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ON THE THERMODYNAMICS OF THE M-IMPURITYs�d MODEL�J. Ma¢kowiak and M. Wi±niewskiInstitute of Physis, Niholas Copernius UniversityGrudzi¡dzka 5, 87-100 Toru«, Poland(Reeived June 21, 2001)An argument is given showing that in the limit of small impurity on-entrations, the statistial sum ZK of the M -impurity s�d model equalsZK(M) = M(ZKr(1)�Zr(0))+Zr(0); where Zr(M) denotes the statistialsum of the M -impurity redued s�d model and ZKr(1) that of a single im-purity interating with the free eletron gas and mean �eld of the redueds�d model.PACS numbers: 72.15.Cz, 75.10.Dg, 75.30.EtThe s�d exhange Hamiltonian introdued by Kasuya [1℄HK(M) = H0 + VK(M) =Xk� "ka�k�ak� � J MX�=1�(R�)S�; J < 0; (1)desribing the interation of ondution eletrons with M spin S magnetiimpurities loated at R1; : : : ;RM in a Dilute Magneti Alloy (DMA) withN host atoms, has been the subjet of extensive studies (e.g. Refs. [1�9℄).In the early eighties Andrei and Wiegmann independently diagonalizedthe single impurity version of this model (M = 1) [3�6℄. The thermody-namis of H(1) was studied by Andrei et al. in [4, 7℄. They found generalagreement between preditions of their theory and experimental measure-ments of spei� heat and magnetization of DMA, in partiular (LaCe)Al2,in the viinity of the Kondo temperature TK.Properties of DMA, in partiular resistivity, spei� heat, suseptibilityare known to vary with impurity onentration =MN�1 (e.g. [2,10�15℄).The theories developed on the grounds of the Andrei�Wiegmann solu-� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3453)



3454 J. Ma¢kowiak M. Wi±niewskition for HK do not involve , due to the presene of only one impurity inthe model and therefore annot aount for these variations. An exampleof a suessful theory whih explains the -dependene and temperaturedependene of the properties of DMA is that of Kondo [2℄. It was extendedto temperatures lose to 0K in Refs. [16�18℄, by exploiting a redued versionHr(M) of HK(M), whih involves , as the Hamiltonian of the unperturbedsystem.Our proposal here is to use the Hamiltonian Hr(M) as a means to solvethe thermodynamis of HK(M), in the limit of small . The starting pointof our onsiderations is a perturbation expansion of the free energyf(HK(M;n); �) = � limM;n!1(n�)�1 lnTr exp(��HK(M;n)); (2)in powers of HK(M;n)�Hr(M;n) disussed in Ref. [19℄, n denoting thenumber of ondution eletrons and the limit in (2) being approahed at = MN�1 =onst., e = nN�1 =onst. and the density of ondutioneletrons d = nj�j�1 =onst. The expansion of f(HK(M;n); �) in powersof HK(M;n) � Hr(M;n) in this limit simpli�es to an expansion in powersof VK.The redued Hamiltonian Hr(M;n) = H0(n) + Vr(M;n), whereVr(M;n) = � JN MX�=1 nXi=1 S� � �i�(pi)A(n) ; (3)with �(p) = � 1 for p 2 [pF ��; pF +�℄ = P0 for p 62 P:pF denoting the Fermi momentum and A(n) the antisemmetrizer with re-spet to ondution eletron variables, was introdued in [16℄ on the groundsthat it represents the most relevant part of VK(M;n) in the range of low tem-peratures: Vr omprises only spin��ip proesses whih are not aompaniedby momentum exhange proesses. As shown by Kondo in [2℄, spin��ipproesses and not momentum exhange proesses aount primarily for theanomalous resistivity of DMA in low temperatures and momentum exhangein this range of T an be disarded in the rudest approximation on thegrounds of the inequalities kBT � "k � "k0 � pF�m�1 � "F. The preseneof an external magneti �eld B is aounted for by the termV (B) = � nXi=1 �(pi)�i �B � g0X� S� �B ; (4)whih should be added to the relevant Hamiltonian.



