
Vol. 32 (2001) ACTA PHYSICA POLONICA B No 2
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ional Autónoma de Méxi
oApartado Postal 20-364, 01000 Méxi
o D.F., Méxi
oe-mail: mateos�fenix.ifisi
a
u.unam.mx(Re
eived O
tober 24, 2000)The problem of the 
lassi
al deterministi
 dynami
s of a parti
le ina periodi
 asymmetri
 potential of the rat
het type is addressed. Whenthe inertial term is taken into a

ount, the dynami
s 
an be 
haoti
 andmodify the transport properties. By a 
omparison between the bifur
ationdiagram and the 
urrent, we identify the origin of the 
urrent reversal asa bifur
ation from a 
haoti
 to a periodi
 regime. Close to this bifur
a-tion, we observed traje
tories revealing intermittent 
haos and anomalousdeterministi
 di�usion. We extend our previous analysis of this problem toin
lude multiple 
urrent reversal and the orbits in phase spa
e.PACS numbers: 05.45.A
, 05.40.Fb, 05.45.Pq, 05.60.Cd1. Introdu
tionThere is an in
reasing interest in re
ent years in the study of the trans-port properties of nonlinear systems that 
an extra
t usable work from un-biased nonequilibrium �u
tuations. These, so 
alled rat
het systems, 
anbe modeled, for instan
e, by 
onsidering a Brownian parti
le in a periodi
asymmetri
 potential and a
ted upon by an external time-dependent for
eof zero average. For re
ent reviews see [1�4℄. This re
ent burst of work ismotivated in part by the 
hallenge to explain the unidire
tional transport ofmole
ular motors in the biologi
al realm [4℄. Another sour
e of motivationarises from the potential for new methods of separation of parti
les, poly-ele
trolytes and ma
romole
ules [5�10℄, and more re
ently in the re
ognitionof the �rat
het e�e
t� in the quantum domain [11�16℄.� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (307)



308 J.L. MateosIn order to understand the generation of unidire
tional motion fromnonequilibrium �u
tuations, several models have been used. In Ref. [1℄,there is a 
lassi�
ation of di�erent types of rat
het systems; among themwe 
an mention the �Ro
king Rat
hets�, in whi
h the parti
les move in anasymmetri
 periodi
 potential subje
t to spatially uniform, time-periodi
deterministi
 for
es of zero average. Most of the models, so far, deal withthe over-damped 
ase in whi
h the inertial term due to the �nite mass ofthe parti
le is negle
ted. However, more re
ently, this oversimpli�
ation wasover
ome by treating properly the e�e
t of �nite mass [17�22℄.In parti
ular, in two re
ent papers [17,18℄, the authors studied the ef-fe
t of �nite inertia in a deterministi
ally ro
ked, periodi
 rat
het potential.They 
onsider the deterministi
 
ase in whi
h noise is absent. The inertialterm allows the possibility of having both regular and 
haoti
 dynami
s,and this deterministi
ally indu
ed 
haos 
an mimi
 the role of noise. Theyshowed that the system 
an exhibit a 
urrent �ow in either dire
tion, pre-senting multiple 
urrent reversals as the amplitude of the external for
e isvaried.In Ref. [18℄ the role of the 
haoti
 dynami
s in the 
urrent was analyzed indetail, establishing for the �rst time a 
lose 
onne
tion between the 
urrentand the bifur
ation diagram when a 
ontrol parameter of the model is varied.In this paper we elaborate on this idea by studying the multiple 
urrentreversals and the orbits in phase spa
e.The outline of the paper is as follows: in the next se
tion we introdu
ethe equations of motion that de�ne the model, and in the next se
tion wepresent the numeri
al results. We end with some 
on
luding remarks in thelast se
tion. 2. The rat
het potential modelLet us 
onsider the one-dimensional problem of a parti
le driven by aperiodi
 time-dependent external for
e, under the in�uen
e of an asymmetri
periodi
 potential of the rat
het type. The time average of the external for
eis zero. Here, we do not take into a

ount any kind of noise, and thus thedynami
s is deterministi
. The equation of motion is given bym�x+ 
 _x+ dV (x)dx = F0 
os(!Dt) ; (1)where m is the mass of the parti
le, 
 is the fri
tion 
oe�
ient, V (x) is theexternal asymmetri
 periodi
 potential, F0 is the amplitude of the externalfor
e and !D is the frequen
y of the external driving for
e. The rat
hetpotential is given byV (x) = V1 � V0 sin 2�(x� x0)L � V04 sin 4�(x� x0)L ; (2)
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 Rat
hets 309where L is the periodi
ity of the potential, V0 is the amplitude, and V1 is anarbitrary 
onstant. The potential is shifted by an amount x0 in order thatthe minimum of the potential is lo
ated at the origin.Let us de�ne the following dimensionless units: x0 = x=L, x00 = x0=L,t0 = !0t, w = !D=!0, b = 
=m!0 and a = F0=mL!20. Here, the frequen
y!0 is given by !20 = 4�2V0Æ=mL2 and Æ is de�ned byÆ = sin(2�jx00j) + sin(4�jx00j) :The frequen
y !0 is the frequen
y of the linearized motion around theminima of the potential, thus we are s
aling the time with the natural periodof motion �0 = 2�=!0. The dimensionless equation of motion, after renamingthe variables again without the primes, be
omes�x+ b _x+ dV (x)dx = a 
os(wt) ; (3)where the dimensionless potential 
an be written asV (x) = C � 14�2Æ �sin 2�(x� x0) + 14 sin4�(x � x0)� ; (4)and is depi
ted in Fig. 1. The 
onstant C is su
h that V (0) = 0, and isgiven by C = �(sin 2�x0 + 0:25 sin 4�x0)=4�2Æ . In this 
ase, x0 ' �0:19,Æ ' 1:6 and C ' 0:0173.
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Fig. 1. The dimensionless rat
het periodi
 potential V (x).In the equation of motion Eq. (3) there are three dimensionless parame-ters: a, b and w, de�ned above in terms of physi
al quantities. We will varythe parameters in order to understand the role of ea
h in the dynami
s. Theparameter a = F0=mL!20 is the ratio of the amplitude of the external for
e



310 J.L. Mateosand the for
e due to the potential V (x). This 
an be seen more 
learly usingthe expression for !20 in terms of the parameters of the potential. In this
ase, the ratio be
omes a = 14�2Æ F0(V0=L) ;that is, ex
ept for a 
onstant fa
tor, a is the ratio of F0 and the for
e V0=L,where V0 is the amplitude and L the periodi
ity of the potential (see Eq. (2)).The parameter b is simply the dimensionless fri
tion 
oe�
ient, and wis the ratio of the driving frequen
y of the external for
e and !0. We willdis
uss in more detail these parameters in the next se
tion.The extended phase spa
e in whi
h the dynami
s is taking pla
e is three-dimensional, sin
e we are dealing with an inhomogeneous di�erential equa-tion with an expli
it time dependen
e. This equation 
an be written asa three-dimensional dynami
al system, that we solve numeri
ally, using thefourth-order Runge�Kutta algorithm. The equation of motion Eq. (3) is non-linear and thus allows the possibility of periodi
 and 
haoti
 orbits. If theinertial term asso
iated with the se
ond derivative �x were absent, then thedynami
al system 
ould not be 
haoti
.The main motivation behind this work is to study in detail the origin ofthe 
urrent reversal in a 
haoti
ally deterministi
 ro
ked rat
het as foundin [18℄. In order to do so, we have to study �rst the 
urrent J itself, thatwe de�ne as the time average of the average velo
ity over an ensemble ofinitial 
onditions. Therefore, the 
urrent involves two di�erent averages: the�rst average is over M initial 
onditions, that we take equally distributed inspa
e, 
entered around the origin and with an initial velo
ity equal to zero.For a �xed time, say tj , we obtain an average velo
ity, that we denoted asvj , and is given by vj = 1M MXi=1 _xi(tj) : (5)The se
ond average is a time average; sin
e we take a dis
rete time forthe numeri
al solution of the equation of motion, we have a dis
rete �niteset of N di�erent times tj; then the 
urrent 
an be de�ned asJ = 1N NXj=1 vj : (6)This quantity is a single number for a �xed set of parameters a; b; w.Besides the orbits in the extended phase spa
e,we 
an obtain the Poin
arése
tion, using as a strobos
opi
 time the period of os
illation of the externalfor
e. With the aid of Poin
aré se
tions we 
an distinguish between periodi
and 
haoti
 orbits, and we 
an obtain a bifur
ation diagram as a fun
tionof the parameter a. As was shown in [18℄, there is a 
onne
tion between thebifur
ation diagram and the 
urrent.
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 Rat
hets 3113. Numeri
al resultsUsing the de�nition of the 
urrent J given in the previous se
tion, we
al
ulate J �xing the parameters b = 0:1 and w = 0:67 and varying theparameter a. The 
urrent shows, as stressed before [17,18℄, multiple 
urrentreversals and a 
omplex variation with a, as shown in Fig. 2(b). We 
anobserve strong �u
tuations as well as portions where the 
urrent is approxi-mately 
onstant. The 
hallenge here is to explain this high variability in the
urrent with the aid of what we know from the nonlinear 
haoti
 dynami
sof the system.
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tion of a. We 
an see multiple 
urrent reversals.



312 J.L. MateosAsso
iated with this 
urrent, there is a 
orrespondent bifur
ation dia-gram as a fun
tion of a, as depi
ted in Fig. 2(a). The 
omplexity in thisdiagram is a 
onsequen
e of the ri
hness in the dynami
s of the parti
le inthe non-linear rat
het potential. We noti
e that the bifur
ation diagram forthe rat
het is qualitatively similar to the bifur
ation diagram of a harmon-i
ally for
ed pendulum with fri
tion [23℄. We 
an imagine the problem ofthe pendulum as a parti
le in a symmetri
 periodi
 potential that varies intime. In this sense, our rat
het problem is an asymmetri
 generalizationof the pendulum where a spatial symmetry breaking o

urs. There is a re-
ent work [21℄ that studied the pendulum and the rat
het in the 
ontext ofsymmetry breaking.In order to understand the �rst part of the 
urrent, let us analyze the 
aseof small values of a, where we 
hose b = 0:1 and w = 0:67. In Fig. 3(a) weshow the 
urrent as a fun
tion of a, and in Fig. 3(b) we depi
t the bifur
ationdiagram in the same range of a. Let us imagine that an ensemble of parti
lesare initially lo
ated at the minimum of the rat
het potential around theorigin, and that all these parti
les have an initial velo
ity equal to zero. Fora = 0, we have no external for
e and thus, all these parti
les remain in theminimum around the origin and therefore the 
urrent is zero. For very smallvalues of a, we still have a zero 
urrent, sin
e the parti
les have fri
tion andtend to os
illate in this minimum. However, there is a 
riti
al value of afor whi
h the parti
les start to over
ome the potential barriers around theminimum and transport along the rat
het potential in a periodi
 or 
haoti
way. This 
riti
al value 
an be 
al
ulated as follows: remember that a isa dimensionless quantity de�ned asa = 14�2Æ F0(V0=L) :Here, F0 is the amplitude of the external for
e and V0=L is the order of mag-nitude of the for
e exerted by the potential. Thus, we expe
t the 
urrent Jbe di�erent from zero when F0 is on the order of V0=L, that is, F0 � V0=L.In this 
ase, the 
riti
al value of a is a
 � 1=4�2Æ, sin
e F0=(V0=L) � 1.Using the value of Æ ' 1:6 we obtain a
 � 0:1, whi
h is on the order ofmagnitude of the values that we obtain numeri
ally. Above this value, the
urrent starts to grow sin
e more and more parti
les 
ontribute to the 
ur-rent.At the beginning, the 
urrent is dominated by transport due to periodi
orbits, but for larger values of a, some of the orbits in the ensemble be
ome
haoti
 and the transport is not as e�
ient as before, resulting in a 
urrentthat starts to os
illate errati
ally. In fa
t, in this region, there exist thepossibility of 
oexisten
e of multiple attra
tors in the phase spa
e. Forexample, in Fig. 3(a), we have two 
oexistent attra
tors: a periodi
 and
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Fig. 3. For b = 0:1 and w = 0:67 we show: (a) the bifur
ation diagram as a fun
tionof a, (b) the 
urrent J as a fun
tion of a. The range in the parameter a 
orrespondsto the �rst 
urrent reversal.a 
haoti
 one, around a = 0:067. In this 
ase, depending on the initial
onditions, some orbits in the ensemble 
an end up in the periodi
 attra
tor,and the rest in the 
haoti
 attra
tor.For values of a even larger, all the orbits enter a 
haoti
 region througha period-doubling bifur
ation, and the 
urrent starts to de
rease inside this
haoti
 band. Finally, exa
tly at the bifur
ation point where a periodi
window opens, the 
urrent drops to zero and be
omes negative in a veryabrupt way [18℄.



314 J.L. MateosLet us fo
us �rst on the range of the 
ontrol parameter where the �rst
urrent reversal takes pla
e. This o

urs around a ' 0:08 as shown inFig. 3. We 
an observe a period-doubling route to 
haos and after a 
haoti
region, there is a saddle-node bifur
ation taking pla
e at the 
riti
al valuea
 ' 0:08092844. It is pre
isely at this bifur
ation point that the 
urrentreversal o

urs. After this bifur
ation, a periodi
 window emerges, with anorbit of period four. In Figs. 3(a), 3(b) we are analyzing only a short rangeof values of a, where the �rst 
urrent reversal takes pla
e. If we vary afurther, we 
an obtain multiple 
urrent reversals, as shown in Fig. 2(b).In order to understand in more detail the nature of the 
urrent reversal,let us look at the orbits just before and after the transition. The reversalo

urs at the 
riti
al value a
 ' 0:08092844. If a is below this 
riti
alvalue a
, say a = 0:07, then the orbit is periodi
, with period two. For this
ase we depi
t, in Fig. 4(a), the position of the parti
le as a fun
tion oftime. We noti
e a period-two orbit, as 
an be distinguish in the bifur
ationdiagram for a = 0:07. This orbit transport parti
les to the positive dire
tionand the 
orresponding velo
ity is a periodi
 fun
tion of time of period two,as shown in Fig. 4(b). The phase spa
e for this orbit is depi
ted in Fig. 4(
).We noti
e that the parti
le os
illates for a while around the minima of therat
het potential, before moving to the next one. The spatial asymmetry ofthe potential is apparent in this orbit in phase spa
e.In Fig. 5(a) we show again the position as a fun
tion of time for a = 0:081,whi
h is just above the 
riti
al value a
. In this 
ase, we observe a period-fourorbit, that 
orresponds to the periodi
 window in the bifur
ation diagramin Fig. 3(a). This orbit is su
h that the parti
le is �
limbing� in the negativedire
tion, that is, in the dire
tion in whi
h the slope of the potential is higher.We noti
e that there is a qualitative di�eren
e between the periodi
 orbitthat transport parti
les to the positive dire
tion and the periodi
 orbit thattransport parti
les to the negative dire
tion: in the latter 
ase, the parti
lerequires twi
e the time than in the former 
ase, to advan
es one well in therat
het potential. A 
loser look at the traje
tory in Fig. 5(a) reveals the�tri
k� that the parti
le uses to navigate in the negative dire
tion: in orderto advan
e one step to the left, it moves �rst one step to the right and thentwo steps to the left. The net result is a negative 
urrent.The period-four orbit is apparent in Fig. 5(b), where we show the velo
ityas a fun
tion of time. In Fig. 5(
) we depi
t the 
orresponding phase spa
efor this 
ase. The transporting orbit is more elaborate be
ause it involvesmotion to the positive and negative dire
tions, as well as os
illations aroundthe minima.
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urrent.
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318 J.L. MateosIn Fig. 6(a), we show a typi
al traje
tory for a just below a
. The tra-je
tory is 
haoti
 and the 
orresponding 
haoti
 attra
tor is depi
ted inFig. 7. In this 
ase, the parti
le starts at the origin with no velo
ity; itjumps from one well in the rat
het potential to another well to the right orto the left in a 
haoti
 way. The parti
le gets trapped os
illating for a whilein a minimum (sti
king mode), as is indi
ated by the integer values of xin the ordinate, and suddenly starts a running mode with average 
onstantvelo
ity in the negative dire
tion. In terms of the velo
ity, these runningmodes, as the one depi
ted in Fig. 5(a), 
orrespond to periodi
 motion. This
an be seen more 
learly in Fig. 6(b), where we plot the velo
ity as a fun
tionof time in the same range of values as the orbit in Fig. 6(a). In Fig. 6(
