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2D FALICOV�KIMBALL MODEL WITH CORRELATEDHOPPING IN THE LARGE U LIMIT�J. WojtkiewizDepartment for Mathematial Methods in Physis, Warsaw UniversityHo»a 74, 00-682 Warszawa, Polandand R. Lema«skiW. Trzebiatowski Institute of Low Temperature and Struture Researh, PolishAademy of SienesP.O. Box 1410, 50-950 Wroªaw, Poland(Reeived June 21, 2001)Two-dimensional spinless Faliov�Kimball Model (FKM) with a gen-eralized orrelated hopping is studied perturbatively in the limit of largeon-site Coulomb interation U . In the half-�lled ase (i.e. �i + �e = 1,where �i; �e are densities of ions and eletrons, respetively,) an e�etiveHamiltonian in spin variables is derived up to terms proportional to U�3.Unlike the simplest FKM ase, it ontains odd parity terms (resulting fromthe orrelated hopping) in addition to even parity ones. The ground-statephase diagram of the e�etive Hamiltonian is examined in the (a; g; h) pa-rameter spae, where a; g are parameters haraterizing strength of theorrelated hopping and h is a di�erene of hemial potentials of two sortsof partiles present in the system. It appears to be asymmetri with re-spet to the hange h! �h and a new ordered phases are found for ertainvalues of a and g.PACS numbers: 71.10.�w 1. IntrodutionThe FKM has been originally proposed to desribe metal-insulator tran-sition in some rare earth ompounds [1℄. Later on, the spinless version ofthe model (that an be viewed as a simpli�ed version of the Hubbard model,� Presented at the XII Shool of Modern Physis on Phase Transitions and CritialPhenomena, L¡dek Zdrój, Poland, June 21�24, 2001.(3467)



3468 J. Wojtkiewiz, R. Lema«skiwhere spin down (up) eletrons are itinerant, whereas spin up (down) ele-trons are loalized), was onsidered also in a ontext of mixed valene phe-nomena [2℄, rystallization and alloy formation [3℄, et.However, it turns out that more adequate desription of real systemsis attained if a so alled orrelated hopping is taken into aount [4�7℄, i.e.when eletron hopping amplitudes depend on oupation of a �start� anda �target� lattie sites.We mainly fous on an in�uene of orrelated hopping on ordering ofthe loalized partiles. In our previous paper we examined a simple ase,where orrelated hopping was determined by a single parameter a [8℄. Theaim of present work is to investigate a more general three-parameter model.In this model hopping amplitudes may vary independently in the followingthree ases: when an eletron jumps between two oupied sites; when itjumps between two empty sites; when it jumps between one oupied andthe other empty site. Therefore, an additional orrelated hopping parameterg is introdued. 2. The modelThe Hamiltonian de�ned on some �nite subset � of the Zd has the formH� = H0;� + V�;where H0;� = UXx2�wxnx � �iXx2�wx � �eXx2�nx ; (1)V� = �Xhxyi ht+ a(wx + wy) + gwxwyi �yxy + yyx� : (2)Here yx and x are reation and annihilation operators of an eletron atlattie site x 2 �. The orresponding partile number operator is nx = yxxand wx is a lassial variable assuming values 0 and 1; it measures thenumber of ions at lattie site x. The hemial potentials of ions and eletronsare �i and �e, respetively. The symbol hxyi denotes an unordered pair ofnearest neighbor sites of the lattie. The parameters a; g appearing in (2)are orrelated hopping onstants (for a = g = 0, the model redues to theordinary FKM). 3. Perturbation shemeIn this work we examine properties of the model in the perturbativeregime, i.e. in the range of parameters t; a; g � U , following the method



