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BROWNIAN MOTORS DRIVEN BY POISSONIANFLUCTUATIONS�T. CzernikDepartment of Applied Mathematis, Aademy of Eonomis1-go Maja 50, 40-226 Katowie, PolandM. NiemieInstitute of Physis, Opole UniversityOleska 48, 45-052 Opole, Polande-mail: mariusz.niemie�uni.opole.pland J. �uzkaInstitute of Physis, Silesian UniversityUniwersyteka 4, 40-007 Katowie, Polande-mail: luzka�us.edu.pl(Reeived November 15, 2000)Overdamped direted motion of Brownian motors in a spatially periodisystem, indued by Poissonian �utuations of various statistis and drivenby thermal noise, is investigated. Two models of asymmetri as well as twomodels of symmetri Poissonian �utuations are onsidered. Transportproperties in dependene upon statistis of �utuations imposed on thesystem are analyzed.PACS numbers: 02.50.Ey, 05.10.Gg, 05.40.�a1. IntrodutionA subjet whih has lately been gaining interest is transport of Brow-nian partiles (motors) moving in spatially periodi strutures. In suhsystems direted motion of partiles an be indued by zero-mean deter-ministi and/or random fores (the so-alled rathet e�et) [1℄. Why is this� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (321)



322 T. Czernik, M. Niemie, J. �uzkasubjet so fasinating? For at �rst glane it is ounterintuitive. One expetsthat imposition of zero-mean fores on the system yields zero-mean reationof the system. Now, the explanation of the transport phenomenon in suhsystems is rather obvious: the system is out of equilibrium and the detailedbalane does not hold! The onditions for transport to our in periodisystems are known. The symmetry should be broken. What kind of sym-metry should be broken is a seondary question. For example, the re�etionsymmetry of the spatially periodi struture an be broken [1℄ or the sta-tistial symmetry of �utuations an be broken [2℄. The symmetry an alsobe broken by orrelation of various degree of freedom [3℄ and by orrelationof various soures of noise [4℄. Beause real systems are rarely symmetri,the ourrene of transport should be rather a generi phenomenon thanexeptional and spei� one.In this paper we study direted urrent of non-interating partiles inthe system subjeted to a spatially periodi potential. Partiles are drivenby both zero-mean thermal equilibrium �utuations and zero-mean nonequi-librium �utuations modeled by Poissonian white shot noise. The problemstated is not new sine it has been previously studied [5, 6℄ and it has beenshown that indeed the rathet e�et an our and preferential diretionof Brownian motion is indued by nonequilibrium �utuations. However,our objetive is to investigate the in�uene of various statistis of Poisso-nian �utuations on properties of transport and eventually to �nd universalproperties of transport in suh systems.The artile is organized as follows. In Se. 2 we de�ne a mathemati-al model of Brownian motors (a rathet system) with all harateristis ofits ingredients. In Se. 3 we present two models of asymmetri Poissonian�utuations and equations whih determine the stationary probability dis-tribution P (x) and the stationary probability urrent J of Brownian motors.Se. 4 is devoted to symmetri Poissonian �utuations. In Se. 5 we analyzetransport properties of Brownian motors and inlude main onlusions.2. ModelWe onsider an ensemble of non-interating Brownian partiles movingin a one-dimensional spatially periodi potential V̂ (x̂) = V̂ (x̂ + L) of pe-riod L and of the barrier height V0 = V̂max � V̂min, and driven by randomfores. The dynamis of the system is modeled by an overdamped stohastiLangevin equation. The equation of motion in the dimensionless form is (thedimensionless variables are disussed in detail in [7℄)dxdt = f (x) + � (t) + �(t) ; (1)



