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Overdamped directed motion of Brownian motors in a spatially periodic
system, induced by Poissonian fluctuations of various statistics and driven
by thermal noise, is investigated. Two models of asymmetric as well as two
models of symmetric Poissonian fluctuations are considered. Transport
properties in dependence upon statistics of fluctuations imposed on the
system are analyzed.
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1. Introduction

A subject which has lately been gaining interest is transport of Brow-
nian particles (motors) moving in spatially periodic structures. In such
systems directed motion of particles can be induced by zero-mean deter-
ministic and/or random forces (the so-called ratchet effect) [1]. Why is this
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subject so fascinating? For at first glance it is counterintuitive. One expects
that imposition of zero-mean forces on the system yields zero-mean reaction
of the system. Now, the explanation of the transport phenomenon in such
systems is rather obvious: the system is out of equilibrium and the detailed
balance does not hold! The conditions for transport to occur in periodic
systems are known. The symmetry should be broken. What kind of sym-
metry should be broken is a secondary question. For example, the reflection
symmetry of the spatially periodic structure can be broken [1] or the sta-
tistical symmetry of fluctuations can be broken [2]. The symmetry can also
be broken by correlation of various degree of freedom [3] and by correlation
of various sources of noise [4]. Because real systems are rarely symmetric,
the occurrence of transport should be rather a generic phenomenon than
exceptional and specific one.

In this paper we study directed current of non-interacting particles in
the system subjected to a spatially periodic potential. Particles are driven
by both zero-mean thermal equilibrium fluctuations and zero-mean nonequi-
librium fluctuations modeled by Poissonian white shot noise. The problem
stated is not new since it has been previously studied [5,6] and it has been
shown that indeed the ratchet effect can occur and preferential direction
of Brownian motion is induced by nonequilibrium fluctuations. However,
our objective is to investigate the influence of various statistics of Poisso-
nian fluctuations on properties of transport and eventually to find universal
properties of transport in such systems.

The article is organized as follows. In Sec. 2 we define a mathemati-
cal model of Brownian motors (a ratchet system) with all characteristics of
its ingredients. In Sec. 3 we present two models of asymmetric Poissonian
fluctuations and equations which determine the stationary probability dis-
tribution P(z) and the stationary probability current J of Brownian motors.
Sec. 4 is devoted to symmetric Poissonian fluctuations. In Sec. 5 we analyze
transport properties of Brownian motors and include main conclusions.

2. Model

We consider an ensemble of non-interacting Brownian particles moving
in a one-dimensional spatially periodic potential V(2) = V(& + L) of pe-
riod L and of the barrier height V) = Vmax - Vmin, and driven by random
forces. The dynamics of the system is modeled by an overdamped stochastic
Langevin equation. The equation of motion in the dimensionless form is (the

dimensionless variables are discussed in detail in [7])

dz

5 = f @+ (@) +n), (1)
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where z = % /L is the dimensionless position, ¢+ = #/7 the dimensionless time,
7 = yL?/Vq the characteristic time, and + is the friction coefficient. The
deterministic rescaled force

fa) =222, )

and V(z) = V(z + 1) is a rescaled periodic potential of unit spatial period
and of unit barrier height. The stochastic force I'(¢) is Gaussian thermal
equilibrium noise of the first two moments

(r@®) =0,  (LHI'(s)) =2Dré(t = s), (3)

where the rescaled noise strength Dy = kgT'/Vj, kp is the Boltzmann con-
stant and T temperature of the system. Let us take a note that Dp is
a relation between thermal energy of fluctuations and activation energy of
the particle from the bottom to the top of the potential V(&) .

The random force 7(t) models nonequilibrium fluctuations and is chosen
to be Poissonian shot noise [§]

o0

n(t) = Y zi(t—t:) — Mz), (4)

i=—00

where t; are random instants of § impulses, characterized by the Poissonian
counting process n(t) with the parameter A. It means that the probability
for appearing of k£ impulses in the time-interval [0, ] is given by the Poisson
distribution, namely,

(At)*
!

