by Ditzian et al. [3℄ to obtain the approximate phasediagram. Besides Ditzian's results at present we have more pre
ise results ofArnold et al. [4℄ and D�ebski [5℄ in the narrow ranges of the model parameters.For the detailed dis
ussion of the 3D AT phase diagram we refer the readerto these papers.The aim of this paper is to present the Monte Carlo simulations and someresults for the 1st and 2nd order phase transition points in the (K4;K2)diagram. The positions of these points should be 
al
ulated with a su�
ientpre
ision (
omparable to that in [4℄) be
ause of the appearan
e of tri
riti
aland bifur
ation points in the diagram. The applied MC method based onBinder 
umulants [6℄ analysis enables us to distinguish transitions of the 1storder from these of the 2nd order in the three-dimensions system with manyorder parameters.We have generated equilibrium 
on�gurations of the �nite-size 
ubi
 sam-ples of spins of the volume L3 (10 � L � 26) for �xed values of the modelparameters. Periodi
 boundary 
onditions were imposed and thermalizationof the initial 
on�gurations was applied. The 48- and 64-bit random numbergenerators were used.Gibbs distribution was sampled using the Metropolis algorithm [7℄.We started with some initial 
on�guration � of spins, and a new 
on�g-uration � 0 of the system was generated from � by the repetitive appli
ationof the importan
e sampling pro
edure when �ipping su

essive spins on thelatti
e. In order to de
ide whether to a

ept a single spin��ip or not, we
ompared the energies of the new and old 
on�gurations. If the energy
hange E� 0�E� was negative, then the new 
on�guration was automati
allya

epted; if, however, it was positive, the new 
on�guration was a

eptedwith a probability e��(E� 0�E� ). Physi
ally it means that both 
on�gura-tions are in equilibrium and none of them arises at the expense of another.When ea
h spin of the sample has been visited on
e, we 
arried out oneMonte Carlo Step (MCS). This pro
edure ensures the satisfa
tion of thea

essibility 
riterion.Using this method, we generated 
on�gurations whi
h allowed us to 
al-
ulate physi
al quantities in a dire
t way. The phase transition point T
 wasdetermined [6, 8, 9℄ from the analysis of the fourth order 
umulantQL = hM2�i2LhM4�iL ; (2)



Monte Carlo Simulations of : : : 3441where hMn� iL denotes the n-th power of the order parameter h�i, with� = s, � or s�, averaged over an assembly of independent samples of thesize L � L � L. For T > T
 and L � �, where � denotes the 
orrelationlength, QL tends towards 1=3 whi
h 
orresponds to a Gaussian distribution.For T < T
 and L � �, QL tends to 1. For L � �, QL varies only weaklywith temperature and linear dimension, and stays very 
lose to the 
onstantvalue Q. For the three-dimensions Ising model Q = 0:6233(4) [9, 10℄, thevalue a
hieved at the 
riti
al point in the limit L ! 1. This behavior ofthe 
umulant is useful for determination of T
. One may plot QL versus Tfor various L's and estimate T
 from the interse
tion point of these 
urves(see [6, 9℄ and the papers 
ited therein).Sin
e T appears in our Hamiltonian only in 
ouplings Ki, i=2 or 4, for2nd order phase transitions it is 
onvenient to use the following form of the�nite-size expansion of QL(K) [9, 10℄QL(K) = Q+a1(K�K
)Lyt+a2(K�K
)2L2yt+: : :+b1Lyi+b2Ly2+: : : (3)where ai and bi are non-universal 
oe�
ients, y2 = d � 2yh, d = 3 is thedimensionality and yt = 1:587(2), yh = 2; 4815(15), yi = �0:82(6) are thepertinent renormalization exponents. This formula allows a pre
ise lo
ationof a 
ontinuous phase transition points.To 
on�rm the 1st order 
hara
ter of the transition point (together withthe above mentioned 
umulant QL) we 
al
ulate another fourth order 
u-mulant VL de�ned by [6℄ VL = 1� hE4iL3hE2i2L ; (4)where hEniL denotes the n-th moment of the internal energy E averaged overan assembly of independent samples of the size L � L � L. The 
umulantVL is extremely useful in distinguishing the 1st order phase transitions fromthese of the 2nd order. For the 2nd order phase transition VL = 2=3 in thelimit L ! 1 and it remains �xed even for T 6= T
 [6℄, whereas varying Tfor the 1st order phase transitions, VL has a minimum V minL at T = T
(L).Moreover [6℄ V minL = 1� 2(E4+ +E4�)3(E2+ +E2�)2 ; (5)in the limit L ! 1. Here E� = E(T ! T
j�). Thus when the latent heatE+ � E� tends to zero, V minL approa
hes a value 2=3, as des
ribed abovefor the 
ontinuous phase transitions. It is also important that the fun
tionsV minL and Ki(T
(L)) versus L�d are linear [6℄, whi
h allows a determinationof the limit value V min1 and the true 
riti
al value of the 
ouplings Ki. These
onsiderations were 
arried out for a system with a single order parameter.
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umulant VL for a system with manyorder parameters. To determine the phase transition 
onne
ted with theorder parameter hsi, the moments hEniL in the 
umulant (4) should be
al
ulated only for the intera
tions between spins s (the �rst term in theHamiltonian (1)). Analogously, we investigate the phase transitions 
on-ne
ted with the order parameter h�i, whereas when 
al
ulating the momentshEniL in (4) for the transitions 
onne
ted with the order parameter hs�i, wehave to take into a

