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Rocking ratchets are asymmetric potentials operated in the non-linear
response regime where rectifying behaviour can be observed. Mesoscopic
electronic devices based on semiconductors with low carrier concentration
are easily driven away from linear response, and their electron dynamics is
at low temperatures altered by quantum effects. Asymmetric semiconduc-
tor devices of sub-micron dimensions are therefore suitable for experiments
on “quantum ratchets”, that is, rocking ratchets based on quantum effects,
such as electron interference and tunnelling. We first describe experiments
using triangular electron cavities in the linear response regime, illustrat-
ing that, at low temperatures, classical and quantum electron dynamics
are determined by the shape of the ballistic cavity. Physical reasons for a
transition from linear to non-linear behaviour in mesoscopic devices are dis-
cussed, and two ratchet experiments in the non-linear regime are described.
The sign of rectification in a quantum dot ratchet, based on electron inter-
ference effects, depends very sensitively on uncontrollably small deviations
from the intended device shape, but can be tuned using parameters such as
magnetic field, Fermi energy or the AC voltage. The current direction in
a tunneling ratchet can be predicted from the device shape, and is tunable
by temperature, when device parameters are suitably chosen.
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1. Introduction

All materials at finite temperature store a substantial amount of energy
in the form of random thermal motion. It is a tempting idea to construct a
machine that might put this energy supply to practical use [1,2], but for sys-
tems in thermal equilibrium, the Second Law of Thermodynamics safeguards
thermal motion from technical exploitation |2]. However, we regularly make
use of situations of thermal non-equilibrium to generate useful work, most
commonly when using macroscopic heat gradients in heat engines. Recently
a more subtle way of extracting work from non-equilibrium has come un-
der detailed investigation (for reviews, see [3-6]). In so-called ratchets, a
directed current of particles is generated in the absence of any macroscopic,
time-averaged forces or gradients. This is achieved using a combination of
spatial or temporal asymmetry, and a source of energy that keeps the system
in a state of thermal non-equilibrium. The most well-known example is the
“on-off ratchet” illustrated in Fig. 1(a). Here, the combination of, firstly,
periodic switching between a flat and a saw-tooth shaped potential, and,
secondly, thermal (isotropic) particle diffusion in the off-phase, is converted
into directed motion [7,8]. The switching can be random, but needs to hap-
pen on a time scale comparable to the time for particle diffusion over one
ratchet period. The ratchet can generate a current even against a small ex-
ternal force, using energy that is provided by the switching of the potential,
which maintains a situation of thermal non-equilibrium. It is interesting
to note, however, that this ratchet mechanism would not work without the
random, thermal particle motion in the off-phase. This subtle interplay of
thermal motion and a non-equilibrium energy supply is typical for ratchets,
and leads to a wide range of interesting phenomena [6]. The principle of
the on-off ratchet may also have implications for the force generation on a
molecular level in living cells [4,9], and has recently been demonstrated to
have potential for particle sorting applications [10].

A second, commonly investigated ratchet type is the “rocking ratchet”,
consisting of particles in an asymmetric potential which is periodically and
symmetrically tilted, or “rocked” (Fig 1(b)). The deformation of an asym-
metric potential when tilted depdends on the tilt direction, and in general
a net particle current is found when particle motion is averaged over one
full cycle of rocking. Unlike the on-off ratchet, a rocked ratchet does not
require thermal motion to operate. Particle motion is driven by the tilting
force, and it is this external time-dependent field that the ratchet rectifies,
not thermal motion. However, as will be shown later (Sect. 5), temperature
does have a substantial quantitative and qualitative effect on the ratchet
behaviour because it determines the energy distribution of the particles.
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Fig.1. (a) An on-off ratchet. The periodic, asymmetric potential is switched on
and off at a frequency comparable to the time scale for particle diffusion over one
potential period. The switching potential serves as a source of non-equilibrium
energy, but random particle motion in the off-phase is also required for current
generation. (b) A rocking ratchet is essentially a non-linear rectifier. The particle
current is different during the two tilt directions, and on time-average a net current
is generated.

