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e, PolandM. Niemie
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�uni.opole.pland J. �u
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e, Polande-mail: lu
zka�us.edu.pl(Re
eived November 15, 2000)Overdamped dire
ted motion of Brownian motors in a spatially periodi
system, indu
ed by Poissonian �u
tuations of various statisti
s and drivenby thermal noise, is investigated. Two models of asymmetri
 as well as twomodels of symmetri
 Poissonian �u
tuations are 
onsidered. Transportproperties in dependen
e upon statisti
s of �u
tuations imposed on thesystem are analyzed.PACS numbers: 02.50.Ey, 05.10.Gg, 05.40.�a1. Introdu
tionA subje
t whi
h has lately been gaining interest is transport of Brow-nian parti
les (motors) moving in spatially periodi
 stru
tures. In su
hsystems dire
ted motion of parti
les 
an be indu
ed by zero-mean deter-ministi
 and/or random for
es (the so-
alled rat
het e�e
t) [1℄. Why is this� Presented at the XXIV International S
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zkasubje
t so fas
inating? For at �rst glan
e it is 
ounterintuitive. One expe
tsthat imposition of zero-mean for
es on the system yields zero-mean rea
tionof the system. Now, the explanation of the transport phenomenon in su
hsystems is rather obvious: the system is out of equilibrium and the detailedbalan
e does not hold! The 
onditions for transport to o

ur in periodi
systems are known. The symmetry should be broken. What kind of sym-metry should be broken is a se
ondary question. For example, the re�e
tionsymmetry of the spatially periodi
 stru
ture 
an be broken [1℄ or the sta-tisti
al symmetry of �u
tuations 
an be broken [2℄. The symmetry 
an alsobe broken by 
orrelation of various degree of freedom [3℄ and by 
orrelationof various sour
es of noise [4℄. Be
ause real systems are rarely symmetri
,the o

urren
e of transport should be rather a generi
 phenomenon thanex
eptional and spe
i�
 one.In this paper we study dire
ted 
urrent of non-intera
ting parti
les inthe system subje
ted to a spatially periodi
 potential. Parti
les are drivenby both zero-mean thermal equilibrium �u
tuations and zero-mean nonequi-librium �u
tuations modeled by Poissonian white shot noise. The problemstated is not new sin
e it has been previously studied [5, 6℄ and it has beenshown that indeed the rat
het e�e
t 
an o

ur and preferential dire
tionof Brownian motion is indu
ed by nonequilibrium �u
tuations. However,our obje
tive is to investigate the in�uen
e of various statisti
s of Poisso-nian �u
tuations on properties of transport and eventually to �nd universalproperties of transport in su
h systems.The arti
le is organized as follows. In Se
. 2 we de�ne a mathemati-
al model of Brownian motors (a rat
het system) with all 
hara
teristi
s ofits ingredients. In Se
. 3 we present two models of asymmetri
 Poissonian�u
tuations and equations whi
h determine the stationary probability dis-tribution P (x) and the stationary probability 
urrent J of Brownian motors.Se
. 4 is devoted to symmetri
 Poissonian �u
tuations. In Se
. 5 we analyzetransport properties of Brownian motors and in
lude main 
on
lusions.2. ModelWe 
onsider an ensemble of non-intera
ting Brownian parti
les movingin a one-dimensional spatially periodi
 potential V̂ (x̂) = V̂ (x̂ + L) of pe-riod L and of the barrier height V0 = V̂max � V̂min, and driven by randomfor
es. The dynami
s of the system is modeled by an overdamped sto
hasti
Langevin equation. The equation of motion in the dimensionless form is (thedimensionless variables are dis
ussed in detail in [7℄)dxdt = f (x) + � (t) + �(t) ; (1)
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tuations 323where x = x̂=L is the dimensionless position, t = t̂=� the dimensionless time,� = 
L2=V0 the 
hara
teristi
 time, and 
 is the fri
tion 
oe�
ient. Thedeterministi
 res
aled for
e f(x) = �dV (x)dx ; (2)and V (x) = V (x + 1) is a res
aled periodi
 potential of unit spatial periodand of unit barrier height. The sto
hasti
 for
e � (t) is Gaussian thermalequilibrium noise of the �rst two momentsh� (t)i = 0 ; h� (t)� (s)i = 2DT Æ(t� s) ; (3)where the res
aled noise strength DT = kBT=V0, kB is the Boltzmann 
on-stant and T temperature of the system. Let us take a note that DT isa relation between thermal energy of �u
tuations and a
tivation energy ofthe parti
le from the bottom to the top of the potential V̂ (x̂) .The random for
e �(t) models nonequilibrium �u
tuations and is 
hosento be Poissonian shot noise [8℄�(t) = 1Xi=�1 ziÆ(t� ti)� �hzii ; (4)where ti are random instants of Æ impulses, 
hara
terized by the Poissonian
ounting pro
ess n(t) with the parameter �. It means that the probabilityfor appearing of k impulses in the time-interval [0; t℄ is given by the Poissondistribution, namely, P (n(t) = k) = (�t)kk! exp(��t) : (5)The parameter � determines a mean number of the Æ impulses per unit time(a mean frequen
y of impulses). The amplitudes fzig of the Æ impulses aremutually independent random variables and independent on the 
ountingpro
ess n(t). The amplitudes fzig are distributed a

