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THE BROWNIAN MOTION IN A THERMAL FIELD�R. WojnarInstitute of Fundamental Te
hnologi
al Resear
h, Polish A
ademy of S
ien
es�wi�tokrzyska 21, 00-049 Warszawae-mail: rwojnar�ippt.gov.pl(Re
eived November 9, 2000)The di�usion of a Brownian parti
le in a 
ontinuum subje
t to externalpotential for
es as well as nonhomogeneous thermal �eld is dis
ussed. Apartfrom a thermodi�usion phenomenon, a Streater e�e
t in whi
h the potentialenergy of the parti
le is 
onverted to a heat due to fri
tion 
f. R.F. Streater,Rep. Math. Phys. 40, 557 (1997), is taken into a

ount. It is shown thatfor su
h a 
ontinuum the �rst law of thermodynami
s holds true, and these
ond law is observed if a relation between the probability density fun
tionand temperature is satis�ed. The examples of the Brownian motion forparti
ular external �elds are given.PACS numbers: 05.40.J
, 05.60.�k, 05.70.Lu1. Introdu
tionA thermodi�usion phenomenon in liquids was dis
overed apparently forthe �rst time by Ludwig in 1856 and independently by Soret in 1879. Theyobserved dire
t thermodi�usion in whi
h a �ow of matter is 
aused by atemperature gradient. A re
ipro
al e�e
t, in whi
h a �ow of heat is 
ausedby the gradient of the parti
le 
on
entration was observed by Dufour in1872, 
f. [2℄.The motion of Brownian parti
le in an external for
e �eld when thermale�e
ts are taken into a

ount 
an be in�uen
ed by the two pro
esses: (i) athermodi�usion pro
ess, and (ii) a 
onversion of the potential energy of theparti
le into heat. It was pointed out by Streater [1,3℄ that the fri
tion workperformed by Brownian parti
les falling in the gravity �eld is 
onverted toan irreversible heat sour
e energy, so the di�usion and thermal pro
esses are
oupled.� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (333)



334 R. WojnarAlso, Streater [4℄ performed an analysis of the so 
alled Soret�Dufoure�e
ts for a spe
ial statisti
al model of gas of mole
ules with repulsive 
ores.In this model only one phenomenologi
al (ma
ros
opi
) 
oe�
ient o

urs,namely the di�usion 
oe�
ient whi
h has interpretation of the mi
ros
opi
hopping rate, and the heat 
ondu
tivity and 
ross-
oe�
ients are expressedby the di�usion 
oe�
ient, density and a maximum density of the di�usingBrownian parti
les.It is well known, even from the elementary kineti
 theory of gases thatthe di�erent transport phenomena, su
h as vis
osity, heat 
ondu
tion anddi�usion are interrelated, see e.g. [5℄. However, the thermodi�usion phe-nomenon in terms of mean free path has not been analysed in a satisfa
toryway. For example, Oskar Meyer in his famous 
onsiderations on the elemen-tary theory of gas kineti
s does not in
lude the thermodi�usion phenomenon,[6℄. Even when a theory of thermodi�usion was built for the gases on thebasis of the Boltzmann equation by Enskog (1912) and Chapman (1916)su
h a theory was not a

epted until an experimental eviden
e was gainedby Chapman and Dootson in 1917 [7℄; the experimental eviden
e of the re-
ipro
al thermodi�usion e�e
t was found by Clusius and Waldmann only in1943 [8,9℄.The Enskog�Chapman method of analysis of the Boltzmann equationis somehow awkward, and trials to give more immediate and intuitive ex-planation of the e�e
t were proposed by Frankel in 1940 [10℄ and Fürth in1941 [11℄. These elementary treatments were dis
ussed by Furry in 1948[12℄. However, a simple elementary explanation of the re
ipro
al e�e
t isapparently missing in the literature. Su
h an explanation based on Pohl'smethod [5℄ is given in Appendix A.In the present paper a Brownian motion in whi
h both the thermodif-fusion e�e
t and an external potential for
e exist, is studied, 
f. [1,13,14℄.We do not enter into a mi
rome
hani
s of the thermodi�usion and only phe-nomenologi
al 
oe�
ients, namely those of di�usion, thermodi�usion andheat 
ondu
tivity are taken into a