2D Faliov�Kimball Model with : : : 3469developed in a series of papers by Datta, Fernandez and Fröhlih [9℄ (and ref-erenes therein). Other perturbative shemes have been previously appliedto the simplest, i.e. without orrelated hopping, FKM (and some similarmodels) [9, 10℄.In real systems, it has been found that ja=tj � 0:3 [4,5℄. Presumably, thevalue of jg=tj is even smaller, however, we were not able to �nd any estima-tions in the literature. Here we onsider the following range of parameters:�t � a � t, �t � g � t.4. E�etive HamiltonianAfter some straightforward but lengthy alulations, partially performedwith an aid of symboli omputations on a omputer, we have obtainedthe following e�etive Hamiltonian (desribing a low-energy behavior of thesystem) up to fourth order of the perturbation theory:H(4)e� = ~hXi S3i + J Xd(i;j)=1S3i S3j + J 0 Xd(i;j)=p2S3i S3j + J 00 Xd(i;j)=2S3i S3j+J3sXS3;ijkS3i S3jS3k+J3bXB3;ijkS3i S3jS3k+J4 XP4;ijklS3i S3jS3kS3l +J0 XP4;ijkl1 ; (3)where S3x = wx � 12 , B3;ijk �bended� triples; S3;ijk �straight� triples; P4;ijkl2� 2 plaquettes on the lattie. The oupling onstants in (3) are:~h = h� �3te�(10� + 52 + 20� + 10) ;J = 2 te�� � 18 te��3 ;J 0 = �3te�(6 + 8�2 + 8� + 22) ;J 00 = te��3(4 + 2�2 + 2� + 2 + 2) ;J3s = te��3(4� + 22 + 8�+ 4) ;J3b = te��3(8� + 42 + 16�+ 8) ;J4 = te��3(40 + 32 + 82) ;J0 = te��3 �32 � 3 � 22 � 5� � 5�2� ;where te� = t+ a, � = a=te� ,  = g=te� , � = te�=U , h = �i � �e.Remark 1. The Hamiltonian (3) orresponds to the Ising-like model with(dominating) antiferromagneti interations.Remark 2. It ontains one- and three-spin interations, so the symmetryh! �h does not longer hold.



3470 J. Wojtkiewiz, R. Lema«ski5. The phase diagramWe looked for ground states of the Hamiltonian (3) by minimizing en-ergy in some set of �trial� on�gurations (the method of restrited phasediagrams, [11℄ ). We took a set of all periodi on�gurations, having upto 16 sites in an elementary ell. There are 2�23755 suh nonequivalenton�gurations, but it appeared that all ground-state on�gurations have nomore than 5 sites per elementary ell. It suggests that on�gurations withhigh periods annot form ground-state phases and presumably our on�gu-rations are true minimizers (however, at present we are not able to prove itrigorously).The phase diagram is displayed in Fig. 1 in a form of slies g =onst. fora set of values of g. (More detailed derivation of the e�etive Hamiltonianand desription of the phase diagram we plan to give elsewhere.)
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Fig. 1. Shemati phase diagram of the e�etive Hamiltonian (3) of the orrelatedhopping FKM. These phase diagrams, together with values of a for boundariesbetween phases 4/5 or (40=50) (when present) have been obtained for: (a) g = �0:8;(b) g = �0:6; () g = 0:37; (d) g = 0:8. Phases represented by various arrangementsof the ions are depited in Fig. 2.



2D Faliov�Kimball Model with : : : 3471In the region I, haraterized by�1 � g < g�1 (g�1 = 1�p3 � �0:732051),the phase diagram has a struture displayed in Fig. 1(a), where a smallregion oupied by the phase 40 appears.In the region II, given by: g�1 < g < g�2 , where g�2 = 1 � p7=3 ��0:527525, the ground-state struture is analogous to that of the ordinaryFK model for all values of a. (Fig. 1(b)).In the region III, given by: g�2 < g < g�3 , where g�3 = �3 + p11 �0:316625; the phase diagram struture is similar to the one found by uspreviously for g = 0 [8℄. It is haraterized by appearane of the new phase4 and disappearane of some others (3, 5, 6) for ertain interval of negativevalues of a.In the region IV, given by: g�3 < g < g�4 , where g�4 = 1�p1=3 � 0:42265;both new phases 4 and 40 are present (Fig. 1()) in the diagram.In the region V, given by: g�4 < g < 1, a simpli�ation of the phasediagram is observed. (Fig. 1(d)).
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Fig. 2. Con�gurations of the ions (marked by heavy dots �) orresponding to phasesdisplayed in Fig. 1. Phases labeled by numbers with prime (e.g. 10; 30; 40 et.) havemirror on�gurations with respet to those without prime, i.e. lattie sites oupiedby the ions are then interhanged with those of unoupied by the ions.
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