The physical origin of net current generation in rocking ratchets is the
asymmetric, non-linear response of the system to an externally applied force.
In the present contribution, we will review recent experiments that make use
of the low threshold for non-linear behaviour in small (mesoscopic) electronic
devices to observe rectifying effects [11]. At low temperatures, the electronic
properties of mesoscopic devices are altered by quantum mechanical effects,
such as electron-wave interference or tunnelling. We will show how quantum
mechanical behaviour can, in the non-linear response regime, lead to rectifi-
cation. This enables us to study experimentally the behaviour of “quantum
ratchets” [12], that is, rocking ratchets based on quantum effects.
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The paper is structured as follows. In Section 2, we introduce our ex-
perimental system, electron cavity devices, and a brief review is given of
our results on classical and quantum mechanical transport in asymmetric
electronic cavities in the linear response regime. In Section 3 we discuss
the transition from linear to non-linear transport, which is crucial for the
construction of rocking ratchets. Sections 4 and 5 describe two different
quantum ratchet effects. First, in Section 4, we describe a “quantum dot
ratchet”, in which the sensitive response of electron wave interference in elec-
tron cavities to an external electric field is used to partially rectify an AC
voltage. The behaviour of an asymmetric tunnelling barrier when rocked
using a finite AC voltage is described in Section 5. The direction of the
generated current is found to depend on temperature, and we present an
intuitive explanation for this phenomenon.

2. Triangular electron billiards in the linear response regime

Figure 2 is a scanning electron microscope image of a triangular electron
cavity fabricated by electron-beam lithography and shallow wet etching.
The darker areas in the image are etched trenches, which serve to interrupt
a two-dimensional sheet of electrons (2DEG) located at the interface of a
GaAs/AlGaAs heterostructure, typically 30-100 nm below the surface. The
trenches electrically isolate the inner part of the triangle, the electron cavity,
from the surrounding 2DEG areas, except for two narrow openings (point
contacts), visible at the tip and in the centre of the base of the triangle.
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Fig.2. Scanning electron micrograph of a triangular electron billiard defined by
electron beam lithograhy and shallow wet etching. The darker areas have been
etched out to electrically interrupt a two-dimensional sheet of electrons located
about 70 nm under the surface.
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In an experiment, usually a small voltage- or current-bias is applied be-
tween the 2DEG areas to the left and right of the device, also referred to
as electron reservoirs. The voltage drop over the device is then measured to
compute the device conductance. The dimension of electron cavities studied
in this way is typically about a micrometer, much smaller than the charac-
teristic length scales for elastic impurity scattering of the host material. By
cooling the device to sufficiently low temperatures (T < 10 K), also inelas-
tic electron-phonon scattering can be suppressed. In this so-called ballistic
limit, the dynamics of electrons inside the cavity are well described by a
semi-classical, single-particle picture, in which electrons move on straight
directories between boundary collisions [13]. Because of this similarity with
a game of billiards, ballistic two-dimensional cavities are often also referred
to as electron billiards.