The parameter A determines a mean number of the § impulses per unit time
(a mean frequency of impulses). The amplitudes {z;} of the ¢ impulses are
mutually independent random variables and independent on the counting
process n(t). The amplitudes {z;} are distributed according to the common
probability density p(z). The process n(t) is symmetric if the distribution
p(z) is symmetric, i.e. when p(z) = p(—z). Otherwise, it is asymmetric
noise. In the latter case

P(n(t) = k) =

exp(—At). (5)

a=A(z)#0 (6)

corresponds in (4) to the negative value of the bias of Poissonian noise be-
tween § spikes. The process n(t) is a white noise (but nonequilibrated noise)
with an average and correlation function given by

(&) =0,  (n(t)n(s)) =2Ds(t —s). (7)
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The noise intensity reads:

pg = M) ®

The evolution equation for the probability distribution P(x,t) of the process
z(t) has a form of the continuity equation [6],
0 0

EP(.’B,t) = _%J(x,t), (9)

where the probability current

J,t) = [£() = A(z] Plat) — Dr 2Pl )
o0 z
+A / p(2) /P(x —y,t)dydz . (10)
—00 0
The probability density P(z,t) has to obey the following conditions
zo+1
P(2,4) >0, P(2,0)=P(z+1,0), / Plt)de=1, (1)
o

for arbitrary xg. In the stationary state, when ¢ — oo,

J = lim J(a,t) = ~DrP (2) + [f(x) = A (z)|P(x)

+A /OO p(2) /Zp(x —y)dydz, (12)
—00 0

where P(z) and J are steady-state probability density and probability cur-
rent, respectively; the prime denotes a derivative with respect to z. The
current J is the most important characteristics of transport of Brownian
motors. The relation between the steady-state (dimensionless) averaged ve-
locity (v) of Brownian motors and the probability current is simple [7,9],
namely,

(v) = (@) = J. (13)
The dimensional averaged velocity (9) is given by the relation [7,9]

<ﬁ> = J ) (14)

where the characteristic velocity vg = L/7 = Vi /vL is determined by three
quantities: the barrier height V; and period L of the potential V(i) and the
friction coefficient  (which, in turn, depends on viscosity of the system in
which Brownian motors move as well as on linear sizes of the motors).
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3. Asymmetric Poissonian fluctuations

In this section we specify asymmetric Poissonian fluctuations [5]. For
asymmetric fluctuations, the probability density p(z) of amplitudes {z;} of
0 kicks is asymmetric. We consider two examples of such densities. Both
are special cases of the Gamma distribution [8], namely,

p(2) = pi(2) = A7O(z) exp(~z/A),  A>0, (15)

and
p(2) = pa(z) = A2 () zexp (—2/4) , A >0, (16)

where ©(z) is the Heaviside function. For the first distribution p1(z), the
first two moments read

(z;) = A, <zz2> =242, (17)
For the second distribution py(z),
(zi) =24, (27)=64%. (18)

In these two cases, the amplitudes {z;} are positive: from time to time the
0 impulse kicks the particle to the positive direction of z. On the other
hand, the negative bias, a = A(z;), pushes the particle to the negative di-
rection (let us remember that in summary (n(¢)) = 0). The main difference
between these two distributions is (non)monotonicity and in consequence
qualitatively different most probable values of amplitudes {z;} of § impulses.
In the first case, very small amplitudes (close to zero) are more probable. In
the second case, the amplitudes z; = A are the most probable. Therefore, by
manipulation of the parameter A, we have hoped for significant difference
in transport properties for these two cases.

