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THE BROWNIAN MOTION IN A THERMAL FIELD�R. WojnarInstitute of Fundamental Tehnologial Researh, Polish Aademy of Sienes�wi�tokrzyska 21, 00-049 Warszawae-mail: rwojnar�ippt.gov.pl(Reeived November 9, 2000)The di�usion of a Brownian partile in a ontinuum subjet to externalpotential fores as well as nonhomogeneous thermal �eld is disussed. Apartfrom a thermodi�usion phenomenon, a Streater e�et in whih the potentialenergy of the partile is onverted to a heat due to frition f. R.F. Streater,Rep. Math. Phys. 40, 557 (1997), is taken into aount. It is shown thatfor suh a ontinuum the �rst law of thermodynamis holds true, and theseond law is observed if a relation between the probability density funtionand temperature is satis�ed. The examples of the Brownian motion forpartiular external �elds are given.PACS numbers: 05.40.J, 05.60.�k, 05.70.Lu1. IntrodutionA thermodi�usion phenomenon in liquids was disovered apparently forthe �rst time by Ludwig in 1856 and independently by Soret in 1879. Theyobserved diret thermodi�usion in whih a �ow of matter is aused by atemperature gradient. A reiproal e�et, in whih a �ow of heat is ausedby the gradient of the partile onentration was observed by Dufour in1872, f. [2℄.The motion of Brownian partile in an external fore �eld when thermale�ets are taken into aount an be in�uened by the two proesses: (i) athermodi�usion proess, and (ii) a onversion of the potential energy of thepartile into heat. It was pointed out by Streater [1,3℄ that the frition workperformed by Brownian partiles falling in the gravity �eld is onverted toan irreversible heat soure energy, so the di�usion and thermal proesses areoupled.� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (333)



334 R. WojnarAlso, Streater [4℄ performed an analysis of the so alled Soret�Dufoure�ets for a speial statistial model of gas of moleules with repulsive ores.In this model only one phenomenologial (marosopi) oe�ient ours,namely the di�usion oe�ient whih has interpretation of the mirosopihopping rate, and the heat ondutivity and ross-oe�ients are expressedby the di�usion oe�ient, density and a maximum density of the di�usingBrownian partiles.It is well known, even from the elementary kineti theory of gases thatthe di�erent transport phenomena, suh as visosity, heat ondution anddi�usion are interrelated, see e.g. [5℄. However, the thermodi�usion phe-nomenon in terms of mean free path has not been analysed in a satisfatoryway. For example, Oskar Meyer in his famous onsiderations on the elemen-tary theory of gas kinetis does not inlude the thermodi�usion phenomenon,[6℄. Even when a theory of thermodi�usion was built for the gases on thebasis of the Boltzmann equation by Enskog (1912) and Chapman (1916)suh a theory was not aepted until an experimental evidene was gainedby Chapman and Dootson in 1917 [7℄; the experimental evidene of the re-iproal thermodi�usion e�et was found by Clusius and Waldmann only in1943 [8,9℄.The Enskog�Chapman method of analysis of the Boltzmann equationis somehow awkward, and trials to give more immediate and intuitive ex-planation of the e�et were proposed by Frankel in 1940 [10℄ and Fürth in1941 [11℄. These elementary treatments were disussed by Furry in 1948[12℄. However, a simple elementary explanation of the reiproal e�et isapparently missing in the literature. Suh an explanation based on Pohl'smethod [5℄ is given in Appendix A.In the present paper a Brownian motion in whih both the thermodif-fusion e�et and an external potential fore exist, is studied, f. [1,13,14℄.We do not enter into a miromehanis of the thermodi�usion and only phe-nomenologial oe�ients, namely those of di�usion, thermodi�usion andheat ondutivity are taken into aount.2. The �rst law for Brownian partileLet 
 be a bounded, su�iently regular domain with boundary �
,f. Fig. 1. Let the funtion f = f(x; t) represent the probability density of�nding a tagged Brownian partile at x at time t. Consider the motion of theBrownian partile in a �uid at temperature T = T (x), under the in�ueneof a onservative �eld of fore F = �rV , where V denotes a potential.In the present paper the temperature T is given in the energeti sale.Its relation to the temperature TKelv given in the degrees of Kelvin isT = kBTKelv, where kB = 1:38� 10�23 JK is the Boltzmann onstant.
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Fig. 1. Motion of a Brownian partile in domain 
 subjet to a temperature gra-dient and a gravitational �eldLet j and q denote the �ux of Brownian partile di�usion and heat�ow, respetively, onsidered in that domain. The orresponding ontinuityequations read �f�t + ji;i = 0; C �T�t + qi;i = r; (2.1)where C = C(x) stands for the spei� heat and r denotes a heat soure.Moreover, ji denotes the i-th omponent of the vetor j and the ommadenotes di�erentiation with respet to the spatial variable; thus ji;i � divj,(i = 1; 2; 3).The term r represents the rate at whih the Brownian partile does workwhih is subsequently onverted into heatr = j � F or r = �j � rV: (2.2)We make the following boundary assumptions:j = 0 and q = 0 on �
: (2.3)Combining equations (2.1) with the seond equation of (2.2) we obtain thefollowing ontinuity relation �e�t + jEi;i = 0; (2.4)where e denotes the energy density and jE is the urrent of total energye � V f + CT and jEi � V ji + qi: (2.5)