ount.2. The �rst law for Brownian parti
leLet 
 be a bounded, su�
iently regular domain with boundary �
,
f. Fig. 1. Let the fun
tion f = f(x; t) represent the probability density of�nding a tagged Brownian parti
le at x at time t. Consider the motion of theBrownian parti
le in a �uid at temperature T = T (x), under the in�uen
eof a 
onservative �eld of for
e F = �rV , where V denotes a potential.In the present paper the temperature T is given in the energeti
 s
ale.Its relation to the temperature TKelv given in the degrees of Kelvin isT = kBTKelv, where kB = 1:38� 10�23 JK is the Boltzmann 
onstant.
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Fig. 1. Motion of a Brownian parti
le in domain 
 subje
t to a temperature gra-dient and a gravitational �eldLet j and q denote the �ux of Brownian parti
le di�usion and heat�ow, respe
tively, 
onsidered in that domain. The 
orresponding 
ontinuityequations read �f�t + ji;i = 0; C �T�t + qi;i = r; (2.1)where C = C(x) stands for the spe
i�
 heat and r denotes a heat sour
e.Moreover, ji denotes the i-th 
omponent of the ve
tor j and the 
ommadenotes di�erentiation with respe
t to the spatial variable; thus ji;i � divj,(i = 1; 2; 3).The term r represents the rate at whi
h the Brownian parti
le does workwhi
h is subsequently 
onverted into heatr = j � F or r = �j � rV: (2.2)We make the following boundary assumptions:j = 0 and q = 0 on �
: (2.3)Combining equations (2.1) with the se
ond equation of (2.2) we obtain thefollowing 
ontinuity relation �e�t + jEi;i = 0; (2.4)where e denotes the energy density and jE is the 
urrent of total energye � V f + CT and jEi � V ji + qi: (2.5)
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ording to 
onditions (2.3)jE = 0 on �
 (2.6)and the energy of the system isE � Z
 edx = Z
 [V (x)f(x; t) + C(x)T (x; t)℄ dx: (2.7)By integration of (2.4) we �nd that�E�t = Z
 jEi;idx (2.8)or by virtue of the divergen
e theorem and vanishing boundary 
ondition(2.6) we get �E�t = 0: (2.9)Thus the �rst law of thermodynami
s holds true.3. The transport relationsLetD andK be the di�usion and heat 
ondu
tivity tensors, respe
tively;and let M and N denote the thermodi�usion dire
t and re
ipro
al tensors,respe
tively. In general the tensors M and N are not independent, seeEq. (4.5). We admit that D, K, M and N are fun
tions of position x,time t, temperature T and probability density f . The equations for di�usionand heat �uxes are as follows, 
f. [1,4,15℄ji = �Dij �f;j + fT V;j��MijT;j;qi = �Nij �f;j + fT V;j��KijT;j: (3.1)Substituting the expressions (3.1) into the set of equations (2.1) we get�f�t = �Dij �f;j + fT V;j�+MijT;j�;i ;C �T�t = �Nij �f;j + fT V;j�+KijT;j�;i + r: (3.2)The �rst equation of the last set for M = 0 be
omes the di�usion equationwith drift known as the Einstein�Smolu
howski equation.



The Brownian Motion in a Thermal Field 337Remark 1The mean velo
ity of the Brownian parti
le is, by the �rst equation of(2.1) and the divergen
e theorem,vi = ��t Z
 xif(x; t)dx = Z
 xi�f(x; t)�t dx = �Z
 xijk;kdx= � Z�
 xijknkdA+ Z
 jidx: (3.3)So, similarly as in [2℄, v = R
 jdx; where the boundary 
ondition (2.3) for jis used, or, by the �rst equation of the set (3.1),vi = �Z
 �Dij �f;j + fT V;j�+MijT;j� dx: (3.4)If Dij ;Mij ; T and rV are 
onstants, and f = 0 on �
, the relation (3.3)passes into Einstein's formula vi = 1T DijFj ; (3.5)where the relation R
 f(x)dx = 1 was used.4. The se
ond law of thermodynami
sWe have the following expression for the entropy of our modelS = Z
 ��f(x; t)lnf(x; t) + C(x)lnT (x; t)T0 � dx; (4.1)where T0 denotes a temperature of the initial state. Hen
e�S�t = Z
 ���f�t lnf(x; t)� �f�t + C(x) 1T �T�t � dxor �S�t = Z
 �ji;ilnf(x; t) + ji;i + 1T (�qi;i + r)� dx: (4.2)