) weshow the 
orresponding phase spa
e.The phenomenology 
an be des
ribed as follows. For values of a above a
,as in Fig. 5(a), the attra
tor is a periodi
 orbit. For a slightly less than a
there are long stret
hes of time (running or laminar modes) during whi
hthe orbit appears to be periodi
 and 
losely resembles the orbit for a > a
,but this regular (approximately periodi
) behavior is intermittently inter-rupted by �nite duration �bursts� in whi
h the orbit behaves in a 
haoti
manner. The net result in the velo
ity is a set of periodi
 stret
hes of timeinterrupted by burst of 
haoti
 motion, signaling pre
isely the phenomenonof intermitten
y [24℄. As a approa
h a
 from below, the duration of the run-ning modes in the negative dire
tion in
reases, until the duration divergesat a = a
, where the traje
tory be
omes truly periodi
.To 
omplete this pi
ture, in Fig. 7, we show two attra
tors: (1) the
haoti
 attra
tor for a = 0:08092, just below a
, 
orresponding to the tra-je
tory in Fig. 6(a), and (2) the period-4 attra
tor for a = 0:08093, 
orre-sponding to the traje
tory in Fig. 5(a). This periodi
 attra
tor 
onsist of fourpoints in phase spa
e, whi
h are lo
ated at the 
enter of the open 
ir
les. Weobtain these attra
tors 
on�ning the dynami
s in x between �0:5 and 0:5,that is, we used the periodi
ity of the potential V (x+1) = V (x), to map thepoints in the x axis modulo 1. Thus, even though the traje
tory transportparti
les to in�nity, when we 
on�ne the dynami
s, the 
haoti
 stru
ture ofthe attra
tor is apparent. As a approa
hes a
 from below, the dynami
s inthe attra
tor be
omes intermittent, spending most of the time in the vi
inityof the period-four attra
tor, and suddenly �jumping� in a 
haoti
 way forsome time, and then returning 
lose to the period-four attra
tor again, andso on. In terms of the velo
ity, the result is an intermittent time series asthe one depi
ted in Fig. 6(b).In order to 
hara
terize the deterministi
 di�usion in this regime, we
al
ulate the mean square displa
ement h(x � hxi)2i as a fun
tion of time.We obtain numeri
ally that h(x�hxi)2i � t�, where the exponent � ' 3=2.This is a signature of anomalous deterministi
 di�usion, in whi
h
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tors: a 
haoti
 attra
tor fora = 0:08092, just below a
, and a period-four attra
tor, for a = 0:08093, 
onsistingof four points lo
ated at the 
enter of the open 
ir
les. See Ref. [18℄.h(x�hxi)2i grows faster than linear, that is, � > 1 (super di�usion). Normaldeterministi
 di�usion 
orresponds to � = 1. In 
ontrast, the traje
tories inFigs. 4(a) and 5(a) transport parti
les in a ballisti
 way, with � = 2. The re-lationship between anomalous deterministi
 di�usion and intermittent 
haoshas been explored re
ently, together with the 
onne
tion with Lévy �ights[25℄. The 
hara
ter of the traje
tories, as the one in Fig. 6(a), remains tobe analyzed more 
arefully in order to determine if they 
orrespond to Lévy�ights. 4. Con
luding remarksIn summary, we have studied the 
haoti
 dynami
s of a parti
le in arat
het potential under the in�uen
e of an external periodi
 for
e. We es-tablish a 
onne
tion between the bifur
ation diagram and the 
urrent andidentify the me
hanism by whi
h the 
urrent reversal in deterministi
 rat
h-ets arises: it 
orresponds to a bifur
ation from a 
haoti
 to a periodi
 regime.Near this bifur
ation, the 
haoti
 traje
tories exhibit intermittent 
haos andthe transport arises through deterministi
 anomalous di�usion with an ex-ponent greater than one. The ri
hness and the 
omplexity of the bifur
ationdiagram and the asso
iated 
urrent, urge us to study their 
onne
tion inmore detail in the near future.
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