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FROM LINEAR TO NON-LINEAR TRANSPORTIN ASYMMETRIC MESOSCOPIC DEVICES�H. LinkeS
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s, Lund UniversityBox 118, SE - 221 00 Lund, Swedene-mail: Par.Omling�ftf.lth.se(Re
eived De
ember 6, 2000)Ro
king rat
hets are asymmetri
 potentials operated in the non-linearresponse regime where re
tifying behaviour 
an be observed. Mesos
opi
ele
troni
 devi
es based on semi
ondu
tors with low 
arrier 
on
entrationare easily driven away from linear response, and their ele
tron dynami
s isat low temperatures altered by quantum e�e
ts. Asymmetri
 semi
ondu
-tor devi
es of sub-mi
ron dimensions are therefore suitable for experimentson �quantum rat
hets�, that is, ro
king rat
hets based on quantum e�e
ts,su
h as ele
tron interferen
e and tunnelling. We �rst des
ribe experimentsusing triangular ele
tron 
avities in the linear response regime, illustrat-ing that, at low temperatures, 
lassi
al and quantum ele
tron dynami
sare determined by the shape of the ballisti
 
avity. Physi
al reasons for atransition from linear to non-linear behaviour in mesos
opi
 devi
es are dis-
ussed, and two rat
het experiments in the non-linear regime are des
ribed.The sign of re
ti�
ation in a quantum dot rat
het, based on ele
tron inter-feren
e e�e
ts, depends very sensitively on un
ontrollably small deviationsfrom the intended devi
e shape, but 
an be tuned using parameters su
h asmagneti
 �eld, Fermi energy or the AC voltage. The 
urrent dire
tion ina tunneling rat
het 
an be predi
ted from the devi
e shape, and is tunableby temperature, when devi
e parameters are suitably 
hosen.PACS numbers: 73.23.Ad, 73.50.Fq, 73.40.Ei� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000 and at the XIII Marian Smolu
howski Symposium on Statisti-
al Physi
s "Fundamentals and Appli
ations", Zakopane, Poland, September 10�17,2000. (267)



268 H. Linke, P. Omling1. Introdu
tionAll materials at �nite temperature store a substantial amount of energyin the form of random thermal motion. It is a tempting idea to 
onstru
t ama
hine that might put this energy supply to pra
ti
al use [1,2℄, but for sys-tems in thermal equilibrium, the Se
ond Law of Thermodynami
s safeguardsthermal motion from te
hni
al exploitation [2℄. However, we regularly makeuse of situations of thermal non-equilibrium to generate useful work, most
ommonly when using ma
ros
opi
 heat gradients in heat engines. Re
entlya more subtle way of extra
ting work from non-equilibrium has 
ome un-der detailed investigation (for reviews, see [3-6℄). In so-
alled rat
hets, adire
ted 
urrent of parti
les is generated in the absen
e of any ma
ros
opi
,time-averaged for
es or gradients. This is a
hieved using a 
ombination ofspatial or temporal asymmetry, and a sour
e of energy that keeps the systemin a state of thermal non-equilibrium. The most well-known example is the�on-o� rat
het� illustrated in Fig. 1(a). Here, the 
ombination of, �rstly,periodi
 swit
hing between a �at and a saw-tooth shaped potential, and,se
ondly, thermal (isotropi
) parti
le di�usion in the o�-phase, is 
onvertedinto dire
ted motion [7,8℄. The swit
hing 
an be random, but needs to hap-pen on a time s
ale 
omparable to the time for parti
le di�usion over onerat
het period. The rat
het 
an generate a 
urrent even against a small ex-ternal for
e, using energy that is provided by the swit
hing of the potential,whi
h maintains a situation of thermal non-equilibrium. It is interestingto note, however, that this rat
het me
hanism would not work without therandom, thermal parti
le motion in the o�-phase. This subtle interplay ofthermal motion and a non-equilibrium energy supply is typi
al for rat
hets,and leads to a wide range of interesting phenomena [6℄. The prin
iple ofthe on-o� rat
het may also have impli
ations for the for
e generation on amole
ular level in living 
ells [4,9℄, and has re
ently been demonstrated tohave potential for parti
le sorting appli
ations [10℄.A se
ond, 
ommonly investigated rat
het type is the �ro
king rat
het�,
onsisting of parti
les in an asymmetri
 potential whi
h is periodi
ally andsymmetri
ally tilted, or �ro
ked� (Fig 1(b)). The deformation of an asym-metri
 potential when tilted depdends on the tilt dire
tion, and in generala net parti
le 
urrent is found when parti
le motion is averaged over onefull 
y
le of ro
king. Unlike the on-o� rat
het, a ro
ked rat
het does notrequire thermal motion to operate. Parti
le motion is driven by the tiltingfor
e, and it is this external time-dependent �eld that the rat
het re
ti�es,not thermal motion. However, as will be shown later (Se
t. 5), temperaturedoes have a substantial quantitative and qualitative e�e
t on the rat
hetbehaviour be
ause it determines the energy distribution of the parti
les.
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Fig. 1. (a) An on-o� rat
het. The periodi
, asymmetri
 potential is swit
hed onand o� at a frequen
y 
omparable to the time s
ale for parti
le di�usion over onepotential period. The swit
hing potential serves as a sour
e of non-equilibriumenergy, but random parti
le motion in the o�-phase is also required for 
urrentgeneration. (b) A ro
king rat
het is essentially a non-linear re
ti�er. The parti
le
urrent is di�erent during the two tilt dire
tions, and on time-average a net 
urrentis generated.The physi
al origin of net 
urrent generation in ro
king rat
hets is theasymmetri
, non-linear response of the system to an externally applied for
e.In the present 
ontribution, we will review re
ent experiments that make useof the low threshold for non-linear behaviour in small (mesos
opi
) ele
troni
devi
es to observe re
tifying e�e
ts [11℄. At low temperatures, the ele
troni
properties of mesos
opi
 devi
es are altered by quantum me
hani
al e�e
ts,su
h as ele
tron-wave interferen
e or tunnelling. We will show how quantumme
hani
al behaviour 
an, in the non-linear response regime, lead to re
ti�-
ation. This enables us to study experimentally the behaviour of �quantumrat
hets� [12℄, that is, ro
king rat
hets based on quantum e�e
ts.



270 H. Linke, P. OmlingThe paper is stru
tured as follows. In Se
tion 2, we introdu
e our ex-perimental system, ele
tron 
avity devi
es, and a brief review is given ofour results on 
lassi
al and quantum me
hani
al transport in asymmetri
ele
troni
 
avities in the linear response regime. In Se
tion 3 we dis
ussthe transition from linear to non-linear transport, whi
h is 
ru
ial for the
onstru
tion of ro
king rat
hets. Se
tions 4 and 5 des
ribe two di�erentquantum rat
het e�e
ts. First, in Se
tion 4, we des
ribe a �quantum dotrat
het�, in whi
h the sensitive response of ele
tron wave interferen
e in ele
-tron 
avities to an external ele
tri
 �eld is used to partially re
tify an ACvoltage. The behaviour of an asymmetri
 tunnelling barrier when ro
kedusing a �nite AC voltage is des
ribed in Se
tion 5. The dire
tion of thegenerated 
urrent is found to depend on temperature, and we present anintuitive explanation for this phenomenon.2. Triangular ele
tron billiards in the linear response regimeFigure 2 is a s
anning ele
tron mi
ros
ope image of a triangular ele
tron
avity fabri
ated by ele
tron-beam lithography and shallow wet et
hing.The darker areas in the image are et
hed tren
hes, whi
h serve to interrupta two-dimensional sheet of ele
trons (2DEG) lo
ated at the interfa
e of aGaAs/AlGaAs heterostru
ture, typi
ally 30�100 nm below the surfa
e. Thetren
hes ele
tri
ally isolate the inner part of the triangle, the ele
tron 
avity,from the surrounding 2DEG areas, ex
ept for two narrow openings (point
onta
ts), visible at the tip and in the 
entre of the base of the triangle.

Fig. 2. S
anning ele
tron mi
rograph of a triangular ele
tron billiard de�ned byele
tron beam lithograhy and shallow wet et
hing. The darker areas have beenet
hed out to ele
tri
ally interrupt a two-dimensional sheet of ele
trons lo
atedabout 70 nm under the surfa
e.



From Linear to Non-Linear Transport in. . . 271In an experiment, usually a small voltage- or 
urrent-bias is applied be-tween the 2DEG areas to the left and right of the devi
e, also referred toas ele
tron reservoirs. The voltage drop over the devi
e is then measured to
ompute the devi
e 
ondu
tan
e. The dimension of ele
tron 
avities studiedin this way is typi
ally about a mi
rometer, mu
h smaller than the 
hara
-teristi
 length s
ales for elasti
 impurity s
attering of the host material. By
ooling the devi
e to su�
iently low temperatures (T < 10 K), also inelas-ti
 ele
tron-phonon s
attering 
an be suppressed. In this so-
alled ballisti
limit, the dynami
s of ele
trons inside the 
avity are well des
ribed by asemi-
lassi
al, single-parti
le pi
ture, in whi
h ele
trons move on straightdire
tories between boundary 
ollisions [13℄. Be
ause of this similarity witha game of billiards, ballisti
 two-dimensional 
avities are often also referredto as ele
tron billiards.2.1. Classi
al regime of transportAn experimental perburtation parameter mu
h used to study ele
tronbilliards is a perpendi
ular magneti
 �eld B, whi
h 
auses the ele
trons tomove on 
y
lotron orbits with radius r = m�F=eB. Here, m and e are thee�e
tive mass and the 
harge of an ele
tron, respe
tively, and �F is the ve-lo
ity at the Fermi energy. In Fig. 3 we show experimental data for themagneto-resistan
e as well as the result of a 
omputer simulation [14℄. Theexperimental data represented as a dashed line in Fig. 3(a) were taken attemperature of T = 4:5 K, su�
iently 
old to suppress ele
tron�phonons
attering, but warm enough that e�e
ts related to energy quantisation arethermally averaged out. This temperature is thus suitable to study 
las-si
al transport phenomena in the ballisti
 regime. The experimental datashow strong stru
ture on the normalized �eld s
ale B
, the magneti
 �eldat whi
h the 
y
lotron diameter equals the side length of the equilateraltriangle (for the devi
e used in Fig. 3, B
 � 50 mT). This is the 
hara
ter-isti
 magneti
 �eld where one would expe
t the 
lassi
al ele
tron dynami
sto be notably altered by the �eld, in agreement with observations [13℄. Toobtain the simulation shown in Fig. 3(b), ele
trons that start at Fermi ve-lo
ity at di�erent initial angles from the opening in the triangle base weretra
ed inside the billiard until they es
aped through one of the two 
onta
ts.The ratio of the ele
trons transmitted through the billiard at ea
h setting ofthe magneti
 �eld, t(B), was determined and then related to the resistan
eR(B) (no absolute s
ale) by setting R(B) / 1=t(B). The ele
trons weretreated entirely as 
lassi
al, 
harged parti
les in a hard-wall potential, andspe
ular (mirror-like) s
attering at the boundaries was assumed. A realisti
amount of impurity s
attering was taken into a

ount by 
hanging the dire
-tion of motion randomly after an exponentially distributed random distan
e
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Fig. 3. (a) Magneto-resistan
e of a triangular billiard at 4.5 K (dashed line), and0.3 K (full line). Also indi
ated in (a) are the 
lassi
al traje
tories of ele
trons thatenter the billiard along the symmetry axis through the side opening at B=B
 =1; 3; 5, respe
tively, whi
h are thought to be related to the resistan
e maxima. (b)Classi
al simulation of the magneto-resistan
e using a hard-wall potential. Both�gures from [15℄.of travel (for further details, see [14℄). From Fig. 3 it is apparent that thesimulation reprodu
es the overall behaviour of the experimental data takenT = 4:5 K, in
luding some �ne stru
tures with ex
eption of the statisti
alnoise. In parti
ular, the major resistan
e maxima at the normalized �eld B
,that 
an be related to the simple, re�e
ted ele
tron traje
tories indi
ated inFig. 3(a), are reprodu
ed in the simulation. Further analysis allows, in fa
t,a surprisingly detailed understanding of the magneto-resistan
e in triangularbilliards in terms of spe
i�
, 
lassi
al ele
tron orbits [14�16℄.
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ondu
tan
e �u
tuationsThe results dis
ussed in the previous se
tion illustrate that ele
tron be-haviour in ballisti
 devi
es is well des
ribed by a single-parti
le billiard pi
-ture, in whi
h ele
trons are assumed to move undisturbed on 
lassi
al tra-je
tories. One 
an take this analysis one step further by 
onsidering alsoquantum me
hani
al wave interferen
e e�e
ts, in addition to the 
lassi
aldynami
s. Experimentally, this is done by lowering the ele
tron tempera-ture below T � 1 K. Inelasti
 ele
tron-ele
tron intera
tion, whi
h is knownto suppress ele
tron wave-
oheren
e, a prerequisite for the observation of in-terferen
e e�e
ts, is then suppressed, and the edge of the Fermi distributionis sharp enough to resolve e�e
ts related to energy quantisation. In Fig. 3(a)we show as the full line magneto-resistan
e data taken at T = 0:3 K [15℄.Superimposed on the 
lassi
al behaviour dis
ussed above, we observe nowrapid �u
tuations on a magneti
 �eld s
ale of a few mT and less, mu
hsmaller than the s
ale B
 � 50 mT for 
lassi
al behaviour. While thesemagneto-
ondu
tan
e �u
tuations appear noise-like, they are in fa
t highlyreprodu
ible in subsequent sweeps of B, and are also perfe
tly symmetri
around zero magneti
 �eld.The origin of magneto-
ondu
tan
e �u
tuations (MCF) 
an be explainedin a semi-
lassi
al pi
ture, in whi
h a quantum me
hani
al phase is addedto the 
lassi
al ele
tron traje
tories. Typi
ally, the wave length of ele
tronsat the Fermi energy in semi
ondu
tor billiards is about 40 nm, or about20 times smaller than the devi
e, justifying a semi-
lassi
al des
ription oftransport. Wave interferen
e between pairs of 
lassi
al ele
tron paths 
anthen be predi
ted by 
al
ulating the ele
tron phase along the 
lassi
al tra-je
tories. In parti
ular, short, periodi
 ele
tron orbits 
an be identi�ed withele
tron states at energies where a semi-
lassi
al Bohr�Sommerfeld quan-tization 
ondition is ful�lled [17�20℄. Transport of ele
trons through thebilliard 
an then be viewed as a two-step pro
ess, in whi
h ele
trons tun-nel through one point 
onta
t onto a semi-
lassi
al ele
tron state 
lose tothe Fermi energy, and then leave this state through the se
ond point 
on-ta
t. The 
ondu
tan
e of the billiard is in this pi
ture given by the numberof states available at the Fermi energy inside the 
avity. A magneti
 �eldshifts the ele
tron phase, and 
hanges the interferen
e. In parti
ular, anele
tron state related to a spe
i�
 
losed orbit will be swit
hed on and o� asthe magneti
 �eld is tuned, with a period �B = h=eA, given by the ratio ofthe orbit area, A, and the magneti
 �ux quantum, (h=e) [21℄.Ele
tron-wave interferen
e is extremely sensitive to details of the a
-tual potential inside the billiard, be
ause the typi
al Fermi wave length isonly of order 40 nm. Therefore, and be
ause some imperfe
tions, related tolithography or impurities, are always present, it is not possible to predi
tMCF in exa
t detail. MCF are therefore also referred to as a �magneto-



274 H. Linke, P. Omling�ngerprint� of a parti
ular devi
e [22℄. A statisti
al analysis based on thema
ros
opi
 shape of the devi
e however is possible. In Fig. 3(a), a par-ti
ular, 
losed ele
tron orbit is indi
ated whi
h, as revealed by the 
lassi
alsimulations (Fig. 3 (b)), 
an be thought of as responsible for the maximumof the 
lassi
al magnetoresistan
e apparent at B = B
. In the light of this
lassi
al interpretation it is interesting to investigate whether also the quan-tum �u
tuations in the range around B = B
 are related to the orbit shownin Fig. 3(a). To analyse the MCF, we Fourier transform the �u
tuations�G(B) = [G(B;T = 0:3 K)�G(B;T = 5 K)℄ in the range 0 < B < 1:5B
,where G(B) = 1=R(B) stands for the 
ondu
tan
e (Fig. 4). Indeed, a peakis found to emerge in the Fourier transformed data, 
orresponding to a fre-quen
y 
onsistent with the area en
losed by the orbit at B = B
 (Fig. 3(a))[15℄.
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Fig. 4. Condu
tan
e �u
tuations �G(B) = [G(B; T = 0:3 K)�G(B; T = 5 K)℄. Inthe region of the resistan
e maximum around B � B
 � 50 mT, the �u
tuationsare quasi-periodi
 and the amplitude is enhan
ed. The inset shows the Fouriertransform of the data in the range 0 < B < 1:5B
. From [15℄.3. From linear to non-linear transportAll experiments des
ribed so far have been 
arried out at very small biasvoltage, and non-linear e�e
ts were unimportant. In this so-
alled linearresponse regime, 
hara
terised by a 
ondu
tan
e G = I=V whi
h is indepen-dent from the voltage V , ele
tron transport is by de�nition symmetri
. Nore
ti�
ation is possible, and a ro
king rat
het 
an not operate. Re
ti�
ationis represented by the lowest order of non-linearity, that is the term G1 in the
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urrent I(V ) = G0V +G1V 2+: : : . The term G1, whi
h 
anbe non-zero only in systems that la
k a symmetry axis with respe
t to the
urrent dire
tion, leads to a �nite net 
urrent, Inet = (1=2)[I(V ) + I(�V )℄when a square-wave voltage is applied to the devi
e [11℄. Devi
es where G1is �nite therefore a
t as non-linear re
ti�ers and may be viewed as ro
kingrat
hets.When does ele
tron transport through a mesos
opi
 devi
e be
ome non-linear? Ele
tron transport via one-dimensional (1D) wave-modes through amesos
opi
 devi
e 
onne
ting 2D ele
tron reservoirs 
an be des
ribed by aLandauer equation [23, 24℄,I(V ) = 2eh Z t("; U(V ))M("; V )[fS(") � fD(")℄d" : (1)Here, the prefa
tor (2e=h) is the 
ondu
tan
e of ea
h 1D wave-mode, whentransmission through the devi
e is perfe
t. M("; V ) is a step fun
tion de-s
ribing the integer number of 1D wave-modes available for transport atea
h energy, ". t("; U(V )) is the transmission probability for ele
trons inthe respe
tive wave modes and is determined by the devi
e potential, U . fSand fD are Fermi distributions des
ribing the o

upation of energy levels inthe sour
e- and drain-ele
tron reservoirs, respe
tively, with ele
tro
hemi
alpotentials, �S and �D, where (�S � �D) = eV .At very small voltages and temperatures, that is, in the linear responselimit, Eq. (1) 
an be written as I = 2e2=hM(�F)t(�F)V , where �F isthe equilibrium Fermi energy. To make this approximation, the following
onditions need to be ful�lled [24℄. Firstly, the transmission probabilityt("; U) must not vary with energy in the range where ele
trons 
ontributeto transport. This region is des
ribed by the Fermi window, [fS(")� fD(")℄,whi
h has its 
enter within (�F � eV=2). A variation of t(") on a s
ale�" does not a�e
t the voltage response, when either eV � kBT , or when(jeV j+4kBT )� �". Se
ondly, for linear response, t("; U) must not dependon the sour
e-drain voltage. The most obvious reason for why t("; U) maybe an expli
it fun
tion of the voltage, is that the devi
e potential itself, U ,is distorted by the applied voltage, su
h that U be
omes a fun
tion of thevoltage, U = U(V ). Thirdly, non-linear behaviour is also generated whenM is a fun
tion of the voltage [25℄.Note that, while the variation of t with " leads to non-linear e�e
ts onlyabove a 
ertain threshold given by the energy s
ale for variation, �", and bythe temperature, (see above), the variation of t due to a voltage dependen
eof U(V ) has no fundamental threshold. Therefore, non-linear e�e
ts 
an inprin
iple be observed at arbitrarily small voltages. An exa
t 
al
ulation oft(U(V )) is in general di�
ult, and requires the self-
onsistent solution of the3D S
hrödinger equation in
luding the ele
tri
 �eld generated by the volt-
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ross the devi
e, taking into a

ount s
reening e�e
ts. In the followingse
tions, where we will present two di�erent me
hanisms leading to asym-metri
 non-linear behaviour in small devi
es, we will restri
t ourselves to anintuitive des
ription of these phenomena, and will not attempt a detaileddis
ussion of U(V ). 4. A quantum dot rat
hetWe now return to the triangular ele
tron billiards dis
ussed in Se
tion 2.When studied at low temperatures, where quantum behaviour establishesitself, su
h devi
es are often also referred to as �open quantum dots� (fora review, see for instan
e [26℄). To understand the transition from linearto non-linear quantum behaviour it is useful to 
onsider a model for ele
-tron transport through quantum dots. Figure 5(a) s
hemati
ally shows the
(b)

(a) µS

µS
µD

µD

eV

Fig. 5. Illustration of ele
tron transport through a quantum dot. The 
urvature ofthe 
ondu
tan
e band edge inside the dot represents the e�e
t of the 
on�nementenergy inside the triangular dot (not to s
ale). The horizontal lines inside thedot indi
ate the shell stru
ture of the density of states. The lo
al ele
tro-
hemi
alpotential is indi
ated by shading. (a) In linear response the transmission probabil-ity, that is the 
ondu
tan
e, is independent of the absolute value and the sign ofthe voltage. (b) In the non-linear response regime, the potential and the ele
tronstates depend on the applied voltage. Re
ti�
ation o

urs when the potential isnot inversion symmetri
 (see text). From [28℄.
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ondu
tion band bottom along a triangular quantum dot at negligible biasvoltage, where the variation of the band bottom represents the e�e
t of the
on�nement energy in the point 
onta
ts and inside the dot. Also shownare the Fermi distribution in the sour
e and drain reservoirs. The e�e
tof energy quantisation inside the dot is represented by horizontal lines in-di
ating a shell stru
ture of the density of states. At very small voltages(eV � �F; kBT ), transport through the dot is via the ele
tron states withina few kBT of the Fermi energy [24℄. The states that 
ontribute to transportare independent of the applied voltage and are the same for both 
urrentdire
tions. This is the linear response regime where transport is by de�ni-tion symmetri
 upon voltage reversal. For 
omparison, Fig. 5(b) shows thesituation for �nite bias voltage, that is in the non-linear response regime[27,28℄. One e�e
t of the bias voltage is to distort the 
ondu
tion band bot-tom. How exa
tly this happens 
an only be determined in a self-
onsistent
al
ulation. Here, we are interested in the prin
iple only, and in Fig. 5(b)we assume stepwise voltage drops near the point 
onta
ts, and a linear po-tential slope inside the devi
e. The resulting e�e
tive potential lands
apeU(V ), and thus the transmission t("; U(V )), depend on the magnitude ofthe voltage, and, be
ause of the non-symmetri
 shape of the 
avity, also onthe voltage sign. This 
auses non-linear and non-symmetri
 behaviour ofthe 
ondu
tan
e (Eq. (1)). In addition, at �nite bias voltage the width ofthe Fermi window in Eq. (1) widens, and it's exa
t position relative to the
ondu
tan
e band bottom inside the dot depends on how the voltage drop isdistributed over the devi
e [29℄. When the two point 
onta
ts are di�erent,as is ne
essarily the 
ase for a triangular quantum dot, a di�erent rangeof quantized ele
tron states will 
ontribute for di�erent signs of the voltage[27,28℄. Also this e�e
t 
an be expe
ted to lead to re
ti�
ation.Experimental data for the di�erential 
ondu
tan
e G(V ) = �I(V )=�Vare shown in Fig. 6. In the experiment, a DC bias voltage was added to asmall AC voltage, and the di�erential resistan
e was measured as a fun
tionof bias voltage using standard phase-lo
king te
hniques. The data shownin Fig. 6 were re
orded at a series of di�erent magneti
 �elds, ranging fromzero to about �18 mT (Figs. 6(a) and (b), respe
tively), in steps of 2 mT.Three important observations should be made here. Firstly, the 
ondu
-tan
e 
learly depends on bias voltage (non-linear response) in a way thatis in general not symmetri
 with zero bias voltage, that is, re
ti�
ation isobserved. A more detailed analysis shows that most of the asymmetri
 be-haviour is suppressed at temperatures above 1 K, indi
ating that quantuminterferen
e e�e
ts are important [27,28℄. Se
ondly, the non-linear e�e
ts
hange rapidly with magneti
 �eld. Importantly, the magneti
 �eld s
ale(a few mT) is 
onsistent with magneti
-�eld indu
ed modi�
ations to quan-tum interferen
e (see Se
tion 2) but not with 
lassi
al e�e
ts (�eld s
ale
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Fig. 6. Experimental data of the di�erential 
ondu
tan
e G(V ) at in
reasing(a) positive and (b) negative magneti
 �eld (T = 0:3 K). The �eld values arefrom bottom to top for (a) B = �0:2; +1:8; +3:8; ::: ;+17:8 mT and for (b)B = �0:2; �2:2; �4:2; :::; � 18:2 mT (note the o�set �0:2 mT of the magneti
�eld values, whi
h is due to a residual �eld in the magnet). Ea
h 
urve has beeno�set by +0:1e2=h from the pre
eding one. From [28℄.10�100 mT, see Fig. 3). We 
an therefore 
on
lude that we observe re
-tifying behaviour related to the voltage-indu
ed modi�
ation of transportthrough ele
tron quantum states inside the dot, as expe
ted from the dis-
ussion above.A third important observation to be made from Fig. 6 is related to thesymmetry in magneti
 �eld. In the linear response regime, 
ondu
tion isalways symmetri
 with respe
t to zero magneti
 �eld, that is, the relationG(B) = G(�B) is valid independent of the potential symmetry [24,30℄.In the non-linear regime, however, when the 
ondu
tan
e depends on thebias voltage, this general symmetry relation breaks down and symmetry inmagneti
 �eld is normally absent. The symmetry is restored only whenthe potential has a symmetry axis parallel to the 
urrent dire
tion (Fig. 6).Under this 
ondition, whi
h is ful�lled in our dot geometry, the relationG(V;B) = G(V;�B) should be valid. This symmetry relation allows us toperform an important test: is the origin of re
ti�
ation in our devi
e indeedthe geometry of the dot, and not, for instan
e, broken symmetry be
ause ofrandom impurities of the material [31�35℄? If the answer is �yes�, then the
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ondu
tan
e in the non-linear regime should be symmetri
 with respe
t tozero magneti
 �eld, be
ause a horizontal symmetry axis should be present.The data shown in Fig. 6 
on�rm that the non-linear quantum 
ondu
tan
edoes not depend on the dire
tion of the magneti
 �eld, within a �eld rangethat fully alters the non-linear quantum �u
tuations. It appears therefore,that any deviations from the intended dot symmetry are not signi�
antwithin the parameter range 
overed here (jBj < 20 mT, jV j < 2 mV), andthat the existen
e of re
ti�
ation in the asymmetri
 
avities is indeed relatedto their asymmetri
 shape.The latter observation does not mean, however, that one 
an predi
texa
tly the dire
tion of re
ti�
ation of a given devi
e. The reason is, thatele
tron interferen
e is extremely sensitive to small 
hanges of the Fermienergy, of the 
avity shape or size, of a small magneti
 �eld (the latter isapparent from Fig. 6), or even of the amplitude of the applied AC voltage[27℄. While the sign of re
ti�
ation is thus not 
ontrollable in the fabri
ationpro
ess, it is very easy to adjust the dire
tion of re
ti�
ation, on
e it isestablished, using any of the above parameters.5. A tunnelling rat
hetWe will now des
ribe a di�erent devi
e, one in whi
h tunnelling throughan asymmetri
 barrier is employed to generate a non-linear response to anapplied ro
king voltage. An SEM image of this tunnelling rat
het is shownin Fig. 7. Cru
ial for the fun
tion of the devi
e as a rat
het is the righthand point 
onta
t whi
h forms an asymmetri
, 1D wave guide. Ele
tronstravelling along the wave guide need to adjust their lateral wave ve
tor tothe 
hannel width. To enter a given part of the 
hannel, ele
trons thereforerequire a minimum energy 
orresponding to the lateral 
on�nement energy.E�e
tively, the 
onstri
tion at the point 
onta
t thus represents an asym-metri
 energy barrier (Fig. 8). Using the 2DEG areas above and below the
onta
t as side gates (marked SG), to whi
h a stati
 voltage 
an be ap-plied, the ele
trostati
 width of the 
hannel, and therefore the height of thee�e
tive energy barrier, 
an be tuned.The dire
tion of a net 
urrent in a ro
king rat
het operating 
lassi
ally(Fig. 1(b)) is given simply by the tilt dire
tion in whi
h the e�e
tive bar-rier height is lowest. If the barrier height is independent of the tilt dire
-tion, a 
lassi
al rat
het 
an not operate. Quantum me
hani
ally, however,parti
les with an energy below the barrier maximum 
an tunnel throughthe 
lassi
ally forbidden barriers, while parti
les with su�
ient energy to
ross the barriers may still be wave-me
hani
ally re�e
ted. The 
orrespond-ing energy-dependent transmission probabilities depend on the exa
t barriershape, whi
h will always depend on the tilt dire
tion. With other words,
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Fig. 7. S
anning ele
tron mi
rograph of the devi
e used as an ele
tron tunnellingrat
het. Due to 
on�nement energy, the right-hand point 
onta
t, whi
h is tunablein width using the side gates SG, forms an asymmetri
 tunnelling barrier (seeFig. 8). The spa
e bar represents one mi
rometer.
Fig. 8. S
hemati
 drawing of the 
ondu
ation band bottom of the tunnelling rat
hetdevi
e shown in Fig. 7, forming an asymmetri
 energy barrier at the right handpoint 
onta
t. Both tilt dire
tions are shown. The dashed lines indi
ate the shapeof the assumed voltage drop, whi
h is s
aled with the potential gradient of thebarrier without tilt (zero bias voltage). For the physi
al me
hanism that leads to atemperature dependen
e of the total net 
urrent dire
tion see text. Figure 
ourtesyof Tammy E. Humphrey.the transmission probability t("; U) in Eq. (1) is a fun
tion of voltage be-
ause the potential is a fun
tion of voltage, U = U(V ). A 
onsequen
e ofthis behaviour is that a net 
urrent 
an o

ur in ro
ked �quantum rat
hets�when this is 
lassi
ally not possible. In addititon, the net 
urrent dire
tion
an depend on temperature [12℄, as we will explain in the following.In Fig. 8 we show an energy barrier, estimated from the dimensions ofthe devi
e shown in Fig. 7, for both tilt dire
tions, where tilt is generated byapplying a positive or negative bias voltage. To predi
t how the potentialdeforms under tilt one needs to know the spatial distribution of the volt-
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ross the barrier. In Fig. 8, we use a voltage drop distributionthat s
ales with the lo
al gradient of the untilted barrier. The argumentbehind this assumption is that wave-re�e
tion is stronger when the poten-tial is steeper. In parti
ular, a potential step would be expe
ted to yielda stepwise drop in the 
ondu
tion band bottom. A side-e�e
t of this par-ti
ular assumption is that the e�e
tive barrier height does not depend onthe tilt dire
tion. Therefore, no 
lassi
al net 
urrent is possible, and all net
urrent observed in this model is of quantum me
hani
al origin. The detailsof the quantum me
hani
al 
urrent strongly depend on the exa
t shape ofthe barrier under tilt, but the following argument holds independent of theexa
t details of a smooth potential drop a
ross the barrier.When the barrier is tilted to the right, it deforms to be thi
ker at a givenenergy under the barrier top (Fig. 8). This 
hange redu
es tunnelling, but,at the same time, makes it easier for ele
trons with high energy to 
rossover the barrier, be
ause the smoother shape redu
es wave re�e
tion. In theother tilt dire
tion, the barrier deforms to be thinner and sharper, with theopposite e�e
t. Tunnelling be
omes easier, but ele
trons �nd it more di�
ultto 
ross over the top of the barrier, be
ause the steeper potential 
ausesmore wave re�e
tion. The result are two 
ontributions to the net 
urrentthat �ow in opposite dire
tion. Averaged over a full period of symmetri
ro
king, there is a net 
urrent to the left 
onsisting of ele
trons with lowenergy that tunnel through the barriers. At higher energy, a net 
urrent tothe right exists, 
onsisting of ele
trons that pass over the top of the barrier.The dire
tion of the total, energy-averaged net 
urrent depends then on theele
tron energy distribution. At high temperatures, the 
urrent to the leftwill usually dominate, be
ause ele
trons of higher energy are available. Asthe temperature de
reases, however, this 
ontribution 
an be
ome smallerthan the tunnelling 
urrent, and a reversal of the total net 
urrent 
an beobserved [12,36℄.Experimental data are shown in Fig. 9. A square-wave voltage of ampli-tude V was applied to the devi
e, and the net 
urrent, Inet = (1=2)[I(V ) +I(�V )℄, was measured using phase-lo
king te
hniques. The frequen
y usedfor ro
king was of the order of 100 Hz, and was thus mu
h slower than alltypi
al time 
onstants of the ele
troni
 system, su
h as energy relaxationtimes. The rat
het was therefore at all times in a stationary state. Thismode of ro
king is 
alled �adiabati
 ro
king� [12℄ (note that the word �adia-bati
� is elsewhere sometimes used in the opposite sense, that is, for 
hangesthat o

ur fast). Temperature dependen
e of the 
urrent dire
tion due to theme
hanism des
ribed above is possible when ele
trons at energies just aboveand below the barrier top 
ontribute to the 
urrent (Fig. 8). To a
hieve this
ondition in an experiment, the barrier height is set to approximately mat
hthe Fermi energy (the relative position of barrier height and Fermi energy
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an be estimated from the 
ondu
tan
e of the point 
onta
t, see Eq. (1)).Further, the ro
king voltage, V , is 
hosen su
h, that by varying T , the widthof the Fermi window, (jeV j + 4kBT ), 
an be varied over the energy rangearound the barrier top where quantum 
orre
tions to the transmission prob-ability are important. Cal
ulations show that this energy range extendsabout 1 meV above and below the barrier maximum [36℄. In pra
ti
e, one
hooses a suitable ro
king voltage and sweeps the barrier height (using theside gates) at various temperatures [36℄. In this way one �nds sets of valuesfor the ro
king voltage and the side gate voltage, where the net 
urrent di-re
tion depends on temperature. This reversal 
an then be observed dire
tlyby sweeping the temperature while measuring the net 
urrent (Fig. 9).
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Temperature (K)Fig. 9. Measured ele
tri
al net 
urrent in the tunnelling rat
het devi
e of Fig. 7.Note the reversal of the 
urrent dire
tion around T � 2:9 K. From [36℄.In the original work proposing adiabati
ally ro
ked quantum rat
hets[12℄, a linear potential drop a
ross the barrier had been 
onsidered. The bar-rier height then depends on the tilt dire
tion, yielding a 
lassi
al net 
urrent.In that work, a reversal with temperature was numeri
ally observed whenthe thermally ex
ited, 
lassi
al 
urrent de
reased with temperature, and thetunnelling 
ontribution 
ountera
ted the 
lassi
al 
urrent. In 
ontrast, in themodel above (Fig. 8), the 
lassi
al 
urrent is zero, and the 
urrent reversalis the result of a 
ompetition between tunnelling and quantum me
hani
alwave-re�e
tion. In general, all three e�e
ts, 
lassi
al e�e
ts related to thebarrier height, tunnelling, and quantum me
hani
al wave-re�e
tion, 
an beimportant.
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lusion and outlookWe presented a series of experiments demonstrating re
tifying behaviour,or rat
het e�e
ts, based on non-linear quantum behaviour in asymmetri
,mesos
opi
 ele
tron 
avities. Experiments on triangular ele
tron 
avities inthe linear response regime were des
ribed, 
on�rming that the 
lassi
al aswell the quantum me
hani
al ele
tron dynami
s 
an be des
ribed in a semi-
lassi
al single-parti
le pi
ture in whi
h ele
trons move like billiard balls on
lassi
al traje
tories between boundary 
ollision. The 
lassi
al and quantumele
tron dynami
s in ballisti
 
avities (billiards, or quantum dots) are ther-fore strongly determined by the shape of the 
avity. This behaviour allowsto use ballisti
 
avities to study re
tifying e�e
ts indu
ed by the shape of thedevi
e in the quantum regime. Two spe
i�
 experiments on re
tifying be-haviour in the non-linear regime were then des
ribed, one based on ele
troninterferen
e (a quantum dot rat
het), and one based on tunnelling throughan asymmetri
 energy barrier (a tunnelling rat
het). The sign of re
ti�
a-tion in a quantum dot rat
het depends very sensitively on un
ontrollablysmall deviations from the intended devi
e shape, but 
an be tuned usingparameters su
h as magneti
 �eld, Fermi energy or the AC voltage. The
urrent dire
tion in a tunneling rat
het 
an be predi
ted from the devi
eshape, and is tunable by temperature, when devi
e parameters are suitably
hosen.Both rat
het experiments presented here are examples for so-
alled adi-abati
 rat
hets, in whi
h potential 
hanges indu
ed by ro
king happen ontime s
ales slower than all other relevant time s
ales of the system. Futurework may address the so-
alled non-adiabati
 regime, in whi
h the potentialis ro
ked at a frequen
y 
omparable to 
hara
teristi
 times of the parti
les,su
h as their es
ape time through rat
het barriers, or the rate of energydissipation. In this regime, 
haoti
 behaviour is predi
ted for moderatelydamped parti
les in ro
king rat
hets [37,38℄. Chaos in quantum rat
hetsmay then give rise to novel signatures of quantum 
haos in non-equilibriumsystems [39℄. An experimental realisation of fast potential 
hanges wouldalso allow the 
onstru
tion of so 
alled �ashing rat
hets, where the potentialitself is modi�ed, and no external for
es are applied at any time. Flashingrat
hets are of interest be
ause these are one 
andidate for suitable modelsfor some mole
ular motors in living systems. Regarding quantum e�e
tsin rat
hets, semi
ondu
tor nanostru
tures are one experimental system inwhi
h non-adiabati
 quantum rat
hets may be realised, others in
lude 
oldatoms in opti
al latti
es [40℄.The authors wish to thank K.F. Berggren, L. Christensson, T.E. Humphrey,P.-E. Lindelof, A. Löfgren, R. Newbury, W.D. Sheng, A.O. Sushkov, A. Svensson,R.P. Taylor, Hongqi Xu and I.V. Zozoulenko for their 
ollaboration.
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