Brownian Motors Driven by Poissonian Flutuations 323where x = x̂=L is the dimensionless position, t = t̂=� the dimensionless time,� = L2=V0 the harateristi time, and  is the frition oe�ient. Thedeterministi resaled fore f(x) = �dV (x)dx ; (2)and V (x) = V (x + 1) is a resaled periodi potential of unit spatial periodand of unit barrier height. The stohasti fore � (t) is Gaussian thermalequilibrium noise of the �rst two momentsh� (t)i = 0 ; h� (t)� (s)i = 2DT Æ(t� s) ; (3)where the resaled noise strength DT = kBT=V0, kB is the Boltzmann on-stant and T temperature of the system. Let us take a note that DT isa relation between thermal energy of �utuations and ativation energy ofthe partile from the bottom to the top of the potential V̂ (x̂) .The random fore �(t) models nonequilibrium �utuations and is hosento be Poissonian shot noise [8℄�(t) = 1Xi=�1 ziÆ(t� ti)� �hzii ; (4)where ti are random instants of Æ impulses, haraterized by the Poissonianounting proess n(t) with the parameter �. It means that the probabilityfor appearing of k impulses in the time-interval [0; t℄ is given by the Poissondistribution, namely, P (n(t) = k) = (�t)kk! exp(��t) : (5)The parameter � determines a mean number of the Æ impulses per unit time(a mean frequeny of impulses). The amplitudes fzig of the Æ impulses aremutually independent random variables and independent on the ountingproess n(t). The amplitudes fzig are distributed aording to the ommonprobability density �(z). The proess �(t) is symmetri if the distribution�(z) is symmetri, i.e. when �(z) = �(�z). Otherwise, it is asymmetrinoise. In the latter ase a = � hzii 6= 0 (6)orresponds in (4) to the negative value of the bias of Poissonian noise be-tween Æ spikes. The proess �(t) is a white noise (but nonequilibrated noise)with an average and orrelation funtion given byh�(t)i = 0 ; h�(t) �(s)i = 2DS Æ(t � s) : (7)



324 T. Czernik, M. Niemie, J. �uzkaThe noise intensity reads: DS = � 
z2i �2 : (8)The evolution equation for the probability distribution P (x; t) of the proessx(t) has a form of the ontinuity equation [6℄,��tP (x; t) = � ��xJ(x; t) ; (9)where the probability urrentJ(x; t) = [f(x)� � hzii℄P (x; t) �DT ��xP (x; t)+� 1Z�1 �(z) zZ0 P (x� y; t) dy dz : (10)The probability density P (x; t) has to obey the following onditionsP (x; t) � 0 ; P (x; 0) = P (x+ 1; 0) ; x0+1Zx0 P (x; t) dx = 1 ; (11)for arbitrary x0. In the stationary state, when t!1,J = limt!1 J(x; t) = �DTP 0(x) + [f(x)� � hzii℄P (x)+� 1Z�1 �(z) zZ0 P (x� y) dy dz ; (12)where P (x) and J are steady-state probability density and probability ur-rent, respetively; the prime denotes a derivative with respet to x. Theurrent J is the most important harateristis of transport of Brownianmotors. The relation between the steady-state (dimensionless) averaged ve-loity hvi of Brownian motors and the probability urrent is simple [7, 9℄,namely, hvi = h _xi = J : (13)The dimensional averaged veloity hv̂i is given by the relation [7, 9℄hv̂i = v0 J ; (14)where the harateristi veloity v0 = L=� = V0=L is determined by threequantities: the barrier height V0 and period L of the potential V̂ (x̂) and thefrition oe�ient  (whih, in turn, depends on visosity of the system inwhih Brownian motors move as well as on linear sizes of the motors).



Brownian Motors Driven by Poissonian Flutuations 3253. Asymmetri Poissonian �utuationsIn this setion we speify asymmetri Poissonian �utuations [5℄. Forasymmetri �utuations, the probability density �(z) of amplitudes fzig ofÆ kiks is asymmetri. We onsider two examples of suh densities. Bothare speial ases of the Gamma distribution [8℄, namely,�(z) = �1(z) = A�1�(z) exp(�z=A) ; A > 0 ; (15)and �(z) = �2(z) = A�2� (z) z exp (�z=A) ; A > 0 ; (16)where �(z) is the Heaviside funtion. For the �rst distribution �1(z), the�rst two moments read hzii = A ; 
z2i � = 2A2 : (17)For the seond distribution �2(z),hzii = 2A ; 
z2i � = 6A2 : (18)In these two ases, the amplitudes fzig are positive: from time to time theÆ impulse kiks the partile to the positive diretion of x. On the otherhand, the negative bias, a = �hzii, pushes the partile to the negative di-retion (let us remember that in summary h�(t)i = 0). The main di�erenebetween these two distributions is (non)monotoniity and in onsequenequalitatively di�erent most probable values of amplitudes fzig of Æ impulses.In the �rst ase, very small amplitudes (lose to zero) are more probable. Inthe seond ase, the amplitudes zi = A are the most probable. Therefore, bymanipulation of the parameter A, we have hoped for signi�ant di�erenein transport properties for these two ases.The equation determining the stationary probability distributionP (x) =Pk(x); k=1; 2, and stationary urrent J =Jk; k=1; 2, is Eq. (12).It is an integro-di�erential equation and it is very di�ult to handle it. Thisis why in eah ase we onvert it to the form of di�erential equations: In the�rst ase the result isJ1 = �DTAP 001 (x)� [DT +DS �Af(x)℄P 01(x)+ �f(x) +Af 0(x)�P1(x) : (19)In the seond ase,J2 = �A2DTP 0002 (x) +A ��Af (x)� 2DS3 � 2DT�P2 (x)�00+ [(2Af (x)�DS �DT )P2 (x)℄0 + f (x)P2 (x) : (20)



326 T. Czernik, M. Niemie, J. �uzkaIn order to obtain these equations, we have to hange the integration orderin the last term of Eq. (12). Next, observe that �k(z) (k = 1; 2) obeys anordinary di�erential equation of onstant oe�ients.4. Symmetri Poissonian �utuationsIn this setion we introdue symmetri Poissonian �utuations [6℄. Forsymmetri �utuations, the probability density �(z) of amplitudes fzig ofÆ kiks is symmetri. We present two examples of suh distributions: Theexponential distribution,�(z) = �3(z) = 0:5A�1 exp (�jzj=A) ; A > 0 ; (21)and a partiular Gamma distribution, namely,� (z) = �4(z) = 0:5A�2 jzj exp (�jzj=A) ; A > 0 : (22)The mean value of amplitudes hzii = 0 and the seond moments hz2i i are thesame as in the previous orresponding ases. The equations determining thestationary probability distribution P (x) = Pk(x); k = 3; 4 and stationaryurrent J = Jk; k = 3; 4 have the formJ3 = A2DTP 0003 (x)�A2 [f(x)P3 (x)℄00� (DT +DS)P 03 (x) + f (x)P3 (x) (23)in the ase (21) andJ4 = �A4DTP (5)4 (x) +A4 [f (x)P4 (x)℄(4)+A2�2DT + DS3 �P (3)4 (x)� 2A2 [f (x)P4 (x)℄(2)� (DT +DS)P (1)4 (x) + f (x)P4 (x) (24)in the ase (22). The supersripts (n); n = 1; :::; 5 denote the n-order deriva-tive with respet to x. One an notie that order of the di�erential equationfor P (x) depends strongly on the form of the probability distribution of am-plitudes fzig. E.g. for �4(z), the di�erential equation is of the 5-th order.It is interesting that from all these di�erential equations we an determineboth Pk(x) and Jk; k = 1; :::; 4, and the same onditions (11) are su�-ient to solve them uniquely. In general, these equations annot be solvedby analytial means. Nevertheless, they an be solved numerially for an



Brownian Motors Driven by Poissonian Flutuations 327arbitrary form of the potential V (x). However, exat analytial results anbe obtained for a pieewise linear sawtooth-like potential. We hoose thesimplest form of suh a potential, namely,V (x) = (�2 x�k1+2k ; x 2 [�1=2; k℄ mod 1 ,2 x�k1+2k ; x 2 [k; 1=2℄ mod 1 , (25)where k 2 (�1=2; 1=2) determines the asymmetry of the potential: Fork = 0 it is re�etion-symmetri, i.e., V (x) = V (�x); for k 6= 0 the re�etionsymmetry of V (x) is broken. In Fig. 1, we present V (x) in its graphialform.

