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Ground state phase diagrams in the canonical ensemble of the one-
dimensional Falicov-Kimball Model (FKM) with the correlated hopping
are presented for several values of the model parameters. As compare to
the conventional FKM, the diagrams exhibit a loss of the particle-hole
symmetry.

PACS numbers: 05.30.Fk, 71.30.+h

As the simplest, still non-trivial model of highly correlated electron sys-
tems, the Falicov—Kimball Model (FKM) attracts growing attention among
solid state physicists. It can describe variety of the most intriguing cooper-
ative phenomena, as metal-insulator transition, mixed-valence phenomenon
etc. (see e.g. the review [1]).

The model deals with itinerant particles (e.g. electrons) that can hope
between lattice sites (herein the nearest-neighboring). Some of the sites
are occupied by non-movable particles, playing a role of ions or localized
electrons; we call them “ions”. The only interaction in the system is the
on-site, Coulomb-type interaction between the electrons and the ions. The
interaction generates long-range ordering of the ions.

The model has been investigated thoroughly in nineties. Numerous ap-
proximate results supplemented with some exact and rigorous statements
reported up to now provide a good basis for further extensions of the model
towards more realistic physical situations. These include the discussed here
model with correlated hopping, according to which the electron hopping rate
depends on occupations of relevant sites.
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The Hamiltonian of the FKM with correlated hopping reads:
- —tz ( Fepyr + cmcz) {1 - afw(z) +w(z + 1) — yw(z)w(z + 1)]}
+U Zw x)c! 2Cx s (1)

where w(z) denotes the ion occupation number at site x (it takes a value

0 or 1), cl,cz are the operators that create and annihilate an electron at
site z, respectively. Note that with the parametrization given in (1) the
hopping amplitudes can take the three following values: foq = t if an electron
hops between two empty sites, to; = ¢(1 — «) if it hops between one site
occupied by an ion and the other empty (obviously ¢p; = t19), and finally
t11 = t[1 — a(2 — )] if it hops between two sites occupied by ions. For a = 0
the Hamiltonian (1) reduces to the conventional FKM without correlated
hopping.

The meaning of the correlated hopping parameters « and y depends
on a particular physical situation to be modelled. For instance, the a pa-
rameter may originate from bond-charge repulsion, the mechanism originally
discussed in frames of the extended Hubbard model [2,3|. Within the same
microscopic picture the parameter v depends strongly on the effective nu-
clear charge Z and apparently decreases for larger Z [3].

In general, recognition and understanding the mechanisms leading to
the correlated hopping, as well as its consequences are far from being sat-
isfactory. In particular, this concerns the problem of formation of stable
phases. The present work turns towards this direction for the simplest,
one-dimensional case.

Various approaches known for the ordinary FK model have been adopted
to its extended version [4]. Here we used an approximate method of restricted
phase diagrams, where infinite systems of periodic phases, whose period does
not exceed some 7max, as well as their mixtures were considered. In this
paper we put rmax = 7, the value large enough to see main new features of the
diagrams. The Gibbs potentials of all these periodic phases were calculated
exactly [5], so we were able to get the phase diagrams in the grand-canonical
ensemble (in a (p.,p;) plane) with a high precision. Then we mapped them
onto the (pe, p;) plane, thus obtaining canonical phase diagrams. Details
of the method and the calculation procedures were published previously
(see [6,7]).

Our results are presented in Fig. 1, where we took the intermediate
value of U being equal to 1.6¢, « = 0, 0.1, 0.2 and v = 0.0, 0.5. Fig. 1(a)
corresponds to the simplest FKM, with no correlated hopping terms (tgp =
tor = t11 = t). In this case the diagram is symmetric with respect to
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exchange between sites occupied by the ions and those unoccupied (it has
the particle-hole symmetry). An extended analysis of that case was given
previously in [7], where arrangements of the ions in the periodic phases were
also displayed; here we included the diagram only as a reference one.
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Fig.1. The restricted canonical phase diagrams for U = 1.6t and the following
four sets of correlated hopping parameters: (a) « =0 and v = 0; (b) a = 0.1 and
v=0; (c) a=0.2and v =0; (d) @« =0.2 and v = 0.5. The black spots represent
periodic phases (whose period is at least 2). The straight line segments join those
spots whose corresponding phases touch each other on the phase diagram in the
grand-canonical ensemble. The points located on a segment represent the mixtures
of the two periodic phases that correspond to the ends of the segment. The black
spots located on the lines p; = 0 or p; = 1 show the minimal and maximal electron
densities of the full phases that form mixtures with the same periodic phase.

If one “turns on” the correlated hopping in such a way that a # 0 and
v =0 — see Fig. 1(b), (c), then with an increasing « the diagram becomes
more and more asymmetric. For o = 0.2 (tg9 = ¢, to1 = 0.8t and ¢17 = 0.6%),
all periodic phases laying on the left from the p; + p. = 1 line disappear and
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their place take mixtures of periodic neutral phases with the “empty” one
(with free electrons and no ions). Instead the the so-called three-molecular
periodic phases [7| develop on the right hand side from the p; + p, = 1 line.

On the other hand, if we increase the electron hopping amplitude between
two occupied sites t11 from 0.6¢ to 0.7t (what corresponds to @ = 0.2 and
v = 0.5 — see Fig. 1(d)), then those three-molecular phases are suppressed.

A very brief analysis of the displayed phase diagrams show their con-
siderable sensitivity to a variation of the correlated hopping parameters.
In particular, the regions enclosed within the triangles close to the lower-
left and upper-right corners of the diagrams, where the segregated phase
(a mixture of an empty lattice with free electrons and the fully occupied lat-
tice with a number of electrons) is stable, clearly depends on values of the
correlated hopping amplitudes (see Fig. 1). The above preliminary results
confirm conjectures already published several years ago (e.g. [3]), that the
correlated hopping plays an important role and should be taken into account
if one intends describe properly physical properties of the systems.
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