The equation determining the stationary probability distribution
P(z) = Pg(x), k=1,2, and stationary current J=J, k=1,2, is Eq. (12).
It is an integro-differential equation and it is very difficult to handle it. This
is why in each case we convert it to the form of differential equations: In the
first case the result is

Ji = ~DrAP] (z) - [Dr + Ds — Af ()] P} ()
+ [f(@) + Af'(@)] Pi(a). (19)

In the second case,

"

Jy = —A’DpP,) (z)+ A [(A f(z) - 2’% - 2DT) P, (m)]

+[(2Af () — Ds — Dy) Po (2)] + [ (z) P2 (2) . (20)
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In order to obtain these equations, we have to change the integration order
in the last term of Eq. (12). Next, observe that px(z) (kK = 1,2) obeys an
ordinary differential equation of constant coefficients.

4. Symmetric Poissonian fluctuations

In this section we introduce symmetric Poissonian fluctuations [6]. For
symmetric fluctuations, the probability density p(z) of amplitudes {z} of
0 kicks is symmetric. We present two examples of such distributions: The
exponential distribution,

p(2) = pa(z) = 0.5 A Lexp (—|2]/4), A >0, (21)
and a particular Gamma distribution, namely,
p(2) = palz) = 0.5 A 2|z exp (~|2|/4), A >0. (22)

The mean value of amplitudes (z;) = 0 and the second moments (z?) are the
same as in the previous corresponding cases. The equations determining the
stationary probability distribution P(x) = Py(z), k = 3,4 and stationary
current J = Ji, k = 3,4 have the form

n "

Js = A’DrPy (z) — A? [f(2)Ps (2)]

— (Dr + Ds) Py () + f (z) P3 () (23)

in the case (21) and

Jy = —A'DrP{) (z) + AM[f (z) Py (2)]

A2 <2DT + %) P (z) — 242 [f (z) Py (2)]?

—(Dr + D) PV (2) + f (2) Py () (24)

in the case (22). The superscripts (n), n = 1,...,5 denote the n-order deriva-
tive with respect to z. One can notice that order of the differential equation
for P(x) depends strongly on the form of the probability distribution of am-
plitudes {z;}. E.g. for ps(z), the differential equation is of the 5-th order.
It is interesting that from all these differential equations we can determine
both Pg(z) and Jg, k = 1,...,4, and the same conditions (11) are suffi-
cient to solve them uniquely. In general, these equations cannot be solved
by analytical means. Nevertheless, they can be solved numerically for an
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arbitrary form of the potential V(z). However, exact analytical results can
be obtained for a piecewise linear sawtooth-like potential. We choose the
simplest form of such a potential, namely,

—2a=k xz € [-1/2,k] mod 1
Vv — 1+2k° ’ ’ 25
(=) { g2k, z€[k,1/2] mod1, (25)

where k € (—1/2,1/2) determines the asymmetry of the potential: For
k = 0 it is reflection-symmetric, i.e., V(x) = V(—=x); for k # 0 the reflection
symmetry of V(z) is broken. In Fig. 1, we present V(z) in its graphical
form.

Fig. 1. The rescaled periodic potential V(z) = V(2 + 1) of asymmetry determined
by k € (-1/2,1/2).

5. Analysis

We analyze the stationary averaged velocity of Brownian motors or,
equivalently, the steady-state probability current, J = (v), which is deter-
mined by Egs. (19), (20), (23) and (24) respectively. In order to solve these
equations, we can proceed along the same way as in [5]. The method of
solution of equations like considered here is also presented in [9,10]. In
this method, the probability density P(z) and current J is determined by a
nonhomogeneous system of linear algebraic equations and evaluation of the
current is a matter of linear algebra. In each of four cases, J is a quotient of
two determinants: the fifth degree in the case (19), the seventh degree in the
cases (20) and (23), and the eleventh degree for (24). The explicit form of
J is an extremely complex expression and therefore is not reproduced here.
The detailed discussion of J in cases (15) and (21) is performed in [5] and [6],
respectively. Here, we mention main and the most interesting findings which
are visualized in Figs. 2 to 6.
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(A) For the asymmetric distribution of amplitudes:

— Generally, the properties of transport are qualitatively the same for

both distributions.

— There are two regimes of transport: diffusive and non-diffusive. In
the diffusive regime, Poissonian fluctuations n(¢) induces both for-
ward and backward transitions over the potential barrier. In the
non-diffusive regime, Poissonian fluctuations 7(¢) induces only for-
ward transitions. This is the case when the bias a = A(z;) is smaller
than the maximal value of the deterministic force f(z). In Figs. 2
and 3 we display the stationary probability density P(z) in these two

P(x)

4

Fig. 2. The stationary probability density P(z) in the diffusive regime for asymmet-
ric Poissonian noise with exponentially distributed amplitudes (15) of § impulses.

8
P(x)

6

- D;=0.001
a=1

D=1

k=0

Fig.3. The stationary probability density P(z) in the non-diffusive regime for
asymmetric Poissonian noise with exponentially distributed amplitudes (15) of §

impulses.
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regimes. The main feature of P(x) is its asymmetry even if the poten-
tial V' (z) is symmetric. The reason is asymmetry of the deterministic
part f(z) — A(z;) of the force, ¢f. (1) and (4).

— J > 0 independently of asymmetry of the potential. This is because
of positive amplitudes {z;} of § kicks.

— There are optimal values of parameters which maximize the current.
It is shown in Fig. 4 with a generic dependence of the stationary current
on parameters of fluctuations.

00' ! N ! 1

Fig.4. Dimensionless probability current (averaged stationary velocity) J wvs the
bias of Poissonian noise in the case of the asymmetric Gamma distribution (16) of
amplitudes of § impulses for selected values of temperature.

(B) For the symmetric distribution of amplitudes:
— The current J = 0 if V(z) is symmetric; J # 0 if V() is asymmetric.

— Generally, the properties of transport are qualitatively the same for
both distributions.

— However, for specific choice of parameter set, one can notice a remark-
able difference: for the exponential distribution (21), the current J is
monotonic function of Dg, while for the Gamma distribution (22) it is
non-monotonic (see Figs. 5 and 6).

— The sign of J depends on asymmetry of the potential. For asymmetric
potentials, the distance dy\ between a minimum and a neighboring
maximum is different that the distance dym between the maximum
and the next neighboring minimum. Let us consider the case of the
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potential shown in Fig. 1 with asymmetry k£ > 0. Particles are sym-
metrically kicked by § impulses into the left and into the right direc-
tions. However, the probability that the particle falls into the interval
(—1/2,k)mod 1 is greater than it falls into the interval (k,1/2) mod 1.
As a consequence, motors move in the direction from the maximum
to the minimum along both slighter and longer slope of the potential
V(z) (in the situation shown in Fig. 1, in the right direction).

Fig.5. Dimensionless probability current J vs the intensity Dg of Poissonian noise
in the case of the symmetric exponentially distributed (21) amplitudes of § impulses
for selected values of temperature.

J

0,20 -

015 H .---

Fig.6. Same as in Fig. 5 but for the symmetric Gamma distribution (22) of ampli-
tudes of § impulses.
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The current is influenced by other parameters of the model such as the
bias of Poissonian white fluctuations, temperature of the system and asym-
metry of the potential. One can contemplate other statistics of Poissonian
fluctuations to be implemented to the model considered. But the main
conclusion is rather disappointing: differences caused by various sources
of Poissonian fluctuations are mirror and they drive the Brownian motors
qualitatively in the universal way. On the other hand, we analyzed only
one transport coefficient, namely, the stationary mean velocity (v). Other
important transport characteristics like efficiency of the ratchet system,
the diffusion coefficient, D = lim; 00 ((z%(t) — (2(¢))?)/t, or fluctuations
of velocity, ((Av)?) = (v?) — (v)2, have not been analyzed. As usual, more
unsolved problems arise in the end of the paper than we have started with.

J. §.. would like to thank DAAD for supporting his visit at the University
of Augsburg, where part of the research was performed.
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