336 R. WojnarAording to onditions (2.3)jE = 0 on �
 (2.6)and the energy of the system isE � Z
 edx = Z
 [V (x)f(x; t) + C(x)T (x; t)℄ dx: (2.7)By integration of (2.4) we �nd that�E�t = Z
 jEi;idx (2.8)or by virtue of the divergene theorem and vanishing boundary ondition(2.6) we get �E�t = 0: (2.9)Thus the �rst law of thermodynamis holds true.3. The transport relationsLetD andK be the di�usion and heat ondutivity tensors, respetively;and let M and N denote the thermodi�usion diret and reiproal tensors,respetively. In general the tensors M and N are not independent, seeEq. (4.5). We admit that D, K, M and N are funtions of position x,time t, temperature T and probability density f . The equations for di�usionand heat �uxes are as follows, f. [1,4,15℄ji = �Dij �f;j + fT V;j��MijT;j;qi = �Nij �f;j + fT V;j��KijT;j: (3.1)Substituting the expressions (3.1) into the set of equations (2.1) we get�f�t = �Dij �f;j + fT V;j�+MijT;j�;i ;C �T�t = �Nij �f;j + fT V;j�+KijT;j�;i + r: (3.2)The �rst equation of the last set for M = 0 beomes the di�usion equationwith drift known as the Einstein�Smoluhowski equation.



The Brownian Motion in a Thermal Field 337Remark 1The mean veloity of the Brownian partile is, by the �rst equation of(2.1) and the divergene theorem,vi = ��t Z
 xif(x; t)dx = Z
 xi�f(x; t)�t dx = �Z
 xijk;kdx= � Z�
 xijknkdA+ Z
 jidx: (3.3)So, similarly as in [2℄, v = R
 jdx; where the boundary ondition (2.3) for jis used, or, by the �rst equation of the set (3.1),vi = �Z
 �Dij �f;j + fT V;j�+MijT;j� dx: (3.4)If Dij ;Mij ; T and rV are onstants, and f = 0 on �
, the relation (3.3)passes into Einstein's formula vi = 1T DijFj ; (3.5)where the relation R
 f(x)dx = 1 was used.4. The seond law of thermodynamisWe have the following expression for the entropy of our modelS = Z
 ��f(x; t)lnf(x; t) + C(x)lnT (x; t)T0 � dx; (4.1)where T0 denotes a temperature of the initial state. Hene�S�t = Z
 ���f�t lnf(x; t)� �f�t + C(x) 1T �T�t � dxor �S�t = Z
 �ji;ilnf(x; t) + ji;i + 1T (�qi;i + r)� dx: (4.2)



338 R. WojnarWe use the divergene theorem and after use of the boundary onditions(2.3) we get �S�t = Z
 ��ji 1f f;i � 1T 2T;iqi + 1T r� dx: (4.3)Substituting r as the seond alternative from (2.2) into (4.3) we get�S�t = Z
 ��ji 1f �f;i + fT V;i�� qi 1T 2T;i� dx: (4.4)Remark 2From (4.4) we see that the thermodynami fores for the di�usion andheat �uxes j and q are1f �rf + fTrV � and 1T 2rT; respetively.Thus the proper form of equations for di�usion and heat �uxes (3.1) is asfollows ji = �Dijf 1f �f;j + fT V;j��MijT 2 1T 2T;j;qi = �Nijf 1f �f;j + fT V;j��KijT 2 1T 2T;jand the symmetry of kineti oe�ients givesMijT 2 = Nijf: (4.5)Thus, in this ondition not only oe�ients M and N are involved butalso the unknown �elds f and T , f. Appendies A and B.Next, from Eq. (3.1)1 we �ndf;i + fT V;i = �Dij (jj +MjmT;m) ; (4.6)where D �D�1 and after Eq. (3.1)2 we an writeqi = NijDikj;k � �Kim �NijDikMkm�T;m: (4.7)Using (4.6) and (4.7) we �ndji�f;i + fT V;i� = �Dijjijj �DijMjmjiT;m;qiT;i = NijDikjkT;i � �Kim �NijDjkMkm�T;mT;i:



The Brownian Motion in a Thermal Field 339Substituting these relations into (4.4) we obtain�S�t =Z
 � 1f Dijjijj +� 1f Mij� 1T 2Nij� jkT;i + �Kim�NijDjkMkm�T;iT;m� dx:(4.8)Therefore, if (4.5) is satis�ed and the matrixKim �NijDjkMkm (4.9)or 264 D MN K 375is positive de�nite, the seond law of thermodynamis�S�t � 0 (4.10)holds true in the system.Remark 3If D = 0;M = 0 and N = 0, then Eq. (4.4) beomes�S�t = Z
 ��qi 1T 2T;i� dxor, by Eq. (3.1), �S�t = Z
 1T 2KijT;jT;idx: (4.11)A funtion T = T (x) whih minimizes _S is to be found from the variationalequation24 dd� Z
 1(T + � ~T )2Kij(T;i + � ~T;i)(T;j + � ~T;j)dx35�=0 = 0 (4.12)with the ondition ~T = 0 on the boundary �
. This leads to the nonlinearequation 1T 3Kij �T�xi �T�xj = ��xj � 1T 2Kij �T�xi� : (4.13)



340 R. WojnarOn the other hand from the seond equation of (3.2) we haveC�T�t = (KijT;j);i (4.14)and for _T = 0 we get the quasi-linear equation(KijT;j);i = 0: (4.15)Therefore, aording to Eq. (4.13) a minimum entropy prodution onditiondi�ers from that desribing a stationary distribution of temperature (4.15).This ontradits a Prigogine onjeture [16,17℄ that for a driven system therate of entropy prodution _S dereases with time towards the minimum. Anexample supporting this ontradition was presented by Streater in [1℄.5. A driven system in a slabAgain, treading in footsteps of [1℄, we look for a stationary solution farfrom equilibrium. Consider one-dimensional isotropi model for whih aBrownian partile is on�ned to 0 � x � 1.We impose the ondition that the partile urrent is zeroj = 0 (5.1)and that time derivatives vanish. From (2.2) and (5.1), we getr = 0: (5.2)Also we assume that there is a nonzero �ow of heat driven by maintainingthe ends of the interval [0; 1℄ at di�erent temperatures, T0 and T1.Eqs. (2.1) for our ase (1-dim, isotropi) readD�f;x + fT V;x�+MT;x = 0;�N �f;x + fT V;x�+KT;x�;x = 0: (5.3)Using (4.5) in the �rst equation of the last set we haveD�f;x + fT V;x�+N fT 2T;x = 0: (5.4)Hene after integration we �nd thatf = f0 exp24ND � 1T � 1T0�� xZ0 1T (�)V;�d�35 ; (5.5)



The Brownian Motion in a Thermal Field 341where f0 is a normalizing fator. Using (5.4) we write the seond equationof the set (5.3) in the form��K � N2D fT 2�T;x�;x = 0: (5.6)After integration we get �K � N2D fT 2�T;x = a; (5.7)where a = onst and f is given by (5.5). Thus (5.7) is ompliated nonlin-ear integro-di�erential equation for T whih an be solved by approximativemethods.We an write an alternative form of (5.7)T (x) = T0 + a xZ0 d�K � N2D fT 2 : (5.8)For N ! 0 and K = onst we have an expression from [2℄. We an esti-mate the in�uene of the thermodi�usion on distribution f onsidering thesimpli�ed situation in whih D;N and K are onstants. As an example ofV we take the potential of a homogeneous gravity �eld in the formV = gx; (5.9)where g = onstant. In the �rst approximation when the seond term in thedenominator under the integral in (5.8) is negleted, the temperature is alinear funtion of x T (x) = T0 + (T1 � T0)x: (5.10)Substituting this expression into (5.5) we get the �rst approximation of ff = f0� TT0�� gT1�T0 exp �ND � 1T � 1T0�� : (5.11)Hene the distribution f is a produt of two funtions: The �rst is expliitlynon-Gibbsian (as in [1℄), and the seond with the fration N=D in exponenthas a quasi-Gibbsian harater. The examples of the funtion f given by(5.11) for di�erent parameters g and N=D are given in Fig. 2.
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Fig. 2. The non-Gibbsian distribution funtion versus T (T0 = 1; T1 = 2; N=D =0:01; 1) for di�erent values g = 0:1; 0:2; 0:3.6. System in a slab with given temperatureWe onsider a one-dimensional isotropi model for whih a Brownianpartile at t = 0 is at x = x0, and the partile urrent j = 0 at the bottomof the slab x = 0 for t � 0, see Fig. 1. We assume that the temperaturedistribution is known T = T (x). Evolution of the distribution funtion isdesribed by equation (2.3)1 whih for 1-dim, isotropi ