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FROM LINEAR TO NON-LINEAR TRANSPORTIN ASYMMETRIC MESOSCOPIC DEVICES�H. LinkeShool of Physis, University of New South WalesUNSW Sydney 2052, AustraliaPhysis Department, University of OregonEugene, OR 97403-1274, USAe-mail: hl�phys.unsw.edu.auand P. OmlingSolid State Physis, Lund UniversityBox 118, SE - 221 00 Lund, Swedene-mail: Par.Omling�ftf.lth.se(Reeived Deember 6, 2000)Roking rathets are asymmetri potentials operated in the non-linearresponse regime where retifying behaviour an be observed. Mesosopieletroni devies based on semiondutors with low arrier onentrationare easily driven away from linear response, and their eletron dynamis isat low temperatures altered by quantum e�ets. Asymmetri semiondu-tor devies of sub-miron dimensions are therefore suitable for experimentson �quantum rathets�, that is, roking rathets based on quantum e�ets,suh as eletron interferene and tunnelling. We �rst desribe experimentsusing triangular eletron avities in the linear response regime, illustrat-ing that, at low temperatures, lassial and quantum eletron dynamisare determined by the shape of the ballisti avity. Physial reasons for atransition from linear to non-linear behaviour in mesosopi devies are dis-ussed, and two rathet experiments in the non-linear regime are desribed.The sign of reti�ation in a quantum dot rathet, based on eletron inter-ferene e�ets, depends very sensitively on unontrollably small deviationsfrom the intended devie shape, but an be tuned using parameters suh asmagneti �eld, Fermi energy or the AC voltage. The urrent diretion ina tunneling rathet an be predited from the devie shape, and is tunableby temperature, when devie parameters are suitably hosen.PACS numbers: 73.23.Ad, 73.50.Fq, 73.40.Ei� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000 and at the XIII Marian Smoluhowski Symposium on Statisti-al Physis "Fundamentals and Appliations", Zakopane, Poland, September 10�17,2000. (267)



268 H. Linke, P. Omling1. IntrodutionAll materials at �nite temperature store a substantial amount of energyin the form of random thermal motion. It is a tempting idea to onstrut amahine that might put this energy supply to pratial use [1,2℄, but for sys-tems in thermal equilibrium, the Seond Law of Thermodynamis safeguardsthermal motion from tehnial exploitation [2℄. However, we regularly makeuse of situations of thermal non-equilibrium to generate useful work, mostommonly when using marosopi heat gradients in heat engines. Reentlya more subtle way of extrating work from non-equilibrium has ome un-der detailed investigation (for reviews, see [3-6℄). In so-alled rathets, adireted urrent of partiles is generated in the absene of any marosopi,time-averaged fores or gradients. This is ahieved using a ombination ofspatial or temporal asymmetry, and a soure of energy that keeps the systemin a state of thermal non-equilibrium. The most well-known example is the�on-o� rathet� illustrated in Fig. 1(a). Here, the ombination of, �rstly,periodi swithing between a �at and a saw-tooth shaped potential, and,seondly, thermal (isotropi) partile di�usion in the o�-phase, is onvertedinto direted motion [7,8℄. The swithing an be random, but needs to hap-pen on a time sale omparable to the time for partile di�usion over onerathet period. The rathet an generate a urrent even against a small ex-ternal fore, using energy that is provided by the swithing of the potential,whih maintains a situation of thermal non-equilibrium. It is interestingto note, however, that this rathet mehanism would not work without therandom, thermal partile motion in the o�-phase. This subtle interplay ofthermal motion and a non-equilibrium energy supply is typial for rathets,and leads to a wide range of interesting phenomena [6℄. The priniple ofthe on-o� rathet may also have impliations for the fore generation on amoleular level in living ells [4,9℄, and has reently been demonstrated tohave potential for partile sorting appliations [10℄.A seond, ommonly investigated rathet type is the �roking rathet�,onsisting of partiles in an asymmetri potential whih is periodially andsymmetrially tilted, or �roked� (Fig 1(b)). The deformation of an asym-metri potential when tilted depdends on the tilt diretion, and in generala net partile urrent is found when partile motion is averaged over onefull yle of roking. Unlike the on-o� rathet, a roked rathet does notrequire thermal motion to operate. Partile motion is driven by the tiltingfore, and it is this external time-dependent �eld that the rathet reti�es,not thermal motion. However, as will be shown later (Set. 5), temperaturedoes have a substantial quantitative and qualitative e�et on the rathetbehaviour beause it determines the energy distribution of the partiles.
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Fig. 1. (a) An on-o� rathet. The periodi, asymmetri potential is swithed onand o� at a frequeny omparable to the time sale for partile di�usion over onepotential period. The swithing potential serves as a soure of non-equilibriumenergy, but random partile motion in the o�-phase is also required for urrentgeneration. (b) A roking rathet is essentially a non-linear reti�er. The partileurrent is di�erent during the two tilt diretions, and on time-average a net urrentis generated.The physial origin of net urrent generation in roking rathets is theasymmetri, non-linear response of the system to an externally applied fore.In the present ontribution, we will review reent experiments that make useof the low threshold for non-linear behaviour in small (mesosopi) eletronidevies to observe retifying e�ets [11℄. At low temperatures, the eletroniproperties of mesosopi devies are altered by quantum mehanial e�ets,suh as eletron-wave interferene or tunnelling. We will show how quantummehanial behaviour an, in the non-linear response regime, lead to reti�-ation. This enables us to study experimentally the behaviour of �quantumrathets� [12℄, that is, roking rathets based on quantum e�ets.



270 H. Linke, P. OmlingThe paper is strutured as follows. In Setion 2, we introdue our ex-perimental system, eletron avity devies, and a brief review is given ofour results on lassial and quantum mehanial transport in asymmetrieletroni avities in the linear response regime. In Setion 3 we disussthe transition from linear to non-linear transport, whih is ruial for theonstrution of roking rathets. Setions 4 and 5 desribe two di�erentquantum rathet e�ets. First, in Setion 4, we desribe a �quantum dotrathet�, in whih the sensitive response of eletron wave interferene in ele-tron avities to an external eletri �eld is used to partially retify an ACvoltage. The behaviour of an asymmetri tunnelling barrier when rokedusing a �nite AC voltage is desribed in Setion 5. The diretion of thegenerated urrent is found to depend on temperature, and we present anintuitive explanation for this phenomenon.2. Triangular eletron billiards in the linear response regimeFigure 2 is a sanning eletron mirosope image of a triangular eletronavity fabriated by eletron-beam lithography and shallow wet ething.The darker areas in the image are ethed trenhes, whih serve to interrupta two-dimensional sheet of eletrons (2DEG) loated at the interfae of aGaAs/AlGaAs heterostruture, typially 30�100 nm below the surfae. Thetrenhes eletrially isolate the inner part of the triangle, the eletron avity,from the surrounding 2DEG areas, exept for two narrow openings (pointontats), visible at the tip and in the entre of the base of the triangle.

Fig. 2. Sanning eletron mirograph of a triangular eletron billiard de�ned byeletron beam lithograhy and shallow wet ething. The darker areas have beenethed out to eletrially interrupt a two-dimensional sheet of eletrons loatedabout 70 nm under the surfae.



From Linear to Non-Linear Transport in. . . 271In an experiment, usually a small voltage- or urrent-bias is applied be-tween the 2DEG areas to the left and right of the devie, also referred toas eletron reservoirs. The voltage drop over the devie is then measured toompute the devie ondutane. The dimension of eletron avities studiedin this way is typially about a mirometer, muh smaller than the hara-teristi length sales for elasti impurity sattering of the host material. Byooling the devie to su�iently low temperatures (T < 10 K), also inelas-ti eletron-phonon sattering an be suppressed. In this so-alled ballistilimit, the dynamis of eletrons inside the avity are well desribed by asemi-lassial, single-partile piture, in whih eletrons move on straightdiretories between boundary ollisions [13℄. Beause of this similarity witha game of billiards, ballisti two-dimensional avities are often also referredto as eletron billiards.2.1. Classial regime of transportAn experimental perburtation parameter muh used to study eletronbilliards is a perpendiular magneti �eld B, whih auses the eletrons tomove on ylotron orbits with radius r = m�F=eB. Here, m and e are thee�etive mass and the harge of an eletron, respetively, and �F is the ve-loity at the Fermi energy. In Fig. 3 we show experimental data for themagneto-resistane as well as the result of a omputer simulation [14℄. Theexperimental data represented as a dashed line in Fig. 3(a) were taken attemperature of T = 4:5 K, su�iently old to suppress eletron�phononsattering, but warm enough that e�ets related to energy quantisation arethermally averaged out. This temperature is thus suitable to study las-sial transport phenomena in the ballisti regime. The experimental datashow strong struture on the normalized �eld sale B, the magneti �eldat whih the ylotron diameter equals the side length of the equilateraltriangle (for the devie used in Fig. 3, B � 50 mT). This is the harater-isti magneti �eld where one would expet the lassial eletron dynamisto be notably altered by the �eld, in agreement with observations [13℄. Toobtain the simulation shown in Fig. 3(b), eletrons that start at Fermi ve-loity at di�erent initial angles from the opening in the triangle base weretraed inside the billiard until they esaped through one of the two ontats.The ratio of the eletrons transmitted through the billiard at eah setting ofthe magneti �eld, t(B), was determined and then related to the resistaneR(B) (no absolute sale) by setting R(B) / 1=t(B). The eletrons weretreated entirely as lassial, harged partiles in a hard-wall potential, andspeular (mirror-like) sattering at the boundaries was assumed. A realistiamount of impurity sattering was taken into aount by hanging the dire-tion of motion randomly after an exponentially distributed random distane
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Fig. 3. (a) Magneto-resistane of a triangular billiard at 4.5 K (dashed line), and0.3 K (full line). Also indiated in (a) are the lassial trajetories of eletrons thatenter the billiard along the symmetry axis through the side opening at B=B =1; 3; 5, respetively, whih are thought to be related to the resistane maxima. (b)Classial simulation of the magneto-resistane using a hard-wall potential. Both�gures from [15℄.of travel (for further details, see [14℄). From Fig. 3 it is apparent that thesimulation reprodues the overall behaviour of the experimental data takenT = 4:5 K, inluding some �ne strutures with exeption of the statistialnoise. In partiular, the major resistane maxima at the normalized �eld B,that an be related to the simple, re�eted eletron trajetories indiated inFig. 3(a), are reprodued in the simulation. Further analysis allows, in fat,a surprisingly detailed understanding of the magneto-resistane in triangularbilliards in terms of spei�, lassial eletron orbits [14�16℄.



From Linear to Non-Linear Transport in. . . 2732.2. Quantum regime: ondutane �utuationsThe results disussed in the previous setion illustrate that eletron be-haviour in ballisti devies is well desribed by a single-partile billiard pi-ture, in whih eletrons are assumed to move undisturbed on lassial tra-jetories. One an take this analysis one step further by onsidering alsoquantum mehanial wave interferene e�ets, in addition to the lassialdynamis. Experimentally, this is done by lowering the eletron tempera-ture below T � 1 K. Inelasti eletron-eletron interation, whih is knownto suppress eletron wave-oherene, a prerequisite for the observation of in-terferene e�ets, is then suppressed, and the edge of the Fermi distributionis sharp enough to resolve e�ets related to energy quantisation. In Fig. 3(a)we show as the full line magneto-resistane data taken at T = 0:3 K [15℄.Superimposed on the lassial behaviour disussed above, we observe nowrapid �utuations on a magneti �eld sale of a few mT and less, muhsmaller than the sale B � 50 mT for lassial behaviour. While thesemagneto-ondutane �utuations appear noise-like, they are in fat highlyreproduible in subsequent sweeps of B, and are also perfetly symmetriaround zero magneti �eld.The origin of magneto-ondutane �utuations (MCF) an be explainedin a semi-lassial piture, in whih a quantum mehanial phase is addedto the lassial eletron trajetories. Typially, the wave length of eletronsat the Fermi energy in semiondutor billiards is about 40 nm, or about20 times smaller than the devie, justifying a semi-lassial desription oftransport. Wave interferene between pairs of lassial eletron paths anthen be predited by alulating the eletron phase along the lassial tra-jetories. In partiular, short, periodi eletron orbits an be identi�ed witheletron states at energies where a semi-lassial Bohr�Sommerfeld quan-tization ondition is ful�lled [17�20℄. Transport of eletrons through thebilliard an then be viewed as a two-step proess, in whih eletrons tun-nel through one point ontat onto a semi-lassial eletron state lose tothe Fermi energy, and then leave this state through the seond point on-tat. The ondutane of the billiard is in this piture given by the numberof states available at the Fermi energy inside the avity. A magneti �eldshifts the eletron phase, and hanges the interferene. In partiular, aneletron state related to a spei� losed orbit will be swithed on and o� asthe magneti �eld is tuned, with a period �B = h=eA, given by the ratio ofthe orbit area, A, and the magneti �ux quantum, (h=e) [21℄.Eletron-wave interferene is extremely sensitive to details of the a-tual potential inside the billiard, beause the typial Fermi wave length isonly of order 40 nm. Therefore, and beause some imperfetions, related tolithography or impurities, are always present, it is not possible to preditMCF in exat detail. MCF are therefore also referred to as a �magneto-



274 H. Linke, P. Omling�ngerprint� of a partiular devie [22℄. A statistial analysis based on themarosopi shape of the devie however is possible. In Fig. 3(a), a par-tiular, losed eletron orbit is indiated whih, as revealed by the lassialsimulations (Fig. 3 (b)), an be thought of as responsible for the maximumof the lassial magnetoresistane apparent at B = B. In the light of thislassial interpretation it is interesting to investigate whether also the quan-tum �utuations in the range around B = B are related to the orbit shownin Fig. 3(a). To analyse the MCF, we Fourier transform the �utuations�G(B) = [G(B;T = 0:3 K)�G(B;T = 5 K)℄ in the range 0 < B < 1:5B,where G(B) = 1=R(B) stands for the ondutane (Fig. 4). Indeed, a peakis found to emerge in the Fourier transformed data, orresponding to a fre-queny onsistent with the area enlosed by the orbit at B = B (Fig. 3(a))[15℄.
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Fig. 4. Condutane �utuations �G(B) = [G(B; T = 0:3 K)�G(B; T = 5 K)℄. Inthe region of the resistane maximum around B � B � 50 mT, the �utuationsare quasi-periodi and the amplitude is enhaned. The inset shows the Fouriertransform of the data in the range 0 < B < 1:5B. From [15℄.3. From linear to non-linear transportAll experiments desribed so far have been arried out at very small biasvoltage, and non-linear e�ets were unimportant. In this so-alled linearresponse regime, haraterised by a ondutane G = I=V whih is indepen-dent from the voltage V , eletron transport is by de�nition symmetri. Noreti�ation is possible, and a roking rathet an not operate. Reti�ationis represented by the lowest order of non-linearity, that is the term G1 in the



From Linear to Non-Linear Transport in. . . 275expansion of the urrent I(V ) = G0V +G1V 2+: : : . The term G1, whih anbe non-zero only in systems that lak a symmetry axis with respet to theurrent diretion, leads to a �nite net urrent, Inet = (1=2)[I(V ) + I(�V )℄when a square-wave voltage is applied to the devie [11℄. Devies where G1is �nite therefore at as non-linear reti�ers and may be viewed as rokingrathets.When does eletron transport through a mesosopi devie beome non-linear? Eletron transport via one-dimensional (1D) wave-modes through amesosopi devie onneting 2D eletron reservoirs an be desribed by aLandauer equation [23, 24℄,I(V ) = 2eh Z t("; U(V ))M("; V )[fS(") � fD(")℄d" : (1)Here, the prefator (2e=h) is the ondutane of eah 1D wave-mode, whentransmission through the devie is perfet. M("; V ) is a step funtion de-sribing the integer number of 1D wave-modes available for transport ateah energy, ". t("; U(V )) is the transmission probability for eletrons inthe respetive wave modes and is determined by the devie potential, U . fSand fD are Fermi distributions desribing the oupation of energy levels inthe soure- and drain-eletron reservoirs, respetively, with eletrohemialpotentials, �S and �D, where (�S � �D) = eV .At very small voltages and temperatures, that is, in the linear responselimit, Eq. (1) an be written as I = 2e2=hM(�F)t(�F)V , where �F isthe equilibrium Fermi energy. To make this approximation, the followingonditions need to be ful�lled [24℄. Firstly, the transmission probabilityt("; U) must not vary with energy in the range where eletrons ontributeto transport. This region is desribed by the Fermi window, [fS(")� fD(")℄,whih has its enter within (�F � eV=2). A variation of t(") on a sale�" does not a�et the voltage response, when either eV � kBT , or when(jeV j+4kBT )� �". Seondly, for linear response, t("; U) must not dependon the soure-drain voltage. The most obvious reason for why t("; U) maybe an expliit funtion of the voltage, is that the devie potential itself, U ,is distorted by the applied voltage, suh that U beomes a funtion of thevoltage, U = U(V ). Thirdly, non-linear behaviour is also generated whenM is a funtion of the voltage [25℄.Note that, while the variation of t with " leads to non-linear e�ets onlyabove a ertain threshold given by the energy sale for variation, �", and bythe temperature, (see above), the variation of t due to a voltage dependeneof U(V ) has no fundamental threshold. Therefore, non-linear e�ets an inpriniple be observed at arbitrarily small voltages. An exat alulation oft(U(V )) is in general di�ult, and requires the self-onsistent solution of the3D Shrödinger equation inluding the eletri �eld generated by the volt-



276 H. Linke, P. Omlingage aross the devie, taking into aount sreening e�ets. In the followingsetions, where we will present two di�erent mehanisms leading to asym-metri non-linear behaviour in small devies, we will restrit ourselves to anintuitive desription of these phenomena, and will not attempt a detaileddisussion of U(V ). 4. A quantum dot rathetWe now return to the triangular eletron billiards disussed in Setion 2.When studied at low temperatures, where quantum behaviour establishesitself, suh devies are often also referred to as �open quantum dots� (fora review, see for instane [26℄). To understand the transition from linearto non-linear quantum behaviour it is useful to onsider a model for ele-tron transport through quantum dots. Figure 5(a) shematially shows the
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Fig. 5. Illustration of eletron transport through a quantum dot. The urvature ofthe ondutane band edge inside the dot represents the e�et of the on�nementenergy inside the triangular dot (not to sale). The horizontal lines inside thedot indiate the shell struture of the density of states. The loal eletro-hemialpotential is indiated by shading. (a) In linear response the transmission probabil-ity, that is the ondutane, is independent of the absolute value and the sign ofthe voltage. (b) In the non-linear response regime, the potential and the eletronstates depend on the applied voltage. Reti�ation ours when the potential isnot inversion symmetri (see text). From [28℄.



From Linear to Non-Linear Transport in. . . 277ondution band bottom along a triangular quantum dot at negligible biasvoltage, where the variation of the band bottom represents the e�et of theon�nement energy in the point ontats and inside the dot. Also shownare the Fermi distribution in the soure and drain reservoirs. The e�etof energy quantisation inside the dot is represented by horizontal lines in-diating a shell struture of the density of states. At very small voltages(eV � �F; kBT ), transport through the dot is via the eletron states withina few kBT of the Fermi energy [24℄. The states that ontribute to transportare independent of the applied voltage and are the same for both urrentdiretions. This is the linear response regime where transport is by de�ni-tion symmetri upon voltage reversal. For omparison, Fig. 5(b) shows thesituation for �nite bias voltage, that is in the non-linear response regime[27,28℄. One e�et of the bias voltage is to distort the ondution band bot-tom. How exatly this happens an only be determined in a self-onsistentalulation. Here, we are interested in the priniple only, and in Fig. 5(b)we assume stepwise voltage drops near the point ontats, and a linear po-tential slope inside the devie. The resulting e�etive potential landsapeU(V ), and thus the transmission t("; U(V )), depend on the magnitude ofthe voltage, and, beause of the non-symmetri shape of the avity, also onthe voltage sign. This auses non-linear and non-symmetri behaviour ofthe ondutane (Eq. (1)). In addition, at �nite bias voltage the width ofthe Fermi window in Eq. (1) widens, and it's exat position relative to theondutane band bottom inside the dot depends on how the voltage drop isdistributed over the devie [29℄. When the two point ontats are di�erent,as is neessarily the ase for a triangular quantum dot, a di�erent rangeof quantized eletron states will ontribute for di�erent signs of the voltage[27,28℄. Also this e�et an be expeted to lead to reti�ation.Experimental data for the di�erential ondutane G(V ) = �I(V )=�Vare shown in Fig. 6. In the experiment, a DC bias voltage was added to asmall AC voltage, and the di�erential resistane was measured as a funtionof bias voltage using standard phase-loking tehniques. The data shownin Fig. 6 were reorded at a series of di�erent magneti �elds, ranging fromzero to about �18 mT (Figs. 6(a) and (b), respetively), in steps of 2 mT.Three important observations should be made here. Firstly, the ondu-tane learly depends on bias voltage (non-linear response) in a way thatis in general not symmetri with zero bias voltage, that is, reti�ation isobserved. A more detailed analysis shows that most of the asymmetri be-haviour is suppressed at temperatures above 1 K, indiating that quantuminterferene e�ets are important [27,28℄. Seondly, the non-linear e�etshange rapidly with magneti �eld. Importantly, the magneti �eld sale(a few mT) is onsistent with magneti-�eld indued modi�ations to quan-tum interferene (see Setion 2) but not with lassial e�ets (�eld sale
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Fig. 6. Experimental data of the di�erential ondutane G(V ) at inreasing(a) positive and (b) negative magneti �eld (T = 0:3 K). The �eld values arefrom bottom to top for (a) B = �0:2; +1:8; +3:8; ::: ;+17:8 mT and for (b)B = �0:2; �2:2; �4:2; :::; � 18:2 mT (note the o�set �0:2 mT of the magneti�eld values, whih is due to a residual �eld in the magnet). Eah urve has beeno�set by +0:1e2=h from the preeding one. From [28℄.10�100 mT, see Fig. 3). We an therefore onlude that we observe re-tifying behaviour related to the voltage-indued modi�ation of transportthrough eletron quantum states inside the dot, as expeted from the dis-ussion above.A third important observation to be made from Fig. 6 is related to thesymmetry in magneti �eld. In the linear response regime, ondution isalways symmetri with respet to zero magneti �eld, that is, the relationG(B) = G(�B) is valid independent of the potential symmetry [24,30℄.In the non-linear regime, however, when the ondutane depends on thebias voltage, this general symmetry relation breaks down and symmetry inmagneti �eld is normally absent. The symmetry is restored only whenthe potential has a symmetry axis parallel to the urrent diretion (Fig. 6).Under this ondition, whih is ful�lled in our dot geometry, the relationG(V;B) = G(V;�B) should be valid. This symmetry relation allows us toperform an important test: is the origin of reti�ation in our devie indeedthe geometry of the dot, and not, for instane, broken symmetry beause ofrandom impurities of the material [31�35℄? If the answer is �yes�, then the



From Linear to Non-Linear Transport in. . . 279ondutane in the non-linear regime should be symmetri with respet tozero magneti �eld, beause a horizontal symmetry axis should be present.The data shown in Fig. 6 on�rm that the non-linear quantum ondutanedoes not depend on the diretion of the magneti �eld, within a �eld rangethat fully alters the non-linear quantum �utuations. It appears therefore,that any deviations from the intended dot symmetry are not signi�antwithin the parameter range overed here (jBj < 20 mT, jV j < 2 mV), andthat the existene of reti�ation in the asymmetri avities is indeed relatedto their asymmetri shape.The latter observation does not mean, however, that one an preditexatly the diretion of reti�ation of a given devie. The reason is, thateletron interferene is extremely sensitive to small hanges of the Fermienergy, of the avity shape or size, of a small magneti �eld (the latter isapparent from Fig. 6), or even of the amplitude of the applied AC voltage[27℄. While the sign of reti�ation is thus not ontrollable in the fabriationproess, it is very easy to adjust the diretion of reti�ation, one it isestablished, using any of the above parameters.5. A tunnelling rathetWe will now desribe a di�erent devie, one in whih tunnelling throughan asymmetri barrier is employed to generate a non-linear response to anapplied roking voltage. An SEM image of this tunnelling rathet is shownin Fig. 7. Cruial for the funtion of the devie as a rathet is the