On the Thermodynamis of the M-impurity : : : 3455It was demonstrated in Ref. [17℄ that Hr(M;n;B) = Hr(M;n) + V (B)is equivalent in the thermodynami limit tohr(M;n;B) = A(n)�H0(n) + g0 nXj=1 �(pj)(ym � xm) � �j�A(n)+  MX�=1 (zm+xm) � S�+12n �x2m�y2m�z2m�+V (B); (5)g0 = jJ jN�1 ;in the sense of the equalitylimM;n!1f(Hr(M;n;B); �)= limM;n!1 f(hr(M;n;B); �)=f(xm;ym;zm; �) ;(6)where xm;ym;zm are the solutions of the equations�f�x = 0; �f�y = 0; �f�z = 0; (7)whih minimize f(x;y;z; �). The system represented by hr(M;n; 0) exhi-bits a seond order phase transition at T=(p2kB)�1pÆjJ j, Æ=3�e(pF)�1aompanied below T by antiparallel alignment of impurity and ondutioneletron spins. At T > T, hr = H0, if B = 0.The presene of the low temperature ferromagneti phase of Hr(M;n; 0)is onsistent with onlusions about the phase diagram of H(1; n; 0) drawnby Anderson et al. [20℄ and the presene of suh phase in numerous alloysand ompounds with s�d exhange e.g. in (LaGd)Al2 [21, 22℄, PbSnMnTe[23℄, CePd2Ga3 [24℄, Ce2Pd2In justifying our hoie of Hr(M;n;B) as theunperturbed system.The equality (6) provides the grounds for a further simpli�ation of theperturbation expansion of f(HK(M;n;B); �). At T > T, the unperturbedsystem Hr(M;n; 0) an be replaed by virtue of Eq. (6) by H0. The latteris diagonal in the plane wave representation fukd�g. As a onsequene allterms of the perturbation expansion (f. Ref. [19℄)ZK(M;n; 0 = Tr exp(��HK(M;n; 0)) (8)= 1Xl=0 Tr e��H0 (�1)ll! �Z0 dtl : : : �Z0 dt1To[VK(M; tl) : : : VK(M; t1)℄!To denoting the ordering operator with respet to t1; : : : ; tn, proportional to di�er only by the fator N = M from those whih arise in an analogousexpansion of ZK(1; n; 0). (This simpli�ation of the r.h.s. of Eq. (8) is due



3456 J. Ma¢kowiak M. Wi±niewskito the equalityP�R�(kd��k0�) = 0 whih holds for R1 = : : : = RM underthe resulting restritions on fkd�;kd0�g for whih the trae of expressionsproportional to  is non-vanishing.) For su�iently dilute alloys all termsof the expansion (8) proportional to powers of  higher than the �rst anbe disarded. This approximation to ZK(M;n; 0) amounts to the same onewhih Kondo applied in his alulation of DMA resistivity [2℄: neglet oforrelations between loalized spins and summation of ontributions fromeah impurity separately.Thus we arrive at the onlusion that in the limit of su�iently small ZK(M;n; 0) � Tr e��H0 1 + N 1Xl=1 (�1)ll!� �Z0 dtl : : : �Z0 dt1TohVK(1; tl) : : : VK(1; t1)i!!= N(ZK(1; n; 0) � Z0) + Z0 ; (9)where Z0 = Tr exp(��H0).In the range of small onentrations  and low temperatures viz. T < T,HK+V (B) an be split into the unperturbed part Hu and perturbation Hp(HK + V (B) = Hu +Hp) in the following manner:Hu = hr(0; n;B) ;Hp = VK(M;n)� Vr(M;n) +X� ((zm + xm)� g0B) � S� : (10)Then an argument, analogous to the one whih led to Eq. (5), yields theequalityZK(M;n;B) � N(ZKr(1; n;B)� Zr(0; n;B)) + Zr(0; n;B) ; (11)where Zr(0; n;B) = Tr exp(��hr(0; n;B)), sine the vetors xm � ym andB are either parallel or antiparallel, allowing to introdue a diagonal repre-sentation of hr(0; n;B) in the same plane wave basis (Ref. [25℄). ZKr denotesthe statistial sum of a single impurity interating with hr(1; n;B):The equality (11) shows that the thermodynamis of theM -impurity s�dmodel redues to that of the 1-impurity model in the temperature dependentmean �eldWr(1; n) = (zm + xm)S1 + g0A(n) nXj=1 �(pj)(ym � xm)�jA(n) : (12)
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