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An argument is given showing that in the limit of small impurity con-
centrations, the statistical sum Zx of the M-impurity s—d model equals
Zx (M) = M(Zk-(1) — Z-(0)) + Z,(0), where Z,.(M) denotes the statistical
sum of the M-impurity reduced s—d model and Zx,(1) that of a single im-
purity interacting with the free electron gas and mean field of the reduced
s—d model.

PACS numbers: 72.15.Cz, 75.10.Dg, 75.30.Et

The s—d exchange Hamiltonian introduced by Kasuya [1]
M
Hy (M) = Ho+ V(M) =) epay, ag, —J > 0(Ra)Sa, J <0, (1)
ko a=1

describing the interaction of conduction electrons with M spin S magnetic
impurities located at Ry, ..., Ry in a Dilute Magnetic Alloy (DMA) with
N host atoms, has been the subject of extensive studies (e.g. Refs. [1-9]).

In the early eighties Andrei and Wiegmann independently diagonalized
the single impurity version of this model (M = 1) [3-6]. The thermody-
namics of H(1) was studied by Andrei et al. in [4,7]. They found general
agreement between predictions of their theory and experimental measure-
ments of specific heat and magnetization of DMA, in particular (LaCe)Als,
in the vicinity of the Kondo temperature Tk.

Properties of DMA, in particular resistivity, specific heat, susceptibility
are known to vary with impurity concentration c=MN ! (e.g. [2,10-15]).
The theories developed on the grounds of the Andrei-Wiegmann solu-
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tion for Hkx do not involve ¢, due to the presence of only one impurity in
the model and therefore cannot account for these variations. An example
of a successful theory which explains the c¢-dependence and temperature
dependence of the properties of DMA is that of Kondo [2]. It was extended
to temperatures close to 0 K in Refs. [16-18], by exploiting a reduced version
H,.(M) of Hx(M), which involves ¢, as the Hamiltonian of the unperturbed
system.

Our proposal here is to use the Hamiltonian H,(M) as a means to solve
the thermodynamics of Hk (M), in the limit of small ¢. The starting point
of our considerations is a perturbation expansion of the free energy

f(HK(Man)uB) =— lim (nﬁ)il lnTrexp(—ﬁHK(M, ’fL)), (2)
M,n—o0
in powers of Hg(M,n)—H,(M,n) discussed in Ref. [19], n denoting the
number of conduction electrons and the limit in (2) being approached at
c = MN ! =const., ¢, = nN~ ! =const. and the density of conduction
electrons d = n|A|~! =const. The expansion of f(Hk(M,n),3) in powers
of Hx(M,n) — H,(M,n) in this limit simplifies to an expansion in powers
of VK
The reduced Hamiltonian H,(M,n) = Hy(n) + V,(M,n), where

J M n
Ve(M;n) = =5 > ) Sa- oix(p)A(n), 3)

a=1 i=1

with [ |
_J 1 forpefpr—A, pp+A]=P
X(p)_{o forp & P.

pr denoting the Fermi momentum and A(n) the antisemmetrizer with re-
spect to conduction electron variables, was introduced in [16] on the grounds
that it represents the most relevant part of Vi (M, n) in the range of low tem-
peratures: V, comprises only spin—flip processes which are not accompanied
by momentum exchange processes. As shown by Kondo in [2]|, spin—flip
processes and not momentum exchange processes account primarily for the
anomalous resistivity of DMA in low temperatures and momentum exchange
in this range of T' can be discarded in the crudest approximation on the
grounds of the inequalities kpT ~ € — ey < prAm ' < ep. The presence
of an external magnetic field B is accounted for by the term

V(B)=-> x(pi)oi-B—g > Sa-B, (4)
=1 a

which should be added to the relevant Hamiltonian.



On the Thermodynamics of the M -impurity . .. 3455

It was demonstrated in Ref. [17]| that H,(M,n,B) = H,(M,n) + V(B)
is equivalent in the thermodynamic limit to

he(M,n, B) = A(n)(Ho(n) + g0 3" x(9)) Wy — #m) - ;) Aln)
=1

M
1
+ vy Z (zm+mm) : Sa+§n (I?n_y?n_zzn)_{—v(B)a (5)
a=1
Y90 = |J|N_17
in the sense of the equality

Jim f(H, (M. B), )= lim_ f(hr (M., B), /) =f @0, Y 21 )
(©)

where &, Y,,, 2m are the solutions of the equations

9a _, 9f _, of
ox ’ oy ’ 0z
which minimize f(z,y,z,3). The system represented by h,(M,n,0) exhi-
bits a second order phase transition at T. =(v/2k) ~'vé¢|J|, § =3Ace(cpp) ™!

accompanied below T, by antiparallel alignment of impurity and conduction
electron spins. At T'> T, h, = Hy, if B =0.

The presence of the low temperature ferromagnetic phase of H,(M,n,0)
is consistent with conclusions about the phase diagram of H(1,n,0) drawn
by Anderson et al. [20] and the presence of such phase in numerous alloys
and compounds with s—d exchange e.g. in (LaGd)Aly [21,22], PbSnMnTe
[23], CePdaGas [24], CeaPdaIn justifying our choice of H,(M,n,B) as the
unperturbed system.

=0, (7)

The equality (6) provides the grounds for a further simplification of the
perturbation expansion of f(Hg(M,n,B),[). At T > T, the unperturbed
system H,(M,n,0) can be replaced by virtue of Eq. (6) by Hy. The latter
is diagonal in the plane wave representation {ukd,}. As a consequence all
terms of the perturbation expansion (cf. Ref. [19])

Zx(M,n,0 = Trexp(—SHk(M,n,0)) (8)
. ( BH 1)1 B B
:Z 0 /dtl /dtlTO[VK(M,tl)...VK(M,tl)])
! 0 0
T, denoting the ordering operator with respect to ¢1,...,t,, proportional to

¢ differ only by the factor ¢N = M from those which arise in an analogous
expansion of Zk(1,n,0). (This simplification of the r.h.s. of Eq. (8) is due
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to the equality >, R (kdq —k,) = 0 which holds for Ry = ... = Rj; under
the resulting restrictions on {kd,, kd,} for which the trace of expressions
proportional to ¢ is non-vanishing.) For sufficiently dilute alloys all terms
of the expansion (8) proportional to powers of ¢ higher than the first can
be discarded. This approximation to Zx(M,n,0) amounts to the same one
which Kondo applied in his calculation of DMA resistivity [2]: neglect of
correlations between localized spins and summation of contributions from
each impurity separately.

Thus we arrive at the conclusion that in the limit of sufficiently small ¢

0o 1 1
Zx(M,n,0) ~ Tr (eﬁHO (1 +CNZ ( l')
=1

B B
X/dtl.../dtlTo [VK(l,tz)---VK(l’tl)D)

0 0
= CN(ZK(].,’H,,O) - ZO) + Z07 (9)

where Zy = Trexp(—FH,).

In the range of small concentrations ¢ and low temperatures viz. T' < T¢,
Hy + V(B) can be split into the unperturbed part H, and perturbation H,
(Hkx +V(B) = H, + H,) in the following manner:

H, = hT(OanaB)
H, Vk(M,n) — V.(M,n) —1—2 (zm +xm) —¢g'B)-S.. (10)

|

Then an argument, analogous to the one which led to Eq. (5), yields the
equality

Zx(M;n, B) = cN(Zk,(1,n, B) = Z;(0,n, B)) + Z,(0,n,B), (1)

where Z,(0,n, B) = Trexp(—fh,(0,n, B)), since the vectors @,, — vy,,, and
B are either parallel or antiparallel, allowing to introduce a diagonal repre-
sentation of h,(0,n, B) in the same plane wave basis (Ref. [25]). Zk, denotes
the statistical sum of a single impurity interacting with h,.(1,n, B).

The equality (11) shows that the thermodynamics of the M-impurity s—d
model reduces to that of the 1-impurity model in the temperature dependent
mean field

Wi (1,m) = v(2m + 2m)S1 + goA(n Zx P)) (Y — ®m)ojA(n).  (12)
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Diagonalization of Hy, (1,n, B) = Hg(1,n, B) + W,(1,n) analogous to
that of Hk(1,n,B) solved by Andrei and Wiegmann, allows to evaluate
Zxr(1,n, B) = Trexp(—FHyw,(1,n, B)). The presence of ¢ in Zx,(M,n, B)
accounts for the variation of thermodynamics of DMA with ¢ and the phase
transition of H.(M,n, B) resembles the transition to the magnetically or-
dered phase observed in DMA. Full analysis of these effects will be carried
out in subsequent papers.
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