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CURRENT REVERSALS IN CHAOTIC RATCHETS�José L. MateosInstituto de Físia, Universidad Naional Autónoma de MéxioApartado Postal 20-364, 01000 Méxio D.F., Méxioe-mail: mateos�fenix.ifisiau.unam.mx(Reeived Otober 24, 2000)The problem of the lassial deterministi dynamis of a partile ina periodi asymmetri potential of the rathet type is addressed. Whenthe inertial term is taken into aount, the dynamis an be haoti andmodify the transport properties. By a omparison between the bifurationdiagram and the urrent, we identify the origin of the urrent reversal asa bifuration from a haoti to a periodi regime. Close to this bifura-tion, we observed trajetories revealing intermittent haos and anomalousdeterministi di�usion. We extend our previous analysis of this problem toinlude multiple urrent reversal and the orbits in phase spae.PACS numbers: 05.45.A, 05.40.Fb, 05.45.Pq, 05.60.Cd1. IntrodutionThere is an inreasing interest in reent years in the study of the trans-port properties of nonlinear systems that an extrat usable work from un-biased nonequilibrium �utuations. These, so alled rathet systems, anbe modeled, for instane, by onsidering a Brownian partile in a periodiasymmetri potential and ated upon by an external time-dependent foreof zero average. For reent reviews see [1�4℄. This reent burst of work ismotivated in part by the hallenge to explain the unidiretional transport ofmoleular motors in the biologial realm [4℄. Another soure of motivationarises from the potential for new methods of separation of partiles, poly-eletrolytes and maromoleules [5�10℄, and more reently in the reognitionof the �rathet e�et� in the quantum domain [11�16℄.� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (307)



308 J.L. MateosIn order to understand the generation of unidiretional motion fromnonequilibrium �utuations, several models have been used. In Ref. [1℄,there is a lassi�ation of di�erent types of rathet systems; among themwe an mention the �Roking Rathets�, in whih the partiles move in anasymmetri periodi potential subjet to spatially uniform, time-periodideterministi fores of zero average. Most of the models, so far, deal withthe over-damped ase in whih the inertial term due to the �nite mass ofthe partile is negleted. However, more reently, this oversimpli�ation wasoverome by treating properly the e�et of �nite mass [17�22℄.In partiular, in two reent papers [17,18℄, the authors studied the ef-fet of �nite inertia in a deterministially roked, periodi rathet potential.They onsider the deterministi ase in whih noise is absent. The inertialterm allows the possibility of having both regular and haoti dynamis,and this deterministially indued haos an mimi the role of noise. Theyshowed that the system an exhibit a urrent �ow in either diretion, pre-senting multiple urrent reversals as the amplitude of the external fore isvaried.In Ref. [18℄ the role of the haoti dynamis in the urrent was analyzed indetail, establishing for the �rst time a lose onnetion between the urrentand the bifuration diagram when a ontrol parameter of the model is varied.In this paper we elaborate on this idea by studying the multiple urrentreversals and the orbits in phase spae.The outline of the paper is as follows: in the next setion we introduethe equations of motion that de�ne the model, and in the next setion wepresent the numerial results. We end with some onluding remarks in thelast setion. 2. The rathet potential modelLet us onsider the one-dimensional problem of a partile driven by aperiodi time-dependent external fore, under the in�uene of an asymmetriperiodi potential of the rathet type. The time average of the external foreis zero. Here, we do not take into aount any kind of noise, and thus thedynamis is deterministi. The equation of motion is given bym�x+  _x+ dV (x)dx = F0 os(!Dt) ; (1)where m is the mass of the partile,  is the frition oe�ient, V (x) is theexternal asymmetri periodi potential, F0 is the amplitude of the externalfore and !D is the frequeny of the external driving fore. The rathetpotential is given byV (x) = V1 � V0 sin 2�(x� x0)L � V04 sin 4�(x� x0)L ; (2)



Current Reversals in Chaoti Rathets 309where L is the periodiity of the potential, V0 is the amplitude, and V1 is anarbitrary onstant. The potential is shifted by an amount x0 in order thatthe minimum of the potential is loated at the origin.Let us de�ne the following dimensionless units: x0 = x=L, x00 = x0=L,t0 = !0t, w = !D=!0, b = =m!0 and a = F0=mL!20. Here, the frequeny!0 is given by !20 = 4�2V0Æ=mL2 and Æ is de�ned byÆ = sin(2�jx00j) + sin(4�jx00j) :The frequeny !0 is the frequeny of the linearized motion around theminima of the potential, thus we are saling the time with the natural periodof motion �0 = 2�=!0. The dimensionless equation of motion, after renamingthe variables again without the primes, beomes�x+ b _x+ dV (x)dx = a os(wt) ; (3)where the dimensionless potential an be written asV (x) = C � 14�2Æ �sin 2�(x� x0) + 14 sin4�(x � x0)� ; (4)and is depited in Fig. 1. The onstant C is suh that V (0) = 0, and isgiven by C = �(sin 2�x0 + 0:25 sin 4�x0)=4�2Æ . In this ase, x0 ' �0:19,Æ ' 1:6 and C ' 0:0173.
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Fig. 1. The dimensionless rathet periodi potential V (x).In the equation of motion Eq. (3) there are three dimensionless parame-ters: a, b and w, de�ned above in terms of physial quantities. We will varythe parameters in order to understand the role of eah in the dynamis. Theparameter a = F0=mL!20 is the ratio of the amplitude of the external fore



310 J.L. Mateosand the fore due to the potential V (x). This an be seen more learly usingthe expression for !20 in terms of the parameters of the potential. In thisase, the ratio beomes a = 14�2Æ F0(V0=L) ;that is, exept for a onstant fator, a is the ratio of F0 and the fore V0=L,where V0 is the amplitude and L the periodiity of the potential (see Eq. (2)).The parameter b is simply the dimensionless frition oe�ient, and wis the ratio of the driving frequeny of the external fore and !0. We willdisuss in more detail these parameters in the next setion.The extended phase spae in whih the dynamis is taking plae is three-dimensional, sine we are dealing with an inhomogeneous di�erential equa-tion with an expliit time dependene. This equation an be written asa three-dimensional dynamial system, that we solve numerially, using thefourth-order Runge�Kutta algorithm. The equation of motion Eq. (3) is non-linear and thus allows the possibility of periodi and haoti orbits. If theinertial term assoiated with the seond derivative �x were absent, then thedynamial system ould not be haoti.The main motivation behind this work is to study in detail the origin ofthe urrent reversal in a haotially deterministi roked rathet as foundin [18℄. In order to do so, we have to study �rst the urrent J itself, thatwe de�ne as the time average of the average veloity over an ensemble ofinitial onditions. Therefore, the urrent involves two di�erent averages: the�rst average is over M initial onditions, that we take equally distributed inspae, entered around the origin and with an initial veloity equal to zero.For a �xed time, say tj , we obtain an average veloity, that we denoted asvj , and is given by vj = 1M MXi=1 _xi(tj) : (5)The seond average is a time average; sine we take a disrete time forthe numerial solution of the equation of motion, we have a disrete �niteset of N di�erent times tj; then the urrent an be de�ned asJ = 1N NXj=1 vj : (6)This quantity is a single number for a �xed set of parameters a; b; w.Besides the orbits in the extended phase spae,we an obtain the Poinarésetion, using as a strobosopi time the period of osillation of the externalfore. With the aid of Poinaré setions we an distinguish between periodiand haoti orbits, and we an obtain a bifuration diagram as a funtionof the parameter a. As was shown in [18℄, there is a onnetion between thebifuration diagram and the urrent.



Current Reversals in Chaoti Rathets 3113. Numerial resultsUsing the de�nition of the urrent J given in the previous setion, wealulate J �xing the parameters b = 0:1 and w = 0:67 and varying theparameter a. The urrent shows, as stressed before [17,18℄, multiple urrentreversals and a omplex variation with a, as shown in Fig. 2(b). We anobserve strong �utuations as well as portions where the urrent is approxi-mately onstant. The hallenge here is to explain this high variability in theurrent with the aid of what we know from the nonlinear haoti dynamisof the system.
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312 J.L. MateosAssoiated with this urrent, there is a orrespondent bifuration dia-gram as a funtion of a, as depited in Fig. 2(a). The omplexity in thisdiagram is a onsequene of the rihness in the dynamis of the partile inthe non-linear rathet potential. We notie that the bifuration diagram forthe rathet is qualitatively similar to the bifuration diagram of a harmon-ially fored pendulum with frition [23℄. We an imagine the problem ofthe pendulum as a partile in a symmetri periodi potential that varies intime. In this sense, our rathet problem is an asymmetri generalizationof the pendulum where a spatial symmetry breaking ours. There is a re-ent work [21℄ that studied the pendulum and the rathet in the ontext ofsymmetry breaking.In order to understand the �rst part of the urrent, let us analyze the aseof small values of a, where we hose b = 0:1 and w = 0:67. In Fig. 3(a) weshow the urrent as a funtion of a, and in Fig. 3(b) we depit the bifurationdiagram in the same range of a. Let us imagine that an ensemble of partilesare initially loated at the minimum of the rathet potential around theorigin, and that all these partiles have an initial veloity equal to zero. Fora = 0, we have no external fore and thus, all these partiles remain in theminimum around the origin and therefore the urrent is zero. For very smallvalues of a, we still have a zero urrent, sine the partiles have frition andtend to osillate in this minimum. However, there is a ritial value of afor whih the partiles start to overome the potential barriers around theminimum and transport along the rathet potential in a periodi or haotiway. This ritial value an be alulated as follows: remember that a isa dimensionless quantity de�ned asa = 14�2Æ F0(V0=L) :Here, F0 is the amplitude of the external fore and V0=L is the order of mag-nitude of the fore exerted by the potential. Thus, we expet the urrent Jbe di�erent from zero when F0 is on the order of V0=L, that is, F0 � V0=L.In this ase, the ritial value of a is a � 1=4�2Æ, sine F0=(V0=L) � 1.Using the value of Æ ' 1:6 we obtain a � 0:1, whih is on the order ofmagnitude of the values that we obtain numerially. Above this value, theurrent starts to grow sine more and more partiles ontribute to the ur-rent.At the beginning, the urrent is dominated by transport due to periodiorbits, but for larger values of a, some of the orbits in the ensemble beomehaoti and the transport is not as e�ient as before, resulting in a urrentthat starts to osillate erratially. In fat, in this region, there exist thepossibility of oexistene of multiple attrators in the phase spae. Forexample, in Fig. 3(a), we have two oexistent attrators: a periodi and
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Fig. 3. For b = 0:1 and w = 0:67 we show: (a) the bifuration diagram as a funtionof a, (b) the urrent J as a funtion of a. The range in the parameter a orrespondsto the �rst urrent reversal.a haoti one, around a = 0:067. In this ase, depending on the initialonditions, some orbits in the ensemble an end up in the periodi attrator,and the rest in the haoti attrator.For values of a even larger, all the orbits enter a haoti region througha period-doubling bifuration, and the urrent starts to derease inside thishaoti band. Finally, exatly at the bifuration point where a periodiwindow opens, the urrent drops to zero and beomes negative in a veryabrupt way [18℄.



314 J.L. MateosLet us fous �rst on the range of the ontrol parameter where the �rsturrent reversal takes plae. This ours around a ' 0:08 as shown inFig. 3. We an observe a period-doubling route to haos and after a haotiregion, there is a saddle-node bifuration taking plae at the ritial valuea ' 0:08092844. It is preisely at this bifuration point that the urrentreversal ours. After this bifuration, a periodi window emerges, with anorbit of period four. In Figs. 3(a), 3(b) we are analyzing only a short rangeof values of a, where the �rst urrent reversal takes plae. If we vary afurther, we an obtain multiple urrent reversals, as shown in Fig. 2(b).In order to understand in more detail the nature of the urrent reversal,let us look at the orbits just before and after the transition. The reversalours at the ritial value a ' 0:08092844. If a is below this ritialvalue a, say a = 0:07, then the orbit is periodi, with period two. For thisase we depit, in Fig. 4(a), the position of the partile as a funtion oftime. We notie a period-two orbit, as an be distinguish in the bifurationdiagram for a = 0:07. This orbit transport partiles to the positive diretionand the orresponding veloity is a periodi funtion of time of period two,as shown in Fig. 4(b). The phase spae for this orbit is depited in Fig. 4().We notie that the partile osillates for a while around the minima of therathet potential, before moving to the next one. The spatial asymmetry ofthe potential is apparent in this orbit in phase spae.In Fig. 5(a) we show again the position as a funtion of time for a = 0:081,whih is just above the ritial value a. In this ase, we observe a period-fourorbit, that orresponds to the periodi window in the bifuration diagramin Fig. 3(a). This orbit is suh that the partile is �limbing� in the negativediretion, that is, in the diretion in whih the slope of the potential is higher.We notie that there is a qualitative di�erene between the periodi orbitthat transport partiles to the positive diretion and the periodi orbit thattransport partiles to the negative diretion: in the latter ase, the partilerequires twie the time than in the former ase, to advanes one well in therathet potential. A loser look at the trajetory in Fig. 5(a) reveals the�trik� that the partile uses to navigate in the negative diretion: in orderto advane one step to the left, it moves �rst one step to the right and thentwo steps to the left. The net result is a negative urrent.The period-four orbit is apparent in Fig. 5(b), where we show the veloityas a funtion of time. In Fig. 5() we depit the orresponding phase spaefor this ase. The transporting orbit is more elaborate beause it involvesmotion to the positive and negative diretions, as well as osillations aroundthe minima.
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318 J.L. MateosIn Fig. 6(a), we show a typial trajetory for a just below a. The tra-jetory is haoti and the orresponding haoti attrator is depited inFig. 7. In this ase, the partile starts at the origin with no veloity; itjumps from one well in the rathet potential to another well to the right orto the left in a haoti way. The partile gets trapped osillating for a whilein a minimum (stiking mode), as is indiated by the integer values of xin the ordinate, and suddenly starts a running mode with average onstantveloity in the negative diretion. In terms of the veloity, these runningmodes, as the one depited in Fig. 5(a), orrespond to periodi motion. Thisan be seen more learly in Fig. 6(b), where we plot the veloity as a funtionof time in the same range of values as the orbit in Fig. 6(a). In Fig. 6() weshow the orresponding phase spae.The phenomenology an be desribed as follows. For values of a above a,as in Fig. 5(a), the attrator is a periodi orbit. For a slightly less than athere are long strethes of time (running or laminar modes) during whihthe orbit appears to be periodi and losely resembles the orbit for a > a,but this regular (approximately periodi) behavior is intermittently inter-rupted by �nite duration �bursts� in whih the orbit behaves in a haotimanner. The net result in the veloity is a set of periodi strethes of timeinterrupted by burst of haoti motion, signaling preisely the phenomenonof intermitteny [24℄. As a approah a from below, the duration of the run-ning modes in the negative diretion inreases, until the duration divergesat a = a, where the trajetory beomes truly periodi.To omplete this piture, in Fig. 7, we show two attrators: (1) thehaoti attrator for a = 0:08092, just below a, orresponding to the tra-jetory in Fig. 6(a), and (2) the period-4 attrator for a = 0:08093, orre-sponding to the trajetory in Fig. 5(a). This periodi attrator onsist of fourpoints in phase spae, whih are loated at the enter of the open irles. Weobtain these attrators on�ning the dynamis in x between �0:5 and 0:5,that is, we used the periodiity of the potential V (x+1) = V (x), to map thepoints in the x axis modulo 1. Thus, even though the trajetory transportpartiles to in�nity, when we on�ne the dynamis, the haoti struture ofthe attrator is apparent. As a approahes a from below, the dynamis inthe attrator beomes intermittent, spending most of the time in the viinityof the period-four attrator, and suddenly �jumping� in a haoti way forsome time, and then returning lose to the period-four attrator again, andso on. In terms of the veloity, the result is an intermittent time series asthe one depited in Fig. 6(b).In order to haraterize the deterministi di�usion in this regime, wealulate the mean square displaement h(x � hxi)2i as a funtion of time.We obtain numerially that h(x�hxi)2i � t�, where the exponent � ' 3=2.This is a signature of anomalous deterministi di�usion, in whih
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Fig. 7. For b = 0:1 and w = 0:67 we show two attrators: a haoti attrator fora = 0:08092, just below a, and a period-four attrator, for a = 0:08093, onsistingof four points loated at the enter of the open irles. See Ref. [18℄.h(x�hxi)2i grows faster than linear, that is, � > 1 (super di�usion). Normaldeterministi di�usion orresponds to � = 1. In ontrast, the trajetories inFigs. 4(a) and 5(a) transport partiles in a ballisti way, with � = 2. The re-lationship between anomalous deterministi di�usion and intermittent haoshas been explored reently, together with the onnetion with Lévy �ights[25℄. The harater of the trajetories, as the one in Fig. 6(a), remains tobe analyzed more arefully in order to determine if they orrespond to Lévy�ights. 4. Conluding remarksIn summary, we have studied the haoti dynamis of a partile in arathet potential under the in�uene of an external periodi fore. We es-tablish a onnetion between the bifuration diagram and the urrent andidentify the mehanism by whih the urrent reversal in deterministi rath-ets arises: it orresponds to a bifuration from a haoti to a periodi regime.Near this bifuration, the haoti trajetories exhibit intermittent haos andthe transport arises through deterministi anomalous di�usion with an ex-ponent greater than one. The rihness and the omplexity of the bifurationdiagram and the assoiated urrent, urge us to study their onnetion inmore detail in the near future.
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