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Two-dimensional spinless Falicov-Kimball Model (FKM) with a gen-
eralized correlated hopping is studied perturbatively in the limit of large
on-site Coulomb interaction U. In the half-filled case (i.e. p; + p. = 1,
where p;, p. are densities of ions and electrons, respectively,) an effective
Hamiltonian in spin variables is derived up to terms proportional to U 3.
Unlike the simplest FKM case, it contains odd parity terms (resulting from
the correlated hopping) in addition to even parity ones. The ground-state
phase diagram of the effective Hamiltonian is examined in the (a, g, h) pa-
rameter space, where a,g are parameters characterizing strength of the
correlated hopping and h is a difference of chemical potentials of two sorts
of particles present in the system. It appears to be asymmetric with re-
spect to the change h — —h and a new ordered phases are found for certain
values of a and g.

PACS numbers: 71.10.—w

1. Introduction

The FKM has been originally proposed to describe metal-insulator tran-
sition in some rare earth compounds [1]. Later on, the spinless version of
the model (that can be viewed as a simplified version of the Hubbard model,
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where spin down (up) electrons are itinerant, whereas spin up (down) elec-
trons are localized), was considered also in a context of mixed valence phe-
nomena [2], crystallization and alloy formation [3], etc.

However, it turns out that more adequate description of real systems
is attained if a so called correlated hopping is taken into account [4-7], i.e.
when electron hopping amplitudes depend on occupation of a “start” and
a “target” lattice sites.

We mainly focus on an influence of correlated hopping on ordering of
the localized particles. In our previous paper we examined a simple case,
where correlated hopping was determined by a single parameter a [8]. The
aim of present work is to investigate a more general three-parameter model.
In this model hopping amplitudes may vary independently in the following
three cases: when an electron jumps between two occupied sites; when it
jumps between two empty sites; when it jumps between one occupied and
the other empty site. Therefore, an additional correlated hopping parameter
g is introduced.

2. The model
The Hamiltonian defined on some finite subset A of the Z% has the form
Hjy = Hyp+ Vg,

where

Hyx = LTE:QMﬂ%f_NiEZ:wm_'Me§:7%a (1)

TEA €A €A
Vy = — Z [t + a(wg + wy) + gwmwy} (chy + czcm) . (2)
(zy)

.'.

Here ¢; and ¢, are creation and annihilation operators of an electron at
lattice site x € A. The corresponding particle number operator is n, = c‘];;cm
and w, is a classical variable assuming values 0 and 1; it measures the
number of ions at lattice site 2. The chemical potentials of ions and electrons
are u; and ., respectively. The symbol (zy) denotes an unordered pair of
nearest neighbor sites of the lattice. The parameters a, g appearing in (2)
are correlated hopping constants (for a = g = 0, the model reduces to the
ordinary FKM).

3. Perturbation scheme

In this work we examine properties of the model in the perturbative
regime, i.e. in the range of parameters ¢, a, g < U, following the method
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developed in a series of papers by Datta, Fernandez and Frohlich [9] (and ref-
erences therein). Other perturbative schemes have been previously applied
to the simplest, i.e. without correlated hopping, FKM (and some similar
models) [9,10].

In real systems, it has been found that |a/t| = 0.3 [4,5]. Presumably, the
value of |g/t| is even smaller, however, we were not able to find any estima-
tions in the literature. Here we consider the following range of parameters:
—t<a<t —t<g<t

4. Effective Hamiltonian

After some straightforward but lengthy calculations, partially performed
with an aid of symbolic computations on a computer, we have obtained
the following effective Hamiltonian (describing a low-energy behavior of the
system) up to fourth order of the perturbation theory:

HY =0Y 82 +7 Y sisier Y sisiegr Yy sist

i d(i,j)=1 d(3,5)=v2 d(i,j)=2

3 Y SESISE 4T3 Y | SESISIHIa Y SISISESI 40 Y 1,

S3ijk B3 ijk Paijki Paijki
where Sg’. = wy; — %, Bsijr “bended” triples; Sz ;i “straight” triples; Py ki
2 x 2 plaquettes on the lattice. The coupling constants in (3) are:
h = h — 3tg(10ay + 572 + 20a + 107),
J = 2teqT — 18tes,
J = 3teg(6 + 80 + 8ay + 29?),
J" = tegm3(4 + 207 4 207 + 72 + 27),
3(dary + 29% + 8a + 4y),
8ay + 4y + 16a + 87),
Ji = tegm?(40 4 32y + 8+?),

J3s = temT

’(
(
i
(
Jo = teﬁ?’T (5—37—27 —5047—5042),

where teg =t + a, @ = a/teg, ¥ = g/teft, T = teg /U, h = p; — pte.

Remark 1. The Hamiltonian (3) corresponds to the Ising-like model with
(dominating) antiferromagnetic interactions.

Remark 2. Tt contains one- and three-spin interactions, so the symmetry
h — —h does not longer hold.
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5. The phase diagram

We looked for ground states of the Hamiltonian (3) by minimizing en-
ergy in some set of “trial” configurations (the method of restricted phase
diagrams, [11] ). We took a set of all periodic configurations, having up
to 16 sites in an elementary cell. There are 2x23755 such nonequivalent
configurations, but it appeared that all ground-state configurations have no
more than 5 sites per elementary cell. It suggests that configurations with
high periods cannot form ground-state phases and presumably our configu-
rations are true minimizers (however, at present we are not able to prove it
rigorously).

The phase diagram is displayed in Fig. 1 in a form of slices g =const. for
a set of values of g. (More detailed derivation of the effective Hamiltonian
and description of the phase diagram we plan to give elsewhere.)
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Fig. 1. Schematic phase diagram of the effective Hamiltonian (3) of the correlated

hopping FKM. These phase diagrams, together with values of a for boundaries

between phases 4/5 or (4'/5") (when present) have been obtained for: (a) g = —0.8;

(b) g = —0.6; (c) g = 0.37; (d) g = 0.8. Phases represented by various arrangements

of the ions are depicted in Fig. 2.
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In the region I, characterized by —1 < g < g7 (g7 = 1—v/3 = —0.732051),
the phase diagram has a structure displayed in Fig. 1(a), where a small
region occupied by the phase 4’ appears.

In the region II, given by: ¢ < g < g3, where g5 = 1 — /7/3 =
—0.527525, the ground-state structure is analogous to that of the ordinary
FK model for all values of a. (Fig. 1(b)).

In the region III, given by: g5 < g < g3, where g5 = -3 + V11 =~
0.316625, the phase diagram structure is similar to the one found by us
previously for g = 0 [8]. It is characterized by appearance of the new phase
4 and disappearance of some others (3, 5, 6) for certain interval of negative
values of a.

In the region IV, given by: ¢35 < g < gi, where g5 = 1—+/1/3 ~ 0.42265,
both new phases 4 and 4" are present (Fig. 1(c)) in the diagram.

In the region V, given by: ¢g; < g < 1, a simplification of the phase
diagram is observed. (Fig. 1(d)).

(1) (2) (3)

(4) (5) (6)

Fig. 2. Configurations of the ions (marked by heavy dots ) corresponding to phases
displayed in Fig. 1. Phases labeled by numbers with prime (e.g. 1, 3', 4’ etc.) have
mirror configurations with respect to those without prime, i.e. lattice sites occupied
by the ions are then interchanged with those of unoccupied by the ions.
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6. Summary

Our studies indicate an important role of the correlated hopping, as it
substantially modifies both the effective Hamiltonian and the phase diagram
of the FKM, what can be viewed in Fig. 1. In comparison with our previous
studies of the FKM with the single correlated hopping term (proportional to
the parameter a), we found that the additional term (measured by the pa-
rameter g) not only changes coupling constants of the effective Hamiltonian,
but also, within physically admissible values of parameters, it can produce
further modification of the phase diagram (e.g. new phases can appear on it).

So we conclude that further studies of the model, including its low tem-
perature properties, are highly desirable and hopefully could be useful for
description of experimental situations.

We acknowledge support from the Polish State Committee for Scientific
Research (KBN) under grant no. 2 P03B 131 19.
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