338 R. WojnarWe use the divergen
e theorem and after use of the boundary 
onditions(2.3) we get �S�t = Z
 ��ji 1f f;i � 1T 2T;iqi + 1T r� dx: (4.3)Substituting r as the se
ond alternative from (2.2) into (4.3) we get�S�t = Z
 ��ji 1f �f;i + fT V;i�� qi 1T 2T;i� dx: (4.4)Remark 2From (4.4) we see that the thermodynami
 for
es for the di�usion andheat �uxes j and q are1f �rf + fTrV � and 1T 2rT; respe
tively.Thus the proper form of equations for di�usion and heat �uxes (3.1) is asfollows ji = �Dijf 1f �f;j + fT V;j��MijT 2 1T 2T;j;qi = �Nijf 1f �f;j + fT V;j��KijT 2 1T 2T;jand the symmetry of kineti
 
oe�
ients givesMijT 2 = Nijf: (4.5)Thus, in this 
ondition not only 
oe�
ients M and N are involved butalso the unknown �elds f and T , 
f. Appendi
es A and B.Next, from Eq. (3.1)1 we �ndf;i + fT V;i = �Dij (jj +MjmT;m) ; (4.6)where D �D�1 and after Eq. (3.1)2 we 
an writeqi = NijDikj;k � �Kim �NijDikMkm�T;m: (4.7)Using (4.6) and (4.7) we �ndji�f;i + fT V;i� = �Dijjijj �DijMjmjiT;m;qiT;i = NijDikjkT;i � �Kim �NijDjkMkm�T;mT;i:



The Brownian Motion in a Thermal Field 339Substituting these relations into (4.4) we obtain�S�t =Z
 � 1f Dijjijj +� 1f Mij� 1T 2Nij� jkT;i + �Kim�NijDjkMkm�T;iT;m� dx:(4.8)Therefore, if (4.5) is satis�ed and the matrixKim �NijDjkMkm (4.9)or 264 D MN K 375is positive de�nite, the se
ond law of thermodynami
s�S�t � 0 (4.10)holds true in the system.Remark 3If D = 0;M = 0 and N = 0, then Eq. (4.4) be
omes�S�t = Z
 ��qi 1T 2T;i� dxor, by Eq. (3.1), �S�t = Z
 1T 2KijT;jT;idx: (4.11)A fun
tion T = T (x) whi
h minimizes _S is to be found from the variationalequation24 dd� Z
 1(T + � ~T )2Kij(T;i + � ~T;i)(T;j + � ~T;j)dx35�=0 = 0 (4.12)with the 
ondition ~T = 0 on the boundary �
. This leads to the nonlinearequation 1T 3Kij �T�xi �T�xj = ��xj � 1T 2Kij �T�xi� : (4.13)



340 R. WojnarOn the other hand from the se
ond equation of (3.2) we haveC�T�t = (KijT;j);i (4.14)and for _T = 0 we get the quasi-linear equation(KijT;j);i = 0: (4.15)Therefore, a