2.1. Classical regime of transport

An experimental perburtation parameter much used to study electron
billiards is a perpendicular magnetic field B, which causes the electrons to
move on cyclotron orbits with radius r = muvp/eB. Here, m and e are the
effective mass and the charge of an electron, respectively, and v is the ve-
locity at the Fermi energy. In Fig. 3 we show experimental data for the
magneto-resistance as well as the result of a computer simulation [14]. The
experimental data represented as a dashed line in Fig. 3(a) were taken at
temperature of T = 4.5 K, sufficiently cold to suppress electron—phonon
scattering, but warm enough that effects related to energy quantisation are
thermally averaged out. This temperature is thus suitable to study clas-
sical transport phenomena in the ballistic regime. The experimental data
show strong structure on the normalized field scale B, the magnetic field
at which the cyclotron diameter equals the side length of the equilateral
triangle (for the device used in Fig. 3, B, ~ 50 mT). This is the character-
istic magnetic field where one would expect the classical electron dynamics
to be notably altered by the field, in agreement with observations [13|. To
obtain the simulation shown in Fig. 3(b), electrons that start at Fermi ve-
locity at different initial angles from the opening in the triangle base were
traced inside the billiard until they escaped through one of the two contacts.
The ratio of the electrons transmitted through the billiard at each setting of
the magnetic field, ¢(B), was determined and then related to the resistance
R(B) (no absolute scale) by setting R(B) o« 1/t(B). The electrons were
treated entirely as classical, charged particles in a hard-wall potential, and
specular (mirror-like) scattering at the boundaries was assumed. A realistic
amount of impurity scattering was taken into account by changing the direc-
tion of motion randomly after an exponentially distributed random distance
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Fig.3. (a) Magneto-resistance of a triangular billiard at 4.5 K (dashed line), and
0.3 K (full line). Also indicated in (a) are the classical trajectories of electrons that
enter the billiard along the symmetry axis through the side opening at B/B, =
1, 3, 5, respectively, which are thought to be related to the resistance maxima. (b)
Classical simulation of the magneto-resistance using a hard-wall potential. Both
figures from [15].

of travel (for further details, see [14]). From Fig. 3 it is apparent that the
simulation reproduces the overall behaviour of the experimental data taken
T = 4.5 K, including some fine structures with exception of the statistical
noise. In particular, the major resistance maxima at the normalized field B,
that can be related to the simple, reflected electron trajectories indicated in
Fig. 3(a), are reproduced in the simulation. Further analysis allows, in fact,
a surprisingly detailed understanding of the magneto-resistance in triangular
billiards in terms of specific, classical electron orbits [14-16].
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2.2. Quantum regime: conductance fluctuations

The results discussed in the previous section illustrate that electron be-
haviour in ballistic devices is well described by a single-particle billiard pic-
ture, in which electrons are assumed to move undisturbed on classical tra-
jectories. One can take this analysis one step further by considering also
quantum mechanical wave interference effects, in addition to the classical
dynamics. Experimentally, this is done by lowering the electron tempera-
ture below T ~ 1 K. Inelastic electron-electron interaction, which is known
to suppress electron wave-coherence, a prerequisite for the observation of in-
terference effects, is then suppressed, and the edge of the Fermi distribution
is sharp enough to resolve effects related to energy quantisation. In Fig. 3(a)
we show as the full line magneto-resistance data taken at 7' = 0.3 K [15].
Superimposed on the classical behaviour discussed above, we observe now
rapid fluctuations on a magnetic field scale of a few mT and less, much
smaller than the scale B. ~ 50 mT for classical behaviour. While these
magneto-conductance fluctuations appear noise-like, they are in fact highly
reproducible in subsequent sweeps of B, and are also perfectly symmetric
around zero magnetic field.

The origin of magneto-conductance fluctuations (MCF) can be explained
in a semi-classical picture, in which a quantum mechanical phase is added
to the classical electron trajectories. Typically, the wave length of electrons
at the Fermi energy in semiconductor billiards is about 40 nm, or about
20 times smaller than the device, justifying a semi-classical description of
transport. Wave interference between pairs of classical electron paths can
then be predicted by calculating the electron phase along the classical tra-
jectories. In particular, short, periodic electron orbits can be identified with
electron states at energies where a semi-classical Bohr-Sommerfeld quan-
tization condition is fulfilled [17-20]. Transport of electrons through the
billiard can then be viewed as a two-step process, in which electrons tun-
nel through one point contact onto a semi-classical electron state close to
the Fermi energy, and then leave this state through the second point con-
tact. The conductance of the billiard is in this picture given by the number
of states available at the Fermi energy inside the cavity. A magnetic field
shifts the electron phase, and changes the interference. In particular, an
electron state related to a specific closed orbit will be switched on and off as
the magnetic field is tuned, with a period AB = h/eA, given by the ratio of
the orbit area, A, and the magnetic flux quantum, (h/e) [21].

Electron-wave interference is extremely sensitive to details of the ac-
tual potential inside the billiard, because the typical Fermi wave length is
only of order 40 nm. Therefore, and because some imperfections, related to
lithography or impurities, are always present, it is not possible to predict
MCF in exact detail. MCF are therefore also referred to as a “magneto-
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fingerprint” of a particular device [22|. A statistical analysis based on the
macroscopic shape of the device however is possible. In Fig. 3(a), a par-
ticular, closed electron orbit is indicated which, as revealed by the classical
simulations (Fig. 3 (b)), can be thought of as responsible for the maximum
of the classical magnetoresistance apparent at B = B,. In the light of this
classical interpretation it is interesting to investigate whether also the quan-
tum fluctuations in the range around B = B, are related to the orbit shown
in Fig. 3(a). To analyse the MCF, we Fourier transform the fluctuations
AG(B) = [G(B,T = 0.3 K)-G(B,T = 5 K)] in the range 0 < B < 1.5B,,
where G(B) = 1/R(B) stands for the conductance (Fig. 4). Indeed, a peak
is found to emerge in the Fourier transformed data, corresponding to a fre-
quency consistent with the area enclosed by the orbit at B = B, (Fig. 3(a))

[15].

Magnetic field (mT)

0 20 40 60 80 100
05 | | | |

0.4f S 1 .
sl

031 & ] .
E '_ " 1 " 1 L
o 0.2- 0 200 400 600 4
— 1/AB (1/T)
9 o1

0.0

-0.1

T T T
0.0 0.5 1.0 15 2.0
Reduced magnetic field (B.)

Fig. 4. Conductance fluctuations AG(B) = [G(B,T = 0.3 K)-G(B,T =5 K)|. In
the region of the resistance maximum around B =~ B, =~ 50 mT, the fluctuations
are quasi-periodic and the amplitude is enhanced. The inset shows the Fourier
transform of the data in the range 0 < B < 1.5B,. From [15].

3. From linear to non-linear transport

All experiments described so far have been carried out at very small bias
voltage, and non-linear effects were unimportant. In this so-called linear
response regime, characterised by a conductance G = I /V which is indepen-
dent from the voltage V', electron transport is by definition symmetric. No
rectification is possible, and a rocking ratchet can not operate. Rectification
is represented by the lowest order of non-linearity, that is the term G in the
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expansion of the current I(V) = GoV+G1V?+... . The term G, which can
be non-zero only in systems that lack a symmetry axis with respect to the
current direction, leads to a finite net current, Ie = (1/2)[I(V) + I(=V)]
when a square-wave voltage is applied to the device [11]. Devices where G
is finite therefore act as non-linear rectifiers and may be viewed as rocking
ratchets.

When does electron transport through a mesoscopic device become non-
linear? Electron transport via one-dimensional (1D) wave-modes through a
mesoscopic device connecting 2D electron reservoirs can be described by a
Landauer equation [23, 24],

10V)= 3 [ UeUW)MEVIIS(E) - fole)lde. (1
Here, the prefactor (2e/h) is the conductance of each 1D wave-mode, when
transmission through the device is perfect. M(e,V) is a step function de-
scribing the integer number of 1D wave-modes available for transport at
each energy, €. t(e,U(V)) is the transmission probability for electrons in
the respective wave modes and is determined by the device potential, U. fg
and fp are Fermi distributions describing the occupation of energy levels in
the source- and drain-electron reservoirs, respectively, with electrochemical
potentials, ug and pup, where (us — up) = eV.

At very small voltages and temperatures, that is, in the linear response
limit, Eq. (1) can be written as I = 2e?/hM (up)t(ur)V, where pp is
the equilibrium Fermi energy. To make this approximation, the following
conditions need to be fulfilled [24]. Firstly, the transmission probability
t(e,U) must not vary with energy in the range where electrons contribute
to transport. This region is described by the Fermi window, [fs(e) — fp(e)],
which has its center within (up + €V/2). A variation of t(¢) on a scale
Ace does not affect the voltage response, when either eV < kgT, or when
(|eV]|+4kpT) < Ae. Secondly, for linear response, t(e, U) must not depend
on the source-drain voltage. The most obvious reason for why ¢(¢,U) may
be an explicit function of the voltage, is that the device potential itself, U,
is distorted by the applied voltage, such that U becomes a function of the
voltage, U = U(V'). Thirdly, non-linear behaviour is also generated when
M is a function of the voltage [25].

