Vol. 32 (2001) ACTA PHYSICA POLONICA B No 2

THE BROWNIAN MOTION IN A THERMAL FIELD*

R. WoINAR

Institute of Fundamental Technological Research, Polish Academy of Sciences
Swietokrzyska 21, 00-049 Warszawa

e-mail: rwojnar@ippt.gov.pl
(Received November 9, 2000)

The diffusion of a Brownian particle in a continuum subject to external
potential forces as well as nonhomogeneous thermal field is discussed. Apart
from a thermodiffusion phenomenon, a Streater effect in which the potential
energy of the particle is converted to a heat due to friction ¢f. R.F. Streater,
Rep. Math. Phys. 40, 557 (1997), is taken into account. It is shown that
for such a continuum the first law of thermodynamics holds true, and the
second law is observed if a relation between the probability density function
and temperature is satisfied. The examples of the Brownian motion for
particular external fields are given.

PACS numbers: 05.40.Jc, 05.60.-k, 05.70.Lu

1. Introduction

A thermodiffusion phenomenon in liquids was discovered apparently for
the first time by Ludwig in 1856 and independently by Soret in 1879. They
observed direct thermodiffusion in which a flow of matter is caused by a
temperature gradient. A reciprocal effect, in which a flow of heat is caused
by the gradient of the particle concentration was observed by Dufour in
1872, cf. [2].

The motion of Brownian particle in an external force field when thermal
effects are taken into account can be influenced by the two processes: (i) a
thermodiffusion process, and (i7) a conversion of the potential energy of the
particle into heat. It was pointed out by Streater [1,3] that the friction work
performed by Brownian particles falling in the gravity field is converted to
an irreversible heat source energy, so the diffusion and thermal processes are
coupled.
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Also, Streater [4] performed an analysis of the so called Soret—Dufour
effects for a special statistical model of gas of molecules with repulsive cores.
In this model only one phenomenological (macroscopic) coefficient occurs,
namely the diffusion coefficient which has interpretation of the microscopic
hopping rate, and the heat conductivity and cross-coefficients are expressed
by the diffusion coefficient, density and a maximum density of the diffusing
Brownian particles.

It is well known, even from the elementary kinetic theory of gases that
the different transport phenomena, such as viscosity, heat conduction and
diffusion are interrelated, see e.g. [5]. However, the thermodiffusion phe-
nomenon in terms of mean free path has not been analysed in a satisfactory
way. For example, Oskar Meyer in his famous considerations on the elemen-
tary theory of gas kinetics does not include the thermodiffusion phenomenon,
[6]. Even when a theory of thermodiffusion was built for the gases on the
basis of the Boltzmann equation by Enskog (1912) and Chapman (1916)
such a theory was not accepted until an experimental evidence was gained
by Chapman and Dootson in 1917 [7]; the experimental evidence of the re-
ciprocal thermodiffusion effect was found by Clusius and Waldmann only in
1943 [8,9].

The Enskog—Chapman method of analysis of the Boltzmann equation
is somehow awkward, and trials to give more immediate and intuitive ex-
planation of the effect were proposed by Frankel in 1940 [10] and Fiirth in
1941 [11]. These elementary treatments were discussed by Furry in 1948
[12]. However, a simple elementary explanation of the reciprocal effect is
apparently missing in the literature. Such an explanation based on Pohl’s
method [5] is given in Appendix A.

In the present paper a Brownian motion in which both the thermodif-
fusion effect and an external potential force exist, is studied, cf. [1,13,14].
We do not enter into a micromechanics of the thermodiffusion and only phe-
nomenological coefficients, namely those of diffusion, thermodiffusion and
heat conductivity are taken into account.

2. The first law for Brownian particle

Let {2 be a bounded, sufficiently regular domain with boundary 92,
cf. Fig. 1. Let the function f = f(x,t) represent the probability density of
finding a tagged Brownian particle at & at time ¢. Consider the motion of the
Brownian particle in a fluid at temperature T = T'(x), under the influence
of a conservative field of force FF = —VV, where V denotes a potential.