ording to Eq. (4.13) a minimum entropy produ
tion 
onditiondi�ers from that des
ribing a stationary distribution of temperature (4.15).This 
ontradi
ts a Prigogine 
onje
ture [16,17℄ that for a driven system therate of entropy produ
tion _S de
reases with time towards the minimum. Anexample supporting this 
ontradi
tion was presented by Streater in [1℄.5. A driven system in a slabAgain, treading in footsteps of [1℄, we look for a stationary solution farfrom equilibrium. Consider one-dimensional isotropi
 model for whi
h aBrownian parti
le is 
on�ned to 0 � x � 1.We impose the 
ondition that the parti
le 
urrent is zeroj = 0 (5.1)and that time derivatives vanish. From (2.2) and (5.1), we getr = 0: (5.2)Also we assume that there is a nonzero �ow of heat driven by maintainingthe ends of the interval [0; 1℄ at di�erent temperatures, T0 and T1.Eqs. (2.1) for our 
ase (1-dim, isotropi
) readD�f;x + fT V;x�+MT;x = 0;�N �f;x + fT V;x�+KT;x�;x = 0: (5.3)Using (4.5) in the �rst equation of the last set we haveD�f;x + fT V;x�+N fT 2T;x = 0: (5.4)Hen
e after integration we �nd thatf = f0 exp24ND � 1T � 1T0�� xZ0 1T (�)V;�d�35 ; (5.5)
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tor. Using (5.4) we write the se
ond equationof the set (5.3) in the form��K � N2D fT 2�T;x�;x = 0: (5.6)After integration we get �K � N2D fT 2�T;x = a; (5.7)where a = 
onst and f is given by (5.5). Thus (5.7) is 
ompli
ated nonlin-ear integro-di�erential equation for T whi
h 
an be solved by approximativemethods.We 
an write an alternative form of (5.7)T (x) = T0 + a xZ0 d�K � N2D fT 2 : (5.8)For N ! 0 and K = 
onst we have an expression from [2℄. We 
an esti-mate the in�uen
e of the thermodi�usion on distribution f 
onsidering thesimpli�ed situation in whi
h D;N and K are 
onstants. As an example ofV we take the potential of a homogeneous gravity �eld in the formV = gx; (5.9)where g = 
onstant. In the �rst approximation when the se
ond term in thedenominator under the integral in (5.8) is negle
ted, the temperature is alinear fun
tion of x T (x) = T0 + (T1 � T0)x: (5.10)Substituting this expression into (5.5) we get the �rst approximation of ff = f0� TT0�� gT1�T0 exp �ND � 1T � 1T0�� : (5.11)Hen
e the distribution f is a produ
t of two fun
tions: The �rst is expli
itlynon-Gibbsian (as in [1℄), and the se
ond with the fra
tion N=D in exponenthas a quasi-Gibbsian 
hara
ter. The examples of the fun
tion f given by(5.11) for di�erent parameters g and N=D are given in Fig. 2.
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Fig. 2. The non-Gibbsian distribution fun
tion versus T (T0 = 1; T1 = 2; N=D =0:01; 1) for di�erent values g = 0:1; 0:2; 0:3.6. System in a slab with given temperatureWe 
onsider a one-dimensional isotropi
 model for whi
h a Brownianparti
le at t = 0 is at x = x0, and the parti
le 
urrent j = 0 at the bottomof the slab x = 0 for t � 0, see Fig. 1. We assume that the temperaturedistribution is known T = T (x). Evolution of the distribution fun
tion isdes
ribed by equation (2.3)1 whi
h for 1-dim, isotropi
 
ase reads�f�t = �D�f;x + fT V;x�+MT;x�;x (6.1)or after using (4.5) we have�f�t = �D�f;x + fT V;x��;x ; (6.2)where V;x = V;x + ND T;xT (6.3)is a given fun
tion. If N and D are 
onstants, we haveV = V + ND ln TT0 (6.4)whi
h means that a thermodi�usion leads to a modi�
ation of the externalpotential V . Solution of equations of type (6.2) was dis
ussed by Smolu-
howski [18,19℄, 
f. also Cherkasov [20℄ and Ri

iardi [21℄.