Note that, while the variation of ¢ with € leads to non-linear effects only
above a certain threshold given by the energy scale for variation, Ae, and by
the temperature, (see above), the variation of ¢ due to a voltage dependence
of U(V') has no fundamental threshold. Therefore, non-linear effects can in
principle be observed at arbitrarily small voltages. An exact calculation of
t(U(V)) is in general difficult, and requires the self-consistent solution of the
3D Schrédinger equation including the electric field generated by the volt-
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age across the device, taking into account screening effects. In the following
sections, where we will present two different mechanisms leading to asym-
metric non-linear behaviour in small devices, we will restrict ourselves to an
intuitive description of these phenomena, and will not attempt a detailed
discussion of U(V).

4. A quantum dot ratchet

We now return to the triangular electron billiards discussed in Section 2.
When studied at low temperatures, where quantum behaviour establishes
itself, such devices are often also referred to as “open quantum dots” (for
a review, see for instance [26]). To understand the transition from linear
to non-linear quantum behaviour it is useful to consider a model for elec-
tron transport through quantum dots. Figure 5(a) schematically shows the
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Fig. 5. Tllustration of electron transport through a quantum dot. The curvature of
the conductance band edge inside the dot represents the effect of the confinement
energy inside the triangular dot (not to scale). The horizontal lines inside the
dot indicate the shell structure of the density of states. The local electro-chemical
potential is indicated by shading. (a) In linear response the transmission probabil-
ity, that is the conductance, is independent of the absolute value and the sign of
the voltage. (b) In the non-linear response regime, the potential and the electron
states depend on the applied voltage. Rectification occurs when the potential is
not inversion symmetric (see text). From [28].
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conduction band bottom along a triangular quantum dot at negligible bias
voltage, where the variation of the band bottom represents the effect of the
confinement energy in the point contacts and inside the dot. Also shown
are the Fermi distribution in the source and drain reservoirs. The effect
of energy quantisation inside the dot is represented by horizontal lines in-
dicating a shell structure of the density of states. At very small voltages
(eV < up, kpT), transport through the dot is via the electron states within
a few kT of the Fermi energy [24]. The states that contribute to transport
are independent of the applied voltage and are the same for both current
directions. This is the linear response regime where transport is by defini-
tion symmetric upon voltage reversal. For comparison, Fig. 5(b) shows the
situation for finite bias voltage, that is in the non-linear response regime
[27,28]. One effect of the bias voltage is to distort the conduction band bot-
tom. How exactly this happens can only be determined in a self-consistent
calculation. Here, we are interested in the principle only, and in Fig. 5(b)
we assume stepwise voltage drops near the point contacts, and a linear po-
tential slope inside the device. The resulting effective potential landscape
U(V), and thus the transmission t(e,U(V)), depend on the magnitude of
the voltage, and, because of the non-symmetric shape of the cavity, also on
the voltage sign. This causes non-linear and non-symmetric behaviour of
the conductance (Eq. (1)). In addition, at finite bias voltage the width of
the Fermi window in Eq. (1) widens, and it’s exact position relative to the
conductance band bottom inside the dot depends on how the voltage drop is
distributed over the device [29]. When the two point contacts are different,
as is necessarily the case for a triangular quantum dot, a different range
of quantized electron states will contribute for different signs of the voltage
[27,28]. Also this effect can be expected to lead to rectification.

Experimental data for the differential conductance G(V) = 9I(V)/oV
are shown in Fig. 6. In the experiment, a DC bias voltage was added to a
small AC voltage, and the differential resistance was measured as a function
of bias voltage using standard phase-locking techniques. The data shown
in Fig. 6 were recorded at a series of different magnetic fields, ranging from
zero to about £18 mT (Figs. 6(a) and (b), respectively), in steps of 2 mT.
Three important observations should be made here. Firstly, the conduc-
tance clearly depends on bias voltage (non-linear response) in a way that
is in general not symmetric with zero bias voltage, that is, rectification is
observed. A more detailed analysis shows that most of the asymmetric be-
haviour is suppressed at temperatures above 1 K, indicating that quantum
interference effects are important [27,28]. Secondly, the non-linear effects
change rapidly with magnetic field. Importantly, the magnetic field scale
(a few mT) is consistent with magnetic-field induced modifications to quan-
tum interference (see Section 2) but not with classical effects (field scale
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Fig.6. Experimental data of the differential conductance G(V) at increasing
(a) positive and (b) negative magnetic field (' = 0.3 K). The field values are
from bottom to top for (a) B = —0.2, +1.8, +3.8, ... ,+17.8 mT and for (b)
B =-02,-22,-4.2, ..., —18.2 mT (note the offset —0.2 mT of the magnetic
field values, which is due to a residual field in the magnet). Each curve has been
offset by +0.1e2/h from the preceding one. From [28].

10-100 mT, see Fig. 3). We can therefore conclude that we observe rec-
tifying behaviour related to the voltage-induced modification of transport
through electron quantum states inside the dot, as expected from the dis-
cussion above.

A third important observation to be made from Fig. 6 is related to the
symmetry in magnetic field. In the linear response regime, conduction is
always symmetric with respect to zero magnetic field, that is, the relation
G(B) = G(—B) is valid independent of the potential symmetry [24,30].
In the non-linear regime, however, when the conductance depends on the
bias voltage, this general symmetry relation breaks down and symmetry in
magnetic field is normally absent. The symmetry is restored only when
the potential has a symmetry axis parallel to the current direction (Fig. 6).
Under this condition, which is fulfilled in our dot geometry, the relation
G(V,B) = G(V,—B) should be valid. This symmetry relation allows us to
perform an important test: is the origin of rectification in our device indeed
the geometry of the dot, and not, for instance, broken symmetry because of
random impurities of the material [31-35|7? If the answer is “yes”, then the
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conductance in the non-linear regime should be symmetric with respect to
zero magnetic field, because a horizontal symmetry axis should be present.
The data shown in Fig. 6 confirm that the non-linear quantum conductance
does not depend on the direction of the magnetic field, within a field range
that fully alters the non-linear quantum fluctuations. It appears therefore,
that any deviations from the intended dot symmetry are not significant
within the parameter range covered here (|B| < 20 mT, |V| < 2 mV), and
that the existence of rectification in the asymmetric cavities is indeed related
to their asymmetric shape.

The latter observation does not mean, however, that one can predict
exactly the direction of rectification of a given device. The reason is, that
electron interference is extremely sensitive to small changes of the Fermi
energy, of the cavity shape or size, of a small magnetic field (the latter is
apparent from Fig. 6), or even of the amplitude of the applied AC voltage
[27]. While the sign of rectification is thus not controllable in the fabrication
process, it is very easy to adjust the direction of rectification, once it is
established, using any of the above parameters.

5. A tunnelling ratchet

We will now describe a different device, one in which tunnelling through
an asymmetric barrier is employed to generate a non-linear response to an
applied rocking voltage. An SEM image of this tunnelling ratchet is shown
in Fig. 7. Crucial for the function of the device as a ratchet is the right
hand point contact which forms an asymmetric, 1D wave guide. Electrons
travelling along the wave guide need to adjust their lateral wave vector to
the channel width. To enter a given part of the channel, electrons therefore
require a minimum energy corresponding to the lateral confinement energy.
Effectively, the constriction at the point contact thus represents an asym-
metric energy barrier (Fig. 8). Using the 2DEG areas above and below the
contact as side gates (marked SG), to which a static voltage can be ap-
plied, the electrostatic width of the channel, and therefore the height of the
effective energy barrier, can be tuned.

The direction of a net current in a rocking ratchet operating classically
(Fig. 1(b)) is given simply by the tilt direction in which the effective bar-
rier height is lowest. If the barrier height is independent of the tilt direc-
tion, a classical ratchet can not operate. Quantum mechanically, however,
particles with an energy below the barrier maximum can tunnel through
the classically forbidden barriers, while particles with sufficient energy to
cross the barriers may still be wave-mechanically reflected. The correspond-
ing energy-dependent transmission probabilities depend on the exact barrier
shape, which will always depend on the tilt direction. With other words,
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Fig. 7. Scanning electron micrograph of the device used as an electron tunnelling
ratchet. Due to confinement energy, the right-hand point contact, which is tunable
in width using the side gates SG, forms an asymmetric tunnelling barrier (see
Fig. 8). The space bar represents one micrometer.

vk, T —> Currentt over barrier <

Tunnelling current

Fig. 8. Schematic drawing of the conducation band bottom of the tunnelling ratchet
device shown in Fig. 7, forming an asymmetric energy barrier at the right hand
point contact. Both tilt directions are shown. The dashed lines indicate the shape
of the assumed voltage drop, which is scaled with the potential gradient of the
barrier without tilt (zero bias voltage). For the physical mechanism that leads to a
temperature dependence of the total net current direction see text. Figure courtesy
of Tammy E. Humphrey.

the transmission probability t(e,U) in Eq. (1) is a function of voltage be-
cause the potential is a function of voltage, U = U(V). A consequence of
this behaviour is that a net current can occur in rocked “quantum ratchets”
when this is classically not possible. In addititon, the net current direction
can depend on temperature [12], as we will explain in the following.

In Fig. 8 we show an energy barrier, estimated from the dimensions of
the device shown in Fig. 7, for both tilt directions, where tilt is generated by
applying a positive or negative bias voltage. To predict how the potential
deforms under tilt one needs to know the spatial distribution of the volt-
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age drop across the barrier. In Fig. 8, we use a voltage drop distribution
that scales with the local gradient of the untilted barrier. The argument
behind this assumption is that wave-reflection is stronger when the poten-
tial is steeper. In particular, a potential step would be expected to yield
a stepwise drop in the conduction band bottom. A side-effect of this par-
ticular assumption is that the effective barrier height does not depend on
the tilt direction. Therefore, no classical net current is possible, and all net
current observed in this model is of quantum mechanical origin. The details
of the quantum mechanical current strongly depend on the exact shape of
the barrier under tilt, but the following argument holds independent of the
exact details of a smooth potential drop across the barrier.

When the barrier is tilted to the right, it deforms to be thicker at a given
energy under the barrier top (Fig. 8). This change reduces tunnelling, but,
at the same time, makes it easier for electrons with high energy to cross
over the barrier, because the smoother shape reduces wave reflection. In the
other tilt direction, the barrier deforms to be thinner and sharper, with the
opposite effect. Tunnelling becomes easier, but electrons find it more difficult
to cross over the top of the barrier, because the steeper potential causes
more wave reflection. The result are two contributions to the net current
that flow in opposite direction. Averaged over a full period of symmetric
rocking, there is a net current to the left consisting of electrons with low
energy that tunnel through the barriers. At higher energy, a net current to
the right exists, consisting of electrons that pass over the top of the barrier.
The direction of the total, energy-averaged net current depends then on the
electron energy distribution. At high temperatures, the current to the left
will usually dominate, because electrons of higher energy are available. As
the temperature decreases, however, this contribution can become smaller
than the tunnelling current, and a reversal of the total net current can be
observed [12,36].