ount only intera
tions between the spins s� (the thirdterm in the Hamiltonian (1)). It is worth noting that when one takes intoregard all the intera
tions in
luded in the Hamiltonian (1) then the quantityVL manifests the averaged behavior of all order parameters in the system.In the simulations we have always applied thermalization of the initial
on�gurations and it is enough to take 105 to 106 MCS for this purpose.Then we 
al
ulate k partial averages of the moments hMn� iL and hEn�iL for�=s, � and s� usually after ea
h 10�k�106 MCS with k=6 to 30 depen-ding on L and how far from the 
riti
al value of Ki we are. The fa
tor 10re�e
ts the fa
t that for the 
al
ulation of a partial average we take resultsonly every 10th MCS to avoid 
orrelations between sampled 
on�gurationsof spins in the system.To illustrate the MC method performan
e, we have 
arried out our sim-ulations for the AT model on the three-dimensions simple 
ubi
 latti
e andfor the regions of the parameter spa
e (K4;K2) where the phase transitionsare expe
ted to be of the 1st and of the 2nd order, obtaining some prelimi-nary results. To investigate the positions of the phase transition points wehave used hsi, h�i and hs�i as an order parameter. In pra
ti
e, as suggestedby Binder [11℄, we 
al
ulated Root Mean Square (RMS) value of an orderparameter to avoid trouble with a restri
ted ensemble.Our results are presented in Table I and they are more a

urate thanthose of Ditzian et.al. [3℄. We have observed the presen
e of the latent heaton the line of the transitions from the hs�iferro to the paramagneti
 phasefor K4 < 0, what is the main di�eren
e when 
ompared to the results in [3℄.Moreover, the results forK4 = 0:19 
learly show that there are two tri
riti
alpoints in this region: one on the line of the transitions from the hs�iferro tothe paramagneti
 phase and another one on the line of the transitions fromthe hsiferro to the paramagneti
 phase.Our results are 
omplementary to those re
ently obtained in litera-ture [4,5℄. Moreover, our results in the vi
inity of the bifur
ation and tri
rit-i
al points for K4 > 0 shift the former to smaller values of K4 than indi
atedin [3℄, probably to the Potts point. In the vi
inity of these points, the simula-tions have to be performed extremely 
arefully. Using the method presentedhere, we plan to 
onsider the rest of the phase diagram of the 3D AT model,whi
h is still not fully resolved and rises many interesting points.
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ouplings K4, K2 and the order of the phase transition points in the 3DAshkin�Teller model obtained from our Monte Carlo simulations.K4 K2 OrderThe line of the transitions from the hs�iferro to the paramagneti
 phase:�0:085 0.2492(3) 1st�0:055 0.2394(3) 1st0.175 0.14791(3) 1st0.190 0.13947(3) 1st0.203 0.1184(2) 2nd0.210 0.0991(2) 2nd0.217 0.0663(3) 2ndThe line of the transitions from the hsiferro to the paramagneti
 phase:�0:162 0.2736(3) 2nd�0:145 0.268(2) 2nd�0:085 0.2492(3) 2nd�0:055 0.2394(3) 2nd0.175 0.14791(3) 1st0.190 0.13949(3) 2nd0.246 0.12003(3) 2nd0.440 0.11142(3) 2ndThe line of the transitions from the hs�iantiferro to the paramagneti
 phase:�0:340 0.3345(2) 2nd�0:313 0.2957(2) 2nd�0:266 0.2078(5) 2nd�0:230 0.0912(5) 2ndThe authors wish to thank Professor J. Rogiers for valuable dis
ussions.Thanks are also due to the Pozna« Super
omputing and Networking Centerfor the a

ess to the SGI Power Challenge and SGI Origin 3200C super-
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