The Brownian Motion in a Thermal Field 343Eq. (6.2) 
an be used as a mathemati
al model for the 
onsidered system.We take into a

ount (5.9) as a potential V and (5.10) as a temperaturedistribution T (x). Then T;x = T1 � T0 and we make the approximationT;xT � 2T1 � T0T1 + T0 :From (6.3) we have DV;x = Dg + 2T1 � T0T1 + T0N: (6.5)In the equation �f�t = D�2f�x2 + DV;x�f�x (6.6)we 
hange the s
ale of length and time as follows:� = xx0 � = Dx20 t (6.7)and obtain �f�� = �2f��2 + 
�f�� ; (6.8)where 
 = x0V;x = 
onst: (6.9)A solution of Eq. (6.8) for (�; �) 2 (0;1)� (0;1) subje
t to the 
onditionsf(�; 0) = Æ(� � 1); � 2 (0;1)�f�� (0; �) + 
f(0; �) = 0; � > 0f(�; �)! 0; � !1; � > 0 (6.10)takes the formf(�; �) = 12p�� �e (��1)24� � e� (�+1)24� � e�
 ��12 �
2 �4+ 
p� e�
� 1Z�+1�
�2p� e�z2dz: (6.11)In Fig. 3 the fun
tion f(�; �) and the 
orresponding heat sour
er = r(�; �) as fun
tions of � for a given moment of time are plotted. Theinterpretation of the heat sour
e fun
tion r = r(�) shown in Fig. 3 is the fol-lowing: For � < 1:1, (x < 1:1x0) a Brownian parti
le that falls in the gravity
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Fig. 3. The distribution f and the heat sour
e r as fun
tion of � for � = 1:5, andfor 
 = 3� 10�15J=�x and g = 0:3� 10�15J=�x. The unit of f is (�x)�3 and the unitof r is 10�15J(�x)�3(�t)�1, where �x � x0 and �t � x20=D are the new units of lengthand time, 
f. Eq. (6.7).�eld produ
es a positive amount of heat (r > 0). For 1:1 < � <1 the par-ti
le goes up due to absorption of an environmental heat, whi
h 
orrespondsto r < 0 over that interval.In Figs. 4, 5 and 6 the solution f(�; x0; �) as a fun
tion of � for a set ofvalues of 
 and for �xed values of time � is presented.

Fig. 4. The distribution f versus � for 
 = 5 and times � = 0:001; 0:01; 0:1; 0:5.It follows from these �gures that ifg + 2T1 � T0T1 + T0 ND
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Fig. 5. The distribution f versus � for 
 = 1:5 and times � = 0:001; 0:01; 0:1; 0:2; 1.

Fig. 6. The distribution f versus � for 
 = �5 and times � = 0:001; 0:01; 0:1; 0:5.
hanges sign from positive to negative (T0 � T1) then 
 be
omes negative,
f. Eqs. (6.5) and (6.9), and the Brown parti
les move towards a 
older partof the region, i.e. most of them do not fall down in the gravitational �eld.This means that in 
ase 
 < 0 the thermodi�usive for
es are greater thanthe gravitational ones. 7. Con
lusions1. A 
onsistent thermodynami
 des
ription of the motion of Brownianparti
les subje
t to both thermodi�usive for
es and the gravity for
es,is given following the Einstein�Smolu
howski and Streater approa
hesto the Brownian parti
le motion problem, 
f. [22℄.



346 R. Wojnar2. In parti
ular, it is shown that the Brownian parti
les in a gravity�eld move upward provided the parti
les absorb the heat from thesurrounding, and they fall down when they generate heat in a fri
tionpro
ess.3. A relation (4.5) between the 
oe�
ients of dire
t and re
ipro
al ther-modi�usion is found, and veri�ed using examples from the elementarygas theory (Appendix A) and the rari�ed gas theory (Appendix B).4. A generalization of Streater's proposition regarding the Prigogine 
on-je
ture to in
lude 3dim nonhomogeneous anisotropi
 
ase is also given.Appendix AOnsager relations in an elementary thermodi�usion theoryLet n; v; � and " be the number density of gas parti
les, the mean velo
ityof gas parti
les, the length of mean free path and the mean energy of aparti
le, respe
tively. Then a one-dimensional stream of parti
les j and ofheat q is, respe
tivelyj = �16 d(nv)dx 2� and q = �16 d("v)dx 2�; (A.1)where " = nsT and s is a number of parti
le degree of freedom. Sin
e12mv2 � 12sT; (A.2)where m is a mass of parti
le, we �nd thatv =rsTm : (A.3)Hen
e j = �13��vdndx + nr sm 12pT dTdx�and q = �13��12sTvdndx + CpdTdx� ; (A.4)where Cp = nd"=dT . Therefore, the thermodi�usion 
oe�
ientsM = 13�nr sm 12pT N = 13�12sTv (A.5)