Experimental data are shown in Fig. 9. A square-wave voltage of ampli-
tude V' was applied to the device, and the net current, Inet = (1/2)[I(V) +
I(—V)], was measured using phase-locking techniques. The frequency used
for rocking was of the order of 100 Hz, and was thus much slower than all
typical time constants of the electronic system, such as energy relaxation
times. The ratchet was therefore at all times in a stationary state. This
mode of rocking is called “adiabatic rocking” [12] (note that the word “adia-
batic” is elsewhere sometimes used in the opposite sense, that is, for changes
that occur fast). Temperature dependence of the current direction due to the
mechanism described above is possible when electrons at energies just above
and below the barrier top contribute to the current (Fig. 8). To achieve this
condition in an experiment, the barrier height is set to approximately match
the Fermi energy (the relative position of barrier height and Fermi energy
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can be estimated from the conductance of the point contact, see Eq. (1)).
Further, the rocking voltage, V, is chosen such, that by varying T, the width
of the Fermi window, (|eV|+ 4kgT'), can be varied over the energy range
around the barrier top where quantum corrections to the transmission prob-
ability are important. Calculations show that this energy range extends
about 1 meV above and below the barrier maximum [36]. In practice, one
chooses a suitable rocking voltage and sweeps the barrier height (using the
side gates) at various temperatures [36]. In this way one finds sets of values
for the rocking voltage and the side gate voltage, where the net current di-
rection depends on temperature. This reversal can then be observed directly
by sweeping the temperature while measuring the net current (Fig. 9).

Net current (nA)

0 1 2 3 4
Temperature (K)

Fig.9. Measured electrical net current in the tunnelling ratchet device of Fig. 7.
Note the reversal of the current direction around T = 2.9 K. From [36].

In the original work proposing adiabatically rocked quantum ratchets
[12], a linear potential drop across the barrier had been considered. The bar-
rier height then depends on the tilt direction, yielding a classical net current.
In that work, a reversal with temperature was numerically observed when
the thermally excited, classical current decreased with temperature, and the
tunnelling contribution counteracted the classical current. In contrast, in the
model above (Fig. 8), the classical current is zero, and the current reversal
is the result of a competition between tunnelling and quantum mechanical
wave-reflection. In general, all three effects, classical effects related to the
barrier height, tunnelling, and quantum mechanical wave-reflection, can be
important.
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6. Conclusion and outlook

We presented a series of experiments demonstrating rectifying behaviour,
or ratchet effects, based on non-linear quantum behaviour in asymmetric,
mesoscopic electron cavities. Experiments on triangular electron cavities in
the linear response regime were described, confirming that the classical as
well the quantum mechanical electron dynamics can be described in a semi-
classical single-particle picture in which electrons move like billiard balls on
classical trajectories between boundary collision. The classical and quantum
electron dynamics in ballistic cavities (billiards, or quantum dots) are ther-
fore strongly determined by the shape of the cavity. This behaviour allows
to use ballistic cavities to study rectifying effects induced by the shape of the
device in the quantum regime. Two specific experiments on rectifying be-
haviour in the non-linear regime were then described, one based on electron
interference (a quantum dot ratchet), and one based on tunnelling through
an asymmetric energy barrier (a tunnelling ratchet). The sign of rectifica-
tion in a quantum dot ratchet depends very sensitively on uncontrollably
small deviations from the intended device shape, but can be tuned using
parameters such as magnetic field, Fermi energy or the AC voltage. The
current direction in a tunneling ratchet can be predicted from the device
shape, and is tunable by temperature, when device parameters are suitably
chosen.

Both ratchet experiments presented here are examples for so-called adi-
abatic ratchets, in which potential changes induced by rocking happen on
time scales slower than all other relevant time scales of the system. Future
work may address the so-called non-adiabatic regime, in which the potential
is rocked at a frequency comparable to characteristic times of the particles,
such as their escape time through ratchet barriers, or the rate of energy
dissipation. In this regime, chaotic behaviour is predicted for moderately
damped particles in rocking ratchets [37,38]. Chaos in quantum ratchets
may then give rise to novel signatures of quantum chaos in non-equilibrium
systems [39]. An experimental realisation of fast potential changes would
also allow the construction of so called flashing ratchets, where the potential
itself is modified, and no external forces are applied at any time. Flashing
ratchets are of interest because these are one candidate for suitable models
for some molecular motors in living systems. Regarding quantum effects
in ratchets, semiconductor nanostructures are one experimental system in
which non-adiabatic quantum ratchets may be realised, others include cold
atoms in optical lattices [40].
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