Fig. 1. The resaled periodi potential V (x) = V (x+ 1) of asymmetry determinedby k 2 (�1=2; 1=2). 5. AnalysisWe analyze the stationary averaged veloity of Brownian motors or,equivalently, the steady-state probability urrent, J = hvi, whih is deter-mined by Eqs. (19), (20), (23) and (24) respetively. In order to solve theseequations, we an proeed along the same way as in [5℄. The method ofsolution of equations like onsidered here is also presented in [9, 10℄. Inthis method, the probability density P (x) and urrent J is determined by anonhomogeneous system of linear algebrai equations and evaluation of theurrent is a matter of linear algebra. In eah of four ases, J is a quotient oftwo determinants: the �fth degree in the ase (19), the seventh degree in theases (20) and (23), and the eleventh degree for (24). The expliit form ofJ is an extremely omplex expression and therefore is not reprodued here.The detailed disussion of J in ases (15) and (21) is performed in [5℄ and [6℄,respetively. Here, we mention main and the most interesting �ndings whihare visualized in Figs. 2 to 6.



328 T. Czernik, M. Niemie, J. �uzka(A) For the asymmetri distribution of amplitudes:� Generally, the properties of transport are qualitatively the same forboth distributions.� There are two regimes of transport: di�usive and non-di�usive. Inthe di�usive regime, Poissonian �utuations �(t) indues both for-ward and bakward transitions over the potential barrier. In thenon-di�usive regime, Poissonian �utuations �(t) indues only for-ward transitions. This is the ase when the bias a = �hzii is smallerthan the maximal value of the deterministi fore f(x). In Figs. 2and 3 we display the stationary probability density P (x) in these two

Fig. 2. The stationary probability density P (x) in the di�usive regime for asymmet-ri Poissonian noise with exponentially distributed amplitudes (15) of Æ impulses.

Fig. 3. The stationary probability density P (x) in the non-di�usive regime forasymmetri Poissonian noise with exponentially distributed amplitudes (15) of Æimpulses.



Brownian Motors Driven by Poissonian Flutuations 329regimes. The main feature of P (x) is its asymmetry even if the poten-tial V (x) is symmetri. The reason is asymmetry of the deterministipart f(x)� �hzii of the fore, f. (1) and (4).� J > 0 independently of asymmetry of the potential. This is beauseof positive amplitudes fzig of Æ kiks.� There are optimal values of parameters whih maximize the urrent.It is shown in Fig. 4 with a generi dependene of the stationary urrenton parameters of �utuations.

Fig. 4. Dimensionless probability urrent (averaged stationary veloity) J vs thebias of Poissonian noise in the ase of the asymmetri Gamma distribution (16) ofamplitudes of Æ impulses for seleted values of temperature.(B) For the symmetri distribution of amplitudes:� The urrent J = 0 if V (x) is symmetri; J 6= 0 if V (x) is asymmetri.� Generally, the properties of transport are qualitatively the same forboth distributions.� However, for spei� hoie of parameter set, one an notie a remark-able di�erene: for the exponential distribution (21), the urrent J ismonotoni funtion of DS , while for the Gamma distribution (22) it isnon-monotoni (see Figs. 5 and 6).� The sign of J depends on asymmetry of the potential. For asymmetripotentials, the distane dmM between a minimum and a neighboringmaximum is di�erent that the distane dMm between the maximumand the next neighboring minimum. Let us onsider the ase of the



330 T. Czernik, M. Niemie, J. �uzkapotential shown in Fig. 1 with asymmetry k > 0. Partiles are sym-metrially kiked by Æ impulses into the left and into the right dire-tions. However, the probability that the partile falls into the interval(�1=2; k)mod 1 is greater than it falls into the interval (k; 1=2)mod 1.As a onsequene, motors move in the diretion from the maximumto the minimum along both slighter and longer slope of the potentialV (x) (in the situation shown in Fig. 1, in the right diretion).

Fig. 5. Dimensionless probability urrent J vs the intensity DS of Poissonian noisein the ase of the symmetri exponentially distributed (21) amplitudes of Æ impulsesfor seleted values of temperature.

Fig. 6. Same as in Fig. 5 but for the symmetri Gamma distribution (22) of ampli-tudes of Æ impulses.
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