The Brownian Motion in a Thermal Field 347and MN = nsT 2 : (A.6)This is an expression of the type of Eq. (4.5). In a one-dimensional problemin whi
h s = 1 the last equation is identi
al with (4.5).Appendix BOnsager relations in a Enskog�Chapman thermodi�usion theoryThe set of thermodi�usion equations as derived from the Boltzmannequation for the gas mixture in whi
h the partial density distribution ofone 
onstituent is n1 = n1(r; t) and the density distribution of the se
ond
onstituent is n2 = n2(r; t), and the 
onditions of the 
onstant pressure pprevail, reads C1 �C2 = � n2n1n2 �D12d12 +DT 1T �T�r � ;q = ���T�r + nTkT (C1 �C2) ; (B.1)whered12 � �n10�r � �1�2p� (F 1 � F 2); n10 � n1n and p = nT; (B.2)
f. Chapman and Cowling [7℄, Chapter 8. Here, D12, DT and � are the 
oef-�
ients of di�usion, thermal di�usion and thermal 
ondu
tion, respe
tively,while kT is 
alled the thermodi�usion ratiokT = DTD12 ; (B.3)moreover, C1 and C2 are the mean pe
uliar velo
ities (measured relative tothe mean mass velo
ity of the gas) of the parti
le of the 
onstituent number1 and of number 2, respe
tively; the number density of the s-th 
onstituentis ns(s = 1; 2), the mass of the parti
le is ms, the partial density of this
onstituent is �s = nsms and the density � of the whole gas is � = �1 + �2.The total number density is denoted by n = n1+n2. We 
ombine equationsof (B.1) and obtainC1 �C2 = � n2n1n2 �D12d12 +DT 1T �T�r � ;q = �TDT n3n1n2d12 ���+ kT n3n1n2DT� �T�r : (B.4)
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ase of Brownian parti
len1 � n2 thus n2 � n:Then d12 = 1n �n1�r � �1nT (F 1 � F 2)and instead of (B.4) we have the following systemn1(C1 �C2) = � ��n1�r � �1T (F 1 � F 2)�� nDT 1T �T�r ;q = �TDT nn1 ��n1�r � �1T (F 1 � F 2)����+ kT n2n1DT� �T�r :(B.5)Comparing the system (B.5) with Eq. (2.1) we �ndM = nT DT N = TDT nn1 : (B.6)Hen
e MN = n1T 2 : (B.7)If the distribution fun
tion f is identi�ed with the number density n1 thenEq. (B.7) is identi
al with Eq. (4.5).REFERENCES[1℄ R.F. Streater, Rep. Math. Phys. 40, 557 (1997).[2℄ S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynami
s, North-HollandPubl. Co., Amsterdam 1962.[3℄ R.F. Streater, J. Stat. Phys. 88, 447 (1997).[4℄ R.F. Streater, Preprint KCL- MTH-98-32, Department of Mathemati
s, King'sCollege, London 1998.[5℄ R.W. Pohl, Me
hanik, Akustik und Wärmelehre, Springer Verlag, Berlin-Göttingen-Heidelberg 1955.[6℄ O.Ae. Meyer, De Gasorum Theoria, Dissertatio inauguralis math.-phys.,Maelzer, Vratislaviae 1866.[7℄ S. Chapman, T.G. Cowling, The Mathemati
al Theory of Non-Uniform Gases,University Press, Cambridge 1960.[8℄ K. Clusius, L. Waldmann, Narurwissens
haften 30, 711 (1942).[9℄ L. Waldmann, Narurwissens
haften 31, 204 (1943).
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hani
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