righthand point ontat whih forms an asymmetri, 1D wave guide. Eletronstravelling along the wave guide need to adjust their lateral wave vetor tothe hannel width. To enter a given part of the hannel, eletrons thereforerequire a minimum energy orresponding to the lateral on�nement energy.E�etively, the onstrition at the point ontat thus represents an asym-metri energy barrier (Fig. 8). Using the 2DEG areas above and below theontat as side gates (marked SG), to whih a stati voltage an be ap-plied, the eletrostati width of the hannel, and therefore the height of thee�etive energy barrier, an be tuned.The diretion of a net urrent in a roking rathet operating lassially(Fig. 1(b)) is given simply by the tilt diretion in whih the e�etive bar-rier height is lowest. If the barrier height is independent of the tilt dire-tion, a lassial rathet an not operate. Quantum mehanially, however,partiles with an energy below the barrier maximum an tunnel throughthe lassially forbidden barriers, while partiles with su�ient energy toross the barriers may still be wave-mehanially re�eted. The orrespond-ing energy-dependent transmission probabilities depend on the exat barriershape, whih will always depend on the tilt diretion. With other words,
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Fig. 7. Sanning eletron mirograph of the devie used as an eletron tunnellingrathet. Due to on�nement energy, the right-hand point ontat, whih is tunablein width using the side gates SG, forms an asymmetri tunnelling barrier (seeFig. 8). The spae bar represents one mirometer.
Fig. 8. Shemati drawing of the onduation band bottom of the tunnelling rathetdevie shown in Fig. 7, forming an asymmetri energy barrier at the right handpoint ontat. Both tilt diretions are shown. The dashed lines indiate the shapeof the assumed voltage drop, whih is saled with the potential gradient of thebarrier without tilt (zero bias voltage). For the physial mehanism that leads to atemperature dependene of the total net urrent diretion see text. Figure ourtesyof Tammy E. Humphrey.the transmission probability t("; U) in Eq. (1) is a funtion of voltage be-ause the potential is a funtion of voltage, U = U(V ). A onsequene ofthis behaviour is that a net urrent an our in roked �quantum rathets�when this is lassially not possible. In addititon, the net urrent diretionan depend on temperature [12℄, as we will explain in the following.In Fig. 8 we show an energy barrier, estimated from the dimensions ofthe devie shown in Fig. 7, for both tilt diretions, where tilt is generated byapplying a positive or negative bias voltage. To predit how the potentialdeforms under tilt one needs to know the spatial distribution of the volt-



From Linear to Non-Linear Transport in. . . 281age drop aross the barrier. In Fig. 8, we use a voltage drop distributionthat sales with the loal gradient of the untilted barrier. The argumentbehind this assumption is that wave-re�etion is stronger when the poten-tial is steeper. In partiular, a potential step would be expeted to yielda stepwise drop in the ondution band bottom. A side-e�et of this par-tiular assumption is that the e�etive barrier height does not depend onthe tilt diretion. Therefore, no lassial net urrent is possible, and all neturrent observed in this model is of quantum mehanial origin. The detailsof the quantum mehanial urrent strongly depend on the exat shape ofthe barrier under tilt, but the following argument holds independent of theexat details of a smooth potential drop aross the barrier.When the barrier is tilted to the right, it deforms to be thiker at a givenenergy under the barrier top (Fig. 8). This hange redues tunnelling, but,at the same time, makes it easier for eletrons with high energy to rossover the barrier, beause the smoother shape redues wave re�etion. In theother tilt diretion, the barrier deforms to be thinner and sharper, with theopposite e�et. Tunnelling beomes easier, but eletrons �nd it more di�ultto ross over the top of the barrier, beause the steeper potential ausesmore wave re�etion. The result are two ontributions to the net urrentthat �ow in opposite diretion. Averaged over a full period of symmetriroking, there is a net urrent to the left onsisting of eletrons with lowenergy that tunnel through the barriers. At higher energy, a net urrent tothe right exists, onsisting of eletrons that pass over the top of the barrier.The diretion of the total, energy-averaged net urrent depends then on theeletron energy distribution. At high temperatures, the urrent to the leftwill usually dominate, beause eletrons of higher energy are available. Asthe temperature dereases, however, this ontribution an beome smallerthan the tunnelling urrent, and a reversal of the total net urrent an beobserved [12,36℄.Experimental data are shown in Fig. 9. A square-wave voltage of ampli-tude V was applied to the devie, and the net urrent, Inet = (1=2)[I(V ) +I(�V )℄, was measured using phase-loking tehniques. The frequeny usedfor roking was of the order of 100 Hz, and was thus muh slower than alltypial time onstants of the eletroni system, suh as energy relaxationtimes. The rathet was therefore at all times in a stationary state. Thismode of roking is alled �adiabati roking� [12℄ (note that the word �adia-bati� is elsewhere sometimes used in the opposite sense, that is, for hangesthat our fast). Temperature dependene of the urrent diretion due to themehanism desribed above is possible when eletrons at energies just aboveand below the barrier top ontribute to the urrent (Fig. 8). To ahieve thisondition in an experiment, the barrier height is set to approximately maththe Fermi energy (the relative position of barrier height and Fermi energy



282 H. Linke, P. Omlingan be estimated from the ondutane of the point ontat, see Eq. (1)).Further, the roking voltage, V , is hosen suh, that by varying T , the widthof the Fermi window, (jeV j + 4kBT ), an be varied over the energy rangearound the barrier top where quantum orretions to the transmission prob-ability are important. Calulations show that this energy range extendsabout 1 meV above and below the barrier maximum [36℄. In pratie, onehooses a suitable roking voltage and sweeps the barrier height (using theside gates) at various temperatures [36℄. In this way one �nds sets of valuesfor the roking voltage and the side gate voltage, where the net urrent di-retion depends on temperature. This reversal an then be observed diretlyby sweeping the temperature while measuring the net urrent (Fig. 9).
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From Linear to Non-Linear Transport in. . . 2836. Conlusion and outlookWe presented a series of experiments demonstrating retifying behaviour,or rathet e�ets, based on non-linear quantum behaviour in asymmetri,mesosopi eletron avities. Experiments on triangular eletron avities inthe linear response regime were desribed, on�rming that the lassial aswell the quantum mehanial eletron dynamis an be desribed in a semi-lassial single-partile piture in whih eletrons move like billiard balls onlassial trajetories between boundary ollision. The lassial and quantumeletron dynamis in ballisti avities (billiards, or quantum dots) are ther-fore strongly determined by the shape of the avity. This behaviour allowsto use ballisti avities to study retifying e�ets indued by the shape of thedevie in the quantum regime. Two spei� experiments on retifying be-haviour in the non-linear regime were then desribed, one based on eletroninterferene (a quantum dot rathet), and one based on tunnelling throughan asymmetri energy barrier (a tunnelling rathet). The sign of reti�a-tion in a quantum dot rathet depends very sensitively on unontrollablysmall deviations from the intended devie shape, but an be tuned usingparameters suh as magneti �eld, Fermi energy or the AC voltage. Theurrent diretion in a tunneling rathet an be predited from the devieshape, and is tunable by temperature, when devie parameters are suitablyhosen.Both rathet experiments presented here are examples for so-alled adi-abati rathets, in whih potential hanges indued by roking happen ontime sales slower than all other relevant time sales of the system. Futurework may address the so-alled non-adiabati regime, in whih the potentialis roked at a frequeny omparable to harateristi times of the partiles,suh as their esape time through rathet barriers, or the rate of energydissipation. In this regime, haoti behaviour is predited for moderatelydamped partiles in roking rathets [37,38℄. Chaos in quantum rathetsmay then give rise to novel signatures of quantum haos in non-equilibriumsystems [39℄. An experimental realisation of fast potential hanges wouldalso allow the onstrution of so alled �ashing rathets, where the potentialitself is modi�ed, and no external fores are applied at any time. Flashingrathets are of interest beause these are one andidate for suitable modelsfor some moleular motors in living systems. Regarding quantum e�etsin rathets, semiondutor nanostrutures are one experimental system inwhih non-adiabati quantum rathets may be realised, others inlude oldatoms in optial latties [40℄.The authors wish to thank K.F. Berggren, L. Christensson, T.E. Humphrey,P.-E. Lindelof, A. Löfgren, R. Newbury, W.D. Sheng, A.O. Sushkov, A. Svensson,R.P. Taylor, Hongqi Xu and I.V. Zozoulenko for their ollaboration.
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