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Second order perturbation theory for the free energy of the s—d exchange
Hamiltonian Hyk is applied to CuCr. The temperature dependence of the
cutoff D(T) for Hk is adjusted to obtain agreement between theory and
the experimental plot of specific heat for CuCr found by Tripplett and
Philips. We find that the function D(T') follows approximately the rule
D(T) = 103kgT + ~(kpT)>.

PACS numbers: 72.15.Cz, 75.10.Dg, 75.30.Et

1. Introduction

The theory of Dilute Magnetic Alloys (DMA) initiated by Kondo in
1964 [1] has only partially succeeded in explaining the intriguing properties
of these materials. Kondo’s theory and its extension [2—4] explain the pres-
ence of an anomalous resistivity minimum in the range of low temperatures.
It is founded on the concept of s-d exchange interaction [5] between the
spin density of conduction electrons and M impurity atoms endowed with
magnetic moments %S :

M
V(M) = _%JZ Z ou(Ra)Suas J <0, (1)

a=1u=z,y,z

where o, denotes the electron spin density.
Since the early seventies, the single impurity version of the Kasuya
Hamiltonian

Hy(1) = exahpane + V(1) = Ho + Vic(1) (2)
ko
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attracted the attention of theorists. Wilson and others [6-8] applied the
Renormalization Group Technique (RGT) to the VG Hamiltonian which
maps onto Hk (1) and showed that the specific heat of Hk (1) exhibits a peak
in the vicinity of the Kondo temperature Tx. Such a peak is observed
in the high temperature, magnetically disordered phase of several DMA
(e.g. Refs. [9-11]).

Andrei [12] and Wiegmann [13] independently diagonalized the Hamilto-
nian Hk(1). The resulting thermodynamics of Hx (1) was studied by Andrei
et al. [14] in the scaling regime: B, kgT < D with Ty = D exp(—1II/cy) fixed
as cg = 2J/(1 —3/4J%) — 0, D — oo (B denoting the magnetic field and D
the cutoff imposed on Vi ). They obtained a peak in the graph of impurity
specific heat which coincides with the one found by Oliveira et al. [8]. Other
thermodynamic functions were also examined. Unfortunately, direct com-
parison of these graphs with experiment is impossible due to the absence of
a fundamental parameter in single-impurity theories of DMA — the impu-
rity concentration ¢ = M N !, There is convincing experimental evidence
that all properties of DMA, in particular impurity specific heat, are affected
by variations of ¢ (e.g. Refs. [1,9-11,15,16]).

Our objective is to establish a theory of DMA founded on the M impurity
Hamiltonian Hy (M), which incorporates the theory of resistivity of DMA
due to Kondo and accounts for the dependence of all DMA properties on c.
A preliminary step in this direction was made in Ref. [18], where 2nd order
perturbation theory for the free energy f(Hg (M), T) per conduction electron
of Hg (M) was developed. In the magnetically disordered phase of DMA the
appropriate unperturbed Hamiltonian is that of the free electron gas Hy.
The difference f(Hg(M),T) — f(Ho,T) = fo(T) up to 2nd order in Vi
equals:

e_ﬂsk —_ e_ﬂgk’

2C
o Y (= fe(e)(1 — frlen) . @3)

kK €k T Ex

f2(T) =

The expression (3) is obtained for spin 1/2 impurities. Larger values of impu-
rity spin introduce an additional constant factor. n stands for the number of
conduction electrons, N represents the number of atoms of the host metal,
er denotes the Fermi level, zr = exp(fer) and fr(e) = (1+ 2 ' exp(Be)) !

Passing from the summation over momenta to integration over e, =
h%k? /2m one obtains

erp+D ep+D

3 2
¢ Lfao(T) = 4NmrL/f11|6 /de / de' fr(e) (1 — fr (e )) \/_ (4)
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where m denotes the electron mass and, similarly as in Refs. [12,13], a cutoff
D on the range of interaction Vx has been imposed. In other words, we
assume that only those valence electrons which have energies within a thin
band around the Fermi level: e € [ep — D, e + D], are capable of conveying
the s—d exchange. Furthermore, we assume that D is temperature dependent
and adjust D(T) to fit the theoretical impurity free energy ¢ !N fo(T) to
the experimental curve A¢; e(T')/c found by Tripplett and Philips for CuCr
with Cr concentration ¢ = 51 x 107¢ [9]. The adjusted function D(T) has
the form

D(T) = 10°kpT + a(T), (5)

where a(T) is a positive valued increasing, convex function of the order
of 107*D(T), approximately expressed by the formula a(T) = ~(kgT)?,
v = 2.10273 x 10*(eV)"! . A constant D fails to yield agreement with
experiment. Details of the calculations and resulting plot of D(T') are given
in the next section.

2. The impurity specific heat curve of CuCr

A well known example of a peak in the impurity specific heat of DMA is
the one found by Tripplett and Philips [9] for CuCr with ¢ ranging between
21.2 x 1076 and 51 x 107%. Rapid increase of ¢ ' Ac;o(T) for CuCr with
c = 51 x 1075 below T, = 0.07 K (¢f Fig. 1 of Ref. [9]) indicates the
presence of a 2nd order phase transition at T.. The range of temperatures
T > T, for ¢ < 51 x 10~% thus corresponds to the magnetically disordered
phase, where the appropriate unperturbed Hamiltonian for Hyk is Hy and
where Egs. (3), (4) can be applied.

The expression (4) allows an exact fit of the resulting theoretical curve
of ¢c' Ac;(T) to the experimental one by adjusting the cutoff function D(T).
We have verified that D(T) of the form given by Eq. (5) yields a good fit of
¢~ Ac;(T) to the experimental curve plotted in Fig. 1 of Ref. [9]. The graph
of the nonlinear part of D(T) viz. D(T) — 103kgT, is plotted in Fig. 1

The resulting plot of ¢! N f3(T) is concave and decreasing in T', in accord
with the inequalities

82
_TB—TJ; >0, s =
satisfied by the free energy f and entropy s.

A constant D fails to yield agreement with experiment, presumably due
to the large width of the temperature window encountered. The resulting
theory is therefore no longer a microscopic one, as it requires introduction
of a temperature dependent support for Vi (M). The d electrons in the iron
transition series metals are known to be largely conduction electrons [19].

of
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Fig. 1. Nonlinear part of the cutoff D(T') and its quadratic approximation adjusted
to give the agreement between theory and the experimental data depicted in Fig. 1
of Ref. [9].

It is therefore difficult to estimate the real values of magnetic moments of
atoms belonging to this series. However, since the magnitude of this moment
for impurities in DMA introduces only a constant factor into the r.h.s. of
Egs. (3), (4), we assume for simplicity that below 10K only the s electron
of Cr contributes to the gas of conduction electrons in CuCr and that the
spin of the resulting Cr™ ions equals 1/2. Under this assumption, S = 1 in
Eq. (1) for CuCr and Egs. (3), (4) remain valid.
The quantity plotted in Fig. 1 of Ref. [9] is
82
cflACie = —NcilTw(fCuCr - fCu) (7)
in J/(K mole Cr) units, where fcycr denotes the free energy per conducting
electron for CuCr and fg, that for the electron gas of pure Cu. One mole
of Cr is contained in ¢! = 10%/51 moles of CuCr, therefore

N = ¢ (1 -¢)6.022 x 103,
n = ¢ 6.022 x 10%3.

The system volume |A] is equal, up to sufficient approximation, to that of
¢ (1 — ¢) moles of Cu, that is, 1246470.588 g of Cu at about 5K. Thus
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|A| = |Ag|(1 — @A) = 137600.5586¢m?,

| Ayg| denoting the volume at 20°C, a = 16.5 x 107 °K~!. For the Fermi
level ep in Egs. (3), (4) we substitute the Fermi level of Cu: ep = 7.1 €V.
Approximating the derivative on the r.h.s. of Eq. (7) by —T2(AT) 2(Asfo—
Ay f5), where

Asfy = fo(T3) — fo(T3), Aifa = fo(T2) — f2(Th) ,

and kg AT = kg(T3 — Ty) = k(Ty — T1) = 10~° €V, one obtains agreement
between ¢ 'Ac; and ¢ ' A¢; at T = 0.216 K for J = —0.0028943 eV and
D(0.1K) = 0.0086eV = 102kgK. The fit of c "' Ac; to ¢! Acje at T > 0.216 K
results by adjusting D(T') according to Eq. (5) for the fixed value of J.
The integral I on the r.h.s. of Eq.(4) was evaluated numerically for
successive values of T and D(T).
For I one obtains the following expression

I = go(D,q) +91(D,q) + 92(D, q)

ep+D
+2 / defr(e)V/e [\/61: —D—\/ep+D }
ep—D
ep+D D
+2 / de fr(e)e [arctanh1 / = j_ D arctanh 4/ °F ; ] , (8)
EF—D

where

ep — D
90(D,q) = ((5F - D)2 — (er — q)2) arctanh F
EF — ¢
+((er = D)(er —9))*(D -~ q),
- D
91(D,q) = 4epD arctanh 2:: D —92D (612; . D2)1/2’
3D,0) = (e )" — (er + D)) snctaniy [ T

+(q+ D)((er + D) (er — q))"/2.

The Fermi distribution function fg is constant up to high accuracy for
e < ep — D/10, € > ep + D/10 in the temperature range [0.1K, 10K].
Thus we put
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1 for e<ep—
fF:{ r

0 for e>ep+gq ’
where ¢ = D/10.

3. Conclusions

The theoretical impurity specific heat curve of CuCr resulting from 2nd
order perturbation theory for the free energy of the s—d exchange Hamilto-
nian Hi (M) can be adjusted exactly to the experimental one by fitting the
temperature dependence of the cutoff D(T') imposed on the s—d exchange
Vk(M). D(T) proves to be almost linear in T'. A constant D fails to yield
agreement with experiment, presumably due to the relatively wide range of
temperatures encountered. The theory is therefore no longer a microscopic
one. This raises the question of the role of higher order terms of perturbation
theory, as well as existence and properties of these terms and fo(Hg (M), T)
in the scaling regime.
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