In the present paper the temperature 7" is given in the energetic scale.
Its relation to the temperature TK®Y given in the degrees of Kelvin is
T = kBTKel"7 where kg = 1.38 x 10*23% is the Boltzmann constant.
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Fig. 1. Motion of a Brownian particle in domain {2 subject to a temperature gra-
dient and a gravitational field

Let 7 and q denote the flux of Brownian particle diffusion and heat
flow, respectively, considered in that domain. The corresponding continuity
equations read

0 . oT
8_{ +jii =0, CE +qii=r, (2.1)

where C' = C(x) stands for the specific heat and r denotes a heat source.
Moreover, j; denotes the i-th component of the vector 7 and the comma
denotes differentiation with respect to the spatial variable; thus j;; = divy,
(1=1,2,3).

The term r represents the rate at which the Brownian particle does work
which is subsequently converted into heat

r=j5-F or r=-3-VV. (2.2)
We make the following boundary assumptions:
j=0 and qg=0 on 012 (2.3)

Combining equations (2.1) with the second equation of (2.2) we obtain the
following continuity relation

where e denotes the energy density and j¥ is the current of total energy

e=Vf+CT and iF=Vvii+q. (2.5)
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According to conditions (2.3)
j¥=0 on 00 (2.6)

and the energy of the system is

B= /edm _ / V(@) f(2, 1) + C(@)T(z, 1) de. 2.7)
2 0
By integration of (2.4) we find that
oF ,
5 = /jfidm (2.8)
2

or by virtue of the divergence theorem and vanishing boundary condition
(2.6) we get
oE
= =
Thus the first law of thermodynamics holds true.

0. (2.9)

3. The transport relations

Let D and K be the diffusion and heat conductivity tensors, respectively;
and let M and IN denote the thermodiffusion direct and reciprocal tensors,
respectively. In general the tensors M and IN are not independent, see
Eq. (4.5). We admit that D, K, M and N are functions of position x,
time ¢, temperature T and probability density f. The equations for diffusion
and heat fluxes are as follows, cf. [1,4,15]

ji = —Dij <f,j+%V,j) - M;; T,
= N, Ly - kT 1
Qi = —Vij f7]+TV7J ERAY VRN E (3.1)

Substituting the expressions (3.1) into the set of equations (2.1) we get

of f
priie [Dij <f,j + TV,J’) + Mz‘jT,j] .
or f

N3

The first equation of the last set for M = 0 becomes the diffusion equation
with drift known as the Einstein—Smoluchowski equation.
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Remark 1

The mean velocity of the Brownian particle is, by the first equation of
(2.1) and the divergence theorem,

0 of(x,t .
v; = at/xzf(a: t)dm—/xi ff% )dm: —/iEZ’jhkdiI}

2 02 2
on 2

So, similarly as in [2], v = [ jdz, where the boundary condition (2.3) for j

2
is used, or, by the first equation of the set (3.1),
v; = —/ [Dij <f,j + %V,j) + Mz‘jT,j] de. (3.4)
Q

If Djj, M;;,T and VV are constants, and f =0 on 942, the relation (3.3)
passes into Einstein’s formula

1

where the relation f f(z)dxz =1 was used.

4. The second law of thermodynamics

We have the following expression for the entropy of our model

S= /[ f(@,H)nf(@,1) + C(2)In %Ot)] iz, (@1)

where T denotes a temperature of the initial state. Hence

95 _ /:——fl F,t) - 8f+0(m)1‘9—T] d

ot ot T Ot
0}
or
oS [ . 1
ot / _]i,ilnf(wat) +Jii + f(_qm + T)] dz. (4.2)
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We use the divergence theorem and after use of the boundary conditions
(2.3) we get

oS o1 1 1
E - / [_]z?f,z - CZTQJ—:ZqZ + T'f':| da: (43)
2

Substituting r as the second alternative from (2.2) into (4.3) we get

08 1 1
5= / {—jz? [f,z‘ + %Vz] - qzﬁTz} dz. (44)
1)

Remark 2

From (4.4) we see that the thermodynamic forces for the diffusion and
heat fluxes 7 and q are

f

1 1 .
- [V [+ fVV] and ﬁVT, respectively.

f

Thus the proper form of equations for diffusion and heat fluxes (3.1) is as
follows

, 1 f 2 1
jio= Dl (f,j + TVJ) - MiT" 55T
1 f 5 1
% = —Nijf3 (f,j + fv,j) — KT 05T
and the symmetry of kinetic coefficients gives
M;;T? = Ny f. (4.5)

Thus, in this condition not only coefficients M and IN are involved but
also the unknown fields f and T, ¢f. Appendices A and B.
Next, from Eq. (3.1); we find

fi+ %Vﬂ' = —Dij (jj + MjmTm) (4.6)
where D = D! and after Eq. (3.1)2 we can write
¢ = NijDirj . — (Kim — NijDix My T (4.7)
Using (4.6) and (4.7) we find
Ji <f,i + %Vz) = —Djjijj — DijMjmjiT m,

¢iTi = NijDirjkTi — (Kim — Nij D js Mi) T T
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Substituting these relations into (4.4) we obtain

oS 1— . 1 1 . —
/{_Dij]z']j + <_Mz"_ﬁNz'j> 3T + (Kim—NijD jx M) T,iT,m} dx.

ot J\f f
2
(4.8)
Therefore, if (4.5) is satisfied and the matrix
Kim — NijDjx Mgm (4.9)
or
D M
N K
is positive definite, the second law of thermodynamics
oS
— >0 4.10
ot — (4.10)
holds true in the system.
Remark 3
If D=0,M =0 and N = 0, then Eq. (4.4) becomes
as 1
e Z/{—QiQTQT,i}de’B
0
or, by Eq. (3.1),
as 1
E = / ﬁKZJT’]TﬂdZB (4..11)

2

A function T' = T'(2) which minimizes S is to be found from the variational
equation

d 1 - ~
| G T @ e =0 @)
n

d\ | (T +XT)?
A=0

with the condition T = 0 on the boundary 9f2. This leads to the nonlinear
equation
1 or or 0 < 1 8T>

_ g 9 (g O 4.1
T3 Jamiaxj Oz \T? T 0x; (4.13)
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On the other hand from the second equation of (3.2) we have

or
0% = (KyT)), (4.14)

and for T = 0 we get the quasi-linear equation
(KZ-]-CZ“,]-)7Z. =0. (4.15)

Therefore, according to Eq. (4.13) a minimum entropy production condition
differs from that describing a stationary distribution of temperature (4.15).
This contradicts a Prigogine conjecture [16,17] that for a driven system the
rate of entropy production S decreases with time towards the minimum. An
example supporting this contradiction was presented by Streater in [1].

5. A driven system in a slab

Again, treading in footsteps of [1], we look for a stationary solution far
from equilibrium. Consider one-dimensional isotropic model for which a
Brownian particle is confined to 0 < z < 1.

We impose the condition that the particle current is zero

j=0 (5.1)
and that time derivatives vanish. From (2.2) and (5.1), we get
r=0. (5.2)

Also we assume that there is a nonzero flow of heat driven by maintaining
the ends of the interval [0, 1] at different temperatures, Ty and T;.
Egs. (2.1) for our case (1-dim, isotropic) read

[N <fz %Vm) —|-KTI] = 0. (5.3)
Using (4.5) in the first equation of the last set we have
D<f —i—iV)—i-NfT = 0. (5.4)
s T TQ .

Hence after integration we find that

N /1 1 1
f = foexp D <T—fo> —/mv,gdf ) (5.5)



The Brownian Motion in a Thermal Field 341

where fo is a normalizing factor. Using (5.4) we write the second equation
of the set (5.3) in the form

N2 f
After integration we get
N? f
K— ——=— r = a, .
< D T2> T,=a (5.7)

where a = const and f is given by (5.5). Thus (5.7) is complicated nonlin-
ear integro-differential equation for T" which can be solved by approximative
methods.

We can write an alternative form of (5.7)

x d

T(x):TO—l—a/Tf.

o K=

(5.8)

For N — 0 and K = const we have an expression from [2]. We can esti-
mate the influence of the thermodiffusion on distribution f considering the
simplified situation in which D, N and K are constants. As an example of
V we take the potential of a homogeneous gravity field in the form

V =gz, (5.9)

where g = constant. In the first approximation when the second term in the
denominator under the integral in (5.8) is neglected, the temperature is a
linear function of x

T(iE) =Ty + (T1 - To).’L'. (510)

Substituting this expression into (5.5) we get the first approximation of f

L TC R O A

Hence the distribution f is a product of two functions: The first is explicitly
non-Gibbsian (as in [1]), and the second with the fraction N/D in exponent
has a quasi-Gibbsian character. The examples of the function f given by
(5.11) for different parameters g and N/D are given in Fig. 2.
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N/D=0.01

Fig.2. The non-Gibbsian distribution function versus T' (Tp = 1,Th = 2,N/D =
0.01, 1) for different values g = 0.1,0.2,0.3.

6. System in a slab with given temperature

We consider a one-dimensional isotropic model for which a Brownian
particle at ¢ = 0 is at x = z¢, and the particle current 7 = 0 at the bottom
of the slab x = 0 for £ > 0, see Fig. 1. We assume that the temperature
distribution is known T = T'(z). Evolution of the distribution function is
described by equation (2.3); which for 1-dim, isotropic case reads

of /
or after using (4.5) we have
of /
where
NT,

is a given function. If N and D are constants, we have

N. T
=V 4+ —In— 6.4
V +5 np (6.4)

which means that a thermodiffusion leads to a modification of the external
potential V. Solution of equations of type (6.2) was discussed by Smolu-
chowski [18,19], cf. also Cherkasov [20] and Ricciardi [21].
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Eq. (6.2) can be used as a mathematical model for the considered system.
We take into account (5.9) as a potential V' and (5.10) as a temperature
distribution T'(z). Then T, = T} — Ty and we make the approximation

Ty 2T1 —Tp
T T T+ Ty
From (6.3) we have
T, — Ty
DV,=D 2 N. .
Ve g+ T T To (6.5)
In the equation
of 0*f of
—=D—<+ DV,— 6.6
ot = Doz T PVady (6.6)
we change the scale of length and time as follows:
z D
= — = —t 6.7
R (67
and obtain of  of of
L - 6.8
or ~ ez " “ag (68)
where
¢ = xoV, = const. (6.9)
A solution of Eq. (6.8) for (£,7) € (0,00) x (0,00) subject to the conditions
f(f,O):(S(f—l), 56(0700)
a—f(O,T)—i-cf(O,T):O, T>0
23
f& ) =0, £ —00,7>0 (6.10)
takes the form
1 1y 2 i as
Jem) = g [ — e e
+%e_c§ / e dz. (6.11)
e

In Fig. 3 the function f(£,7) and the corresponding heat source
r = r(£,7) as functions of £ for a given moment of time are plotted. The
interpretation of the heat source function » = r(£) shown in Fig. 3 is the fol-
lowing: For £ < 1.1, (2 < 1.1z¢) a Brownian particle that falls in the gravity
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0 05 1 \U5.——2 25

Fig.3. The distribution f and the heat source r as function of £ for 7 = 1.5, and
for c=3x 1071 J/% and g = 0.3 x 10715.J/%. The unit of f is (#)~* and the unit
of ris 107 1.J(#)3(f) ', where & = x and # = 3 /D are the new units of length
and time, cf. Eq. (6.7).

field produces a positive amount of heat (r > 0). For 1.1 < £ < oo the par-
ticle goes up due to absorption of an environmental heat, which corresponds
to r < 0 over that interval.

In Figs. 4, 5 and 6 the solution f(&,xzq,7) as a function of ¢ for a set of
values of ¢ and for fixed values of time 7 is presented.

f
g
0.001
6
N\ 05
2
0.1 0.01

0" 02040608 1 1214 5

Fig.4. The distribution f versus £ for ¢ = 5 and times 7 = 0.001,0.01, 0.1, 0.5.

It follows from these figures that if

T — Ty N

g1l — 7077
g+ T1+TOD
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0 02040608 1 1214

Fig.5. The distribution f wversus ¢ for ¢ = 1.5 and times 7 = 0.001,0.01,0.1,0.2, 1.

0.001

ra

0.01 0.5

0 02040608 1 1214 5

Fig.6. The distribution f versus £ for ¢ = —5 and times 7 = 0.001,0.01,0.1, 0.5.

changes sign from positive to negative (Tp > T) then ¢ becomes negative,
cf. Egs. (6.5) and (6.9), and the Brown particles move towards a colder part
of the region, i.e. most of them do not fall down in the gravitational field.
This means that in case ¢ < 0 the thermodiffusive forces are greater than
the gravitational ones.

7. Conclusions

1. A consistent thermodynamic description of the motion of Brownian
particles subject to both thermodiffusive forces and the gravity forces,
is given following the Einstein—-Smoluchowski and Streater approaches
to the Brownian particle motion problem, cf. [22].
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2. In particular, it is shown that the Brownian particles in a gravity
field move upward provided the particles absorb the heat from the
surrounding, and they fall down when they generate heat in a friction
process.

3. A relation (4.5) between the coefficients of direct and reciprocal ther-
modiffusion is found, and verified using examples from the elementary
gas theory (Appendix A) and the rarified gas theory (Appendix B).

4. A generalization of Streater’s proposition regarding the Prigogine con-
jecture to include 3dim nonhomogeneous anisotropic case is also given.

Appendix A

Onsager relations in an elementary thermodiffusion theory

Let n,v, A and € be the number density of gas particles, the mean velocity
of gas particles, the length of mean free path and the mean energy of a
particle, respectively. Then a one-dimensional stream of particles j and of
heat ¢ is, respectively

1d(nv) 1d(ev)
— V"o = __ 2 Al
6 dx A and g 6 dx A (A1)
where ¢ = nsT and s is a number of particle degree of freedom. Since
1 1
§m02 R~ EST, (A.2)
where m is a mass of particle, we find that
sT
=4/ = A.
o=/ (4.3
Hence
— _1)\ Ud_n + iid_T
= 3 dz m /T dx
and
1 1 dn drT
= —A| =sTv—+C,— A4
7 3 <28 Ve T pdm) ’ (A4)

where C), = nde/dT. Therefore, the thermodiffusion coefficients

1[5 1 1.1
M= ny/>——  N=_-\sT A5
3"\ movT 372°"" (4.5)
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and v
n
— = —. A6
N  sT? (4.6)
This is an expression of the type of Eq. (4.5). In a one-dimensional problem

in which s =1 the last equation is identical with (4.5).

Appendix B

Onsager relations in a Enskog—Chapman thermodiffusion theory

The set of thermodiffusion equations as derived from the Boltzmann
equation for the gas mixture in which the partial density distribution of
one constituent is n; = my(r,t) and the density distribution of the second
constituent is ms = mo(r,t), and the conditions of the constant pressure p
prevail, reads

C,-Cy = —7:22 <D12d12 +DT;Z;T>
q = —Ag—T—i—nTkT (C1—Cy), (B.1)
where
dys = ag;‘) ”;ZQ (Fy — Fy), o = % and p=nT, (B.2)

¢f. Chapman and Cowling [7], Chapter 8. Here, D13, D7 and X are the coef-
ficients of diffusion, thermal diffusion and thermal conduction, respectively,
while kr is called the thermodiffusion ratio
Dr.

kr = Diy’ (B.3)
moreover, C'; and Cy are the mean peculiar velocities (measured relative to
the mean mass velocity of the gas) of the particle of the constituent number
1 and of number 2, respectively; the number density of the s-th constituent
is ng(s = 1,2), the mass of the particle is mg, the partial density of this
constituent is p; = ngmg and the density p of the whole gas is p = p1 + po.
The total number density is denoted by n = ny +mn9s. We combine equations
of (B.1) and obtain

n? 10T
—Cy = - Digdys + Dp= 2=
C,—-Cy n1n2< 12d12 + TT %, )
3 3 aT
q = -TDr—"—diy— <,\+kT n DT> . (B4)
ning ning or
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For the case of Brownian particle

ny <K ng thus n9 =~ n.
Then Lo
ni P1
dy=-"2-LLF -F
12 or nT( ! 2)
and instead of (B.4) we have the following system
8’01 P1 1 BT
—Cy) = — |22 B~ Fy)| —nDp= -
m(C1 - Cy) [87" T( ! 2 T or’
n [On1  p1 n? oT
= 1D |2 P Ry - (A ke Dy ) S
q " [81‘ T( ! 2)] < + T T) or
(B.5)
Comparing the system (B.5) with Eq. (2.1) we find
n n
M=—=D N =TDr—. B.6
D1 T (B.6)
Hence M
n1

If the distribution function f is identified with the number density m; then
Eq. (B.7) is identical with Eq. (4.5).
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