ording to the 
ommonprobability density �(z). The pro
ess �(t) is symmetri
 if the distribution�(z) is symmetri
, i.e. when �(z) = �(�z). Otherwise, it is asymmetri
noise. In the latter 
ase a = � hzii 6= 0 (6)
orresponds in (4) to the negative value of the bias of Poissonian noise be-tween Æ spikes. The pro
ess �(t) is a white noise (but nonequilibrated noise)with an average and 
orrelation fun
tion given byh�(t)i = 0 ; h�(t) �(s)i = 2DS Æ(t � s) : (7)
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zkaThe noise intensity reads: DS = � 
z2i �2 : (8)The evolution equation for the probability distribution P (x; t) of the pro
essx(t) has a form of the 
ontinuity equation [6℄,��tP (x; t) = � ��xJ(x; t) ; (9)where the probability 
urrentJ(x; t) = [f(x)� � hzii℄P (x; t) �DT ��xP (x; t)+� 1Z�1 �(z) zZ0 P (x� y; t) dy dz : (10)The probability density P (x; t) has to obey the following 
onditionsP (x; t) � 0 ; P (x; 0) = P (x+ 1; 0) ; x0+1Zx0 P (x; t) dx = 1 ; (11)for arbitrary x0. In the stationary state, when t!1,J = limt!1 J(x; t) = �DTP 0(x) + [f(x)� � hzii℄P (x)+� 1Z�1 �(z) zZ0 P (x� y) dy dz ; (12)where P (x) and J are steady-state probability density and probability 
ur-rent, respe
tively; the prime denotes a derivative with respe
t to x. The
urrent J is the most important 
hara
teristi
s of transport of Brownianmotors. The relation between the steady-state (dimensionless) averaged ve-lo
ity hvi of Brownian motors and the probability 
urrent is simple [7, 9℄,namely, hvi = h _xi = J : (13)The dimensional averaged velo
ity hv̂i is given by the relation [7, 9℄hv̂i = v0 J ; (14)where the 
hara
teristi
 velo
ity v0 = L=� = V0=
L is determined by threequantities: the barrier height V0 and period L of the potential V̂ (x̂) and thefri
tion 
oe�
ient 
 (whi
h, in turn, depends on vis
osity of the system inwhi
h Brownian motors move as well as on linear sizes of the motors).
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tuations 3253. Asymmetri
 Poissonian �u
tuationsIn this se
tion we spe
ify asymmetri
 Poissonian �u
tuations [5℄. Forasymmetri
 �u
tuations, the probability density �(z) of amplitudes fzig ofÆ ki
ks is asymmetri
. We 
onsider two examples of su
h densities. Bothare spe
ial 
ases of the Gamma distribution [8℄, namely,�(z) = �1(z) = A�1�(z) exp(�z=A) ; A > 0 ; (15)and �(z) = �2(z) = A�2� (z) z exp (�z=A) ; A > 0 ; (16)where �(z) is the Heaviside fun
tion. For the �rst distribution �1(z), the�rst two moments read hzii = A ; 
z2i � = 2A2 : (17)For the se
ond distribution �2(z),hzii = 2A ; 
z2i � = 6A2 : (18)In these two 
ases, the amplitudes fzig are positive: from time to time theÆ impulse ki
ks the parti
le to the positive dire
tion of x. On the otherhand, the negative bias, a = �hzii, pushes the parti
le to the negative di-re
tion (let us remember that in summary h�(t)i = 0). The main di�eren
ebetween these two distributions is (non)monotoni
ity and in 
onsequen
equalitatively di�erent most probable values of amplitudes fzig of Æ impulses.In the �rst 
ase, very small amplitudes (
lose to zero) are more probable. Inthe se
ond 
ase, the amplitudes zi = A are the most probable. Therefore, bymanipulation of the parameter A, we have hoped for signi�
ant di�eren
ein transport properties for these two 
ases.The equation determining the stationary probability distributionP (x) =Pk(x); k=1; 2, and stationary 
urrent J =Jk; k=1; 2, is Eq. (12).It is an integro-di�erential equation and it is very di�
ult to handle it. Thisis why in ea
h 
ase we 
onvert it to the form of di�erential equations: In the�rst 
ase the result isJ1 = �DTAP 001 (x)� [DT +DS �Af(x)℄P 01(x)+ �f(x) +Af 0(x)�P1(x) : (19)In the se
ond 
ase,J2 = �A2DTP 0002 (x) +A ��Af (x)� 2DS3 � 2DT�P2 (x)�00+ [(2Af (x)�DS �DT )P2 (x)℄0 + f (x)P2 (x) : (20)
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zkaIn order to obtain these equations, we have to 
hange the integration orderin the last term of Eq. (12). Next, observe that �k(z) (k = 1; 2) obeys anordinary di�erential equation of 
onstant 
oe�
ients.4. Symmetri
 Poissonian �u
tuationsIn this se
tion we introdu
e symmetri
 Poissonian �u
tuations [6℄. Forsymmetri
 �u
tuations, the probability density �(z) of amplitudes fzig ofÆ ki
ks is symmetri
. We present two examples of su
h distributions: Theexponential distribution,�(z) = �3(z) = 0:5A�1 exp (�jzj=A) ; A > 0 ; (21)and a parti
ular Gamma distribution, namely,� (z) = �4(z) = 0:5A�2 jzj exp (�jzj=A) ; A > 0 : (22)The mean value of amplitudes hzii = 0 and the se
ond moments hz2i i are thesame as in the previous 
orresponding 
ases. The equations determining thestationary probability distribution P (x) = Pk(x); k = 3; 4 and stationary
urrent J = Jk; k = 3; 4 have the formJ3 = A2DTP 0003 (x)�A2 [f(x)P3 (x)℄00� (DT +DS)P 03 (x) + f (x)P3 (x) (23)in the 
ase (21) andJ4 = �A4DTP (5)4 (x) +A4 [f (x)P4 (x)℄(4)+A2�2DT + DS3 �P (3)4 (x)� 2A2 [f (x)P4 (x)℄(2)� (DT +DS)P (1)4 (x) + f (x)P4 (x) (24)in the 
ase (22). The supers
ripts (n); n = 1; :::; 5 denote the n-order deriva-tive with respe
t to x. One 
an noti
e that order of the di�erential equationfor P (x) depends strongly on the form of the probability distribution of am-plitudes fzig. E.g. for �4(z), the di�erential equation is of the 5-th order.It is interesting that from all these di�erential equations we 
an determineboth Pk(x) and Jk; k = 1; :::; 4, and the same 
onditions (11) are su�-
ient to solve them uniquely. In general, these equations 
annot be solvedby analyti
al means. Nevertheless, they 
an be solved numeri
ally for an
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tuations 327arbitrary form of the potential V (x). However, exa
t analyti
al results 
anbe obtained for a pie
ewise linear sawtooth-like potential. We 
hoose thesimplest form of su
h a potential, namely,V (x) = (�2 x�k1+2k ; x 2 [�1=2; k℄ mod 1 ,2 x�k1+2k ; x 2 [k; 1=2℄ mod 1 , (25)where k 2 (�1=2; 1=2) determines the asymmetry of the potential: Fork = 0 it is re�e
tion-symmetri
, i.e., V (x) = V (�x); for k 6= 0 the re�e
tionsymmetry of V (x) is broken. In Fig. 1, we present V (x) in its graphi
alform.

Fig. 1. The res
aled periodi
 potential V (x) = V (x+ 1) of asymmetry determinedby k 2 (�1=2; 1=2). 5. AnalysisWe analyze the stationary averaged velo
ity of Brownian motors or,equivalently, the steady-state probability 
urrent, J = hvi, whi
h is deter-mined by Eqs. (19), (20), (23) and (24) respe
tively. In order to solve theseequations, we 
an pro
eed along the same way as in [5℄. The method ofsolution of equations like 
onsidered here is also presented in [9, 10℄. Inthis method, the probability density P (x) and 
urrent J is determined by anonhomogeneous system of linear algebrai
 equations and evaluation of the
urrent is a matter of linear algebra. In ea
h of four 
ases, J is a quotient oftwo determinants: the �fth degree in the 
ase (19), the seventh degree in the
ases (20) and (23), and the eleventh degree for (24). The expli
it form ofJ is an extremely 
omplex expression and therefore is not reprodu
ed here.The detailed dis
ussion of J in 
ases (15) and (21) is performed in [5℄ and [6℄,respe
tively. Here, we mention main and the most interesting �ndings whi
hare visualized in Figs. 2 to 6.
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zka(A) For the asymmetri
 distribution of amplitudes:� Generally, the properties of transport are qualitatively the same forboth distributions.� There are two regimes of transport: di�usive and non-di�usive. Inthe di�usive regime, Poissonian �u
tuations �(t) indu
es both for-ward and ba
kward transitions over the potential barrier. In thenon-di�usive regime, Poissonian �u
tuations �(t) indu
es only for-ward transitions. This is the 
ase when the bias a = �hzii is smallerthan the maximal value of the deterministi
 for
e f(x). In Figs. 2and 3 we display the stationary probability density P (x) in these two

Fig. 2. The stationary probability density P (x) in the di�usive regime for asymmet-ri
 Poissonian noise with exponentially distributed amplitudes (15) of Æ impulses.

Fig. 3. The stationary probability density P (x) in the non-di�usive regime forasymmetri
 Poissonian noise with exponentially distributed amplitudes (15) of Æimpulses.



Brownian Motors Driven by Poissonian Flu
tuations 329regimes. The main feature of P (x) is its asymmetry even if the poten-tial V (x) is symmetri
. The reason is asymmetry of the deterministi
part f(x)� �hzii of the for
e, 
f. (1) and (4).� J > 0 independently of asymmetry of the potential. This is be
auseof positive amplitudes fzig of Æ ki
ks.� There are optimal values of parameters whi
h maximize the 
urrent.It is shown in Fig. 4 with a generi
 dependen
e of the stationary 
urrenton parameters of �u
tuations.

Fig. 4. Dimensionless probability 
urrent (averaged stationary velo
ity) J vs thebias of Poissonian noise in the 
ase of the asymmetri
 Gamma distribution (16) ofamplitudes of Æ impulses for sele
ted values of temperature.(B) For the symmetri
 distribution of amplitudes:� The 
urrent J = 0 if V (x) is symmetri
; J 6= 0 if V (x) is asymmetri
.� Generally, the properties of transport are qualitatively the same forboth distributions.� However, for spe
i�
 
hoi
e of parameter set, one 
an noti
e a remark-able di�eren
e: for the exponential distribution (21), the 
urrent J ismonotoni
 fun
tion of DS , while for the Gamma distribution (22) it isnon-monotoni
 (see Figs. 5 and 6).� The sign of J depends on asymmetry of the potential. For asymmetri
potentials, the distan
e dmM between a minimum and a neighboringmaximum is di�erent that the distan
e dMm between the maximumand the next neighboring minimum. Let us 
onsider the 
ase of the
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zkapotential shown in Fig. 1 with asymmetry k > 0. Parti
les are sym-metri
ally ki
ked by Æ impulses into the left and into the right dire
-tions. However, the probability that the parti
le falls into the interval(�1=2; k)mod 1 is greater than it falls into the interval (k; 1=2)mod 1.As a 
onsequen
e, motors move in the dire
tion from the maximumto the minimum along both slighter and longer slope of the potentialV (x) (in the situation shown in Fig. 1, in the right dire
tion).

Fig. 5. Dimensionless probability 
urrent J vs the intensity DS of Poissonian noisein the 
ase of the symmetri
 exponentially distributed (21) amplitudes of Æ impulsesfor sele
ted values of temperature.

Fig. 6. Same as in Fig. 5 but for the symmetri
 Gamma distribution (22) of ampli-tudes of Æ impulses.
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tuations 331The 
urrent is in�uen
ed by other parameters of the model su
h as thebias of Poissonian white �u
tuations, temperature of the system and asym-metry of the potential. One 
an 
ontemplate other statisti
s of Poissonian�u
tuations to be implemented to the model 
onsidered. But the main
on
lusion is rather disappointing: di�eren
es 
aused by various sour
esof Poissonian �u
tuations are mirror and they drive the Brownian motorsqualitatively in the universal way. On the other hand, we analyzed onlyone transport 
oe�
ient, namely, the stationary mean velo
ity hvi. Otherimportant transport 
hara
teristi
s like e�
ien
y of the rat
het system,the di�usion 
oe�
ient, D = limt!1(hx2(t) � hx(t)i2)=t, or �u
tuationsof velo
ity, h(�v)2i = hv2i � hvi2, have not been analyzed. As usual, moreunsolved problems arise in the end of the paper than we have started with.J. �. would like to thank DAAD for supporting his visit at the Universityof Augsburg, where part of the resear
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