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Motor proteins are individual molecules that hydrolyze ATP and use
the released energy to move forward along a polymer. These microscopic
engines operate in an overdamped regime where Brownian motion is a
nonegligible contribution to the physics. We provide a new definition for
the efficiency of an engine in the overdamped Brownian realm and discuss
how a high efficiency can be reached.

PACS numbers: 05.40.—a, 82.40.—g, 87.15.—v

The first living cells to appear in the course of evolution were the prokary-
otes. Bacteria, for instance, are all prokaryotes. The prokaryotic cells are
generally only a few micrometers big and all intracellular activity is taking
place in the aqueous solution enclosed by the cell membrane. Intracellular
transport is taken care of by diffusion. A chemical that is produced on one
side of the cell is homogeneously distributed within milliseconds.

Next the algae appeared and finally eukaryotic cells evolved. Multicel-
lular organisms are made up of eukaryotic cells. Eukaryotic cells are around
an order of magnitude larger than prokaryotic cells. Furthermore, the eu-
karyotes have different membrane enclosed organelles within the cell.

Logistic problems arise in large eukaryotes. First there is a problem of
quantity: when a cell is ten times as large in all directions a fixed amount
of any chemical will eventually be diluted to a concentration that is 1000
times as small. Secondly, there is a transport time problem: diffusion in
one dimension is ruled by the equation (z?) = 2Dt. So, if the distance is
increased by a factor 10, the time to cover this distance through diffusion is
increased by a factor 100.

* Presented at the XXIV International School of Theoretical Physics “Transport
Phenomena from Quantum to Classical Regimes”, Ustron, Poland, September 25—
October 1, 2000.
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Evolution has come up with a solution to these problems. Eukaryotic
cells generally have a cytoskeleton, i.e. a polymer (microtubule) network
that goes through all of the cell. The cytoskeleton provides structural re-
inforcement, but it is also used as a kind of railroad system. Chemicals
that are needed on a location different from where they are produced are
packed into a vesicle. The vesicle is then hooked up to a motor protein.
Next the motor protein “walks” along the cytoskeletal network and drags
the vesicle to its destination. The motor protein catalyzes the hydrolysis of
ATP (adenosine triphosphate) and uses some of the released energy of the
catalyzed reaction to power itself forward along the biopolymer.

Over the past couple of years a large amount of experimental data has
been obtained on motor proteins. With nanotechnological devices, like op-
tical tweezers, it is possible to follow individual molecules and manipulate
them [1]. There is no consensus yet about how the action of a motor protein
should be looked at and modelled. One could, for instance, legitimately
argue that there is no real distinction between chemical energy and kinetic
energy on the level of one particular protein. The argument goes as follows.
When ATP binds to the protein an internal repositioning of atoms within
the protein occurs. ATP hydrolysis involves a number of subsequent con-
formational changes and after the release of ADP (adenosine diphosphate)
and an inorganic phosphate molecule the motor protein returns to its orig-
inal state. In other words, the protein makes an oscillatory motion which
is converted into a forward motion along the polymer to which it is con-
nected. Seen in this way the motor protein is more like a gear; it is like the
crank-shaft mechanism in a car that converts the up and down motion of
the pistons into the rotation of the crank axle (which is 100% efficient). The
motor protein differs from the crank-shaft transmission in that it operates
in an environment with Brownian noise and no inertia.

When the efficiency of an engine is discussed, theorists usually assess
the efficiency of converting energy from one storable form to another. Many
authors have thus estimated the efficiency of a motor protein in models
where the chemical energy is used to move the motor protein against a force
in a conservative field. Such models, however, do not represent what is really
going on. A motor protein faces a task, and that task is to transport a vesicle
over a distance [ in a time 7 in an overdamped medium. On the nanometer
scale inertia is negligible in comparison to friction. So all of the energy of
ATP hydrolysis is used to “fight” friction. The friction at any moment is
directly proportional to the speed v, i.e. Ff = yv.
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Moving over a distance [ in time 7 in an overdamped medium is done
with least dissipation of energy when a constant speed is maintained. The
proof of this is simple. The dissipated energy equals:
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The Euler-Lagrange formula tells us that the integral [ L(z,%,t)dt has a
minimum for a trajectory that satisfies (9, — %Bi,)L = 0. Applying this to (1)
leads to %a’c = 0, i.e. constant speed. Suppose the aim would have been to
move in time 7 over distance [ and convert chemical energy into potential
energy by moving against a constant force Fiong due to a conservative field.
In that case the energy necessary to bring the particle uphill would have
been E = fé Feons dz = Feons [y @ dt. With L = & we find that the Euler—
Lagrange differential equation give zero for every trajectory that leads from
z = 0toz =1 in time 7. In [2|] we propose the following new definition
of the efficiency: the efficiency of an engine is n = Eoyt/Ein, where Ej, is
the energy input and FEyy¢ is the minimum amount of energy necessary to
accomplish the task of the engine.

As an example consider a bicycle racer. Suppose that in order to qualify
for participation in a championship the racer faces the task of doing a 40 km
time trial on a flat course without wind within one hour. On a flat course
almost all of the energy goes into overcoming air resistance. The most
efficient way of accomplishing the task is to keep a speed of 40 km/h all
the way. If he rides 41 km/h for half an hour and 39 km/h for the other
half hour, he accomplishes his task, but according to our definition he has
already lost 5% (3(41% — 39%)/40?) in efficiency by spending 1.05 times the
minimum necessary amount of energy. Eventually this loss comes on top of
the loss that occurs in the conversion from chemical to mechanical energy.
For conversion between storable forms of energy our definition reduces to the
traditional notion of efficiency. This case would occur if the cyclist would
do a 15 km time trial up a 10% slope and again with the task of doing it
within an hour. On such a steep incline only a negligible fraction of the
energy is invested in fighting air resistance and almost all of the energy goes
into overcoming gravity and effectively creating (storing!) potential energy.
In this case the cyclist can accelerate and decelerate around his 15 km/h
average without spending extra energy and losing efficiency.

Next we will take a simple model of a motor protein and assess the
efficiency with the above definition. In Fig.1 the shaded segment of the
biopolymer is accessible to the motor protein only when ATP is unbound.
The blank segment is accessible when ATP is bound. In between there are
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Fig.1. A simple model to show how a motor protein can transduce chemical en-
ergy to mechanical energy with the “help” of diffusion. The shaded segment of
the biopolymer is accessible to the motor protein only when ATP is unbound. The
blank segment is accessible when ATP is bound. In between there are narrow “tran-
sition segments” for ATP binding/release and ADP binding/release, respectively.
In the presence of an ATP-ADP chemical gradient the motor protein will move
forward as ATP is converted into ADP.

narrow “transition segments.” There is one transition segment where ATP

can bind or release and another one where ADP can bind or release. Note
that the biopolymer has an anisotropy, i.e., it reads differently from left to
right than it reads from right to left. The forward moving motor is very much
like a Maxwell’s Demon in the sense that it really “reads” its position on the
biopolymer and adjusts its binding and release behavior accordingly. But the
motor protein in this model needs an ATP-ADP chemical potential, i.e., an
input of energy, in order to move forward. With a high ATP-ADP chemical
potential, release of ATP is very unlikely. So when the motor protein comes
from the shaded segment into the ATP binding/release segment it will bind
ATP and move forward as if a reflecting barrier were erected behind it.
A similar process occurs in the next transition area with the ADP release
(where ADP binding is very unlikely). If ATP and ADP are in chemical
equilibrium, binding and release are equally likely in both the ATP and the
ADP “transition segment” and the motor protein would freely diffuse with
an equal likelihood in either direction on each segment.

Fig. 2 shows how this setup can be conceived of as two states, one state
where the ATP is bound and another one for ATP unbound. The half of
the period that is accessible in one state is inaccessible in the other state.
At the reflecting barriers the chemical turnovers take place with transition
rates o and 5. We assume that the energy AG of ATP hydrolysis is equally
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Fig.2. (a) The model of Fig. 1 cast into a form in which speed and efficiency
can be easily evaluated. Only the blank regions are accessible to the protein. At
the reflecting barriers chemical transitions occur which bring the protein from one
potential (i.e. conformational state) to the other. (b) The behavior of this system
is like a diffusive descent down a staircase. The vertical “jumps" correspond to the
energy releasing chemical transitions. The horizontal segments have to be crossed
diffusively.

distributed over the ATP binding and the ADP release:

1
% = exp [—§AG] , (2)
where AG is in kT units. We set the probability density of the protein to
be P_ at the right end of the accessible interval and P, at the left end of
the accessible interval. We then have for the flux j:

j=aP_—pPy. (3)

For a stationary state the horizontal flux on each of the accessible intervals
should be the same as the vertical flux between the states. The horizontal
flux in each of the segments of length [ is governed by Fick’s Law, i.e.

j= 2B @)

where D is the diffusion coefficient. Finally there is the normalization. One
period has length 2/. In each of the accessible intervals there is a linear
decrease of probability along the horizontal axis. The average probability
density on a period is therefore %(P+ + P_). One motor protein per period
then boils down to:

I(PL+P_)=1. (5)
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Eliminating Py and P_ we express j in terms of the system’s parameters:

D a—pf

1 2D+ (a+pB)l° (©)

j =

For D/l < (a + ), i.e. chemical transitions that are fast relative to the
diffusion, we get:

. _Da-p D 1
~——— = —tanh [ ~AG ) .
TR Ravp P tan <4 G) @)

For the last step we used (2). With one motor protein per period the power
input equals P, = jAG. The average speed of each motor protein is 2[j
and this results in an effective power dissipation of Py, = v(205)2. Taking
the ratio and using the fluctuation—dissipation theorem, yD =1 as kT =1,
we derive the efficiency:

_ Pui _ 4ylj _ tanh (1AG)
T P AG T lAc

(8)

We observe that only for AG — 0 can the efficiency approach unity. But it
is obvious that the flux j itself also goes to zero in this case. So only when
the process takes place infinitesimally close to equilibrium does the efficiency
approach unity.

The left to right flow is basically a diffusive descent down a staircase.
Every chemical transition corresponds to a downward jump of %AG. The
flat stretches have to be crossed diffusively. It is obvious that at zero tem-
perature, without Brownian motion, the system comes to a standstill. The
energy transduction is more efficient if the staircase is more resemblant of a
smooth slope. If instead of two steps of %AG, there were n steps of %AG in
the catalytic cycle with nl = 1, the result would have been:

tanh (= AG
0~ an I(Z-LG ) , (9)
on

i.e., a greater efficiency as the argument %AG becomes smaller when n

gets larger. It should be kept in mind, however, that one cannot make
the flat segments arbitrarily small. That would lead to a violation of the
D/l < (a+ B) condition that was used for our approximation.

Making the number of steps larger to get a better efficiency is actually
something that nature has done. Most biological transductions and conver-
sions occur in many steps [3]. It has been shown that the hydrolysis of ATP
by the motor protein kinesin involves at least ten individual steps [4]. Most
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elementary textbooks on thermodynamics show that also the Carnot engine
is optimally efficient when it is operated adiabatically, i.e., all changes are
imposed slowly and reversibly such that the system is at all times in equilib-
rium with its surroundings. In a recent paper by Parrondo [5] the enhanced
efficiency for a higher number of smaller steps is derived in a more abstract
way for a more general case.

One may argue that even if a Brownian particle is pulled through a fluid
by a constant force, it will nevertheless be kicked around by molecules of the
medium. Therefore such a molecule is bound to be like the inefficient bicycle
racer that covers his flat time trial with varying speeds. But this argument
is wrong. The variations in the speed are due to fluctuations coming from
the medium. The energy for these fluctuations comes from the medium and
the same amount of energy is dissipated back into the medium. Next we will
show this rigorously using the Langevin equation. For greater generality we
will include inertia.

At any time the pulled Brownian particle has a velocity V + v, where
V' is the drift speed (due to the operation of the engine) and v represents
the zero average ((v) = 0) fluctuations due to Brownian kicks. In its full
generality the Langevin equation is:

m(V +1) =vw+V)+ F+yV2D &), (10)

where F' represents a constant external force. If we multiply each term in the
equation with v and next average over a long time, then we obtain for each
term the amount of power (energy per unit of time) it exchanges with the
“Brownian bath”. V is constant in time so V = 0. Furthermore YV {v) =0
and F(v) = 0 because (v) = 0. We also have m(vd) = %%m(zﬂ). The
term %m(vQ) represents the average kinetic energy of the Brownian particle
due to Brownian motion. This equals %kT and is constant. Therefore,

%%m(vQ) = 0. So all that remains of the equation is:

¥(v?) = yV2D(€ v),. (11)

What we basically have here is an energy formulation of the fluctuation—
dissipation theorem. The right hand side is the amount of power that our
Brownian particle absorbs from the fluctuations in the bath. The left hand
side is the amount of Brownian-fluctuations-power that it dissipates back
into the bath again. These amounts are equal. It is interesting to note that
in a simulation with a discrete At the function £(¢;) at the i-th timestep
is £(t;) = 0(i)/v/At, where (i) is a random number drawn from a Gaus-
sian distribution with a zero average and a variance of one. So with an
infinitesimally small timestep, i.e. At — 0, the amplitude of the “kicks” and
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the resulting v will become infinite. No contradiction arises for the displace-
ment. In the absence of inertia and with F = 0 we get Az = /2D 6(i) vV At,
which goes to zero for At — 0. What the infinite v means is that for noise
that is really “white”, i.e. uncorrelated at any timescale, an infinite amount
of energy goes from the bath into the particle and back into the bath again
during any arbitrarily small time interval.

A particle that moves with velocity v+ V dissipates y((v+V)?) of power
into the bath. From the fluctuations it receives yv/2D(¢ (v + V)). After
working out the averages and using (11) one derives that yV?2 is the difference
between what is “dissipated out” and “Auctuated in.” This yV? is the power
that comes from the engine and, as such, the power that is responsible for
the drift speed V.

The second law of thermodynamics prohibits the use of Brownian fluc-
tuations for doing work. So the Brownian fluctuations cannot add to the
power output of an engine. The above results show that Brownian fluctua-
tions also cannot subtract from the power output. Even though Brownian
engines may rely on the presence of thermal noise to deliver any power at
all, that noise is of no consequence for the final bookkeeping of incoming
and outgoing energy.

None of this work would have been possible, had it not been for the input
of Dean Astumian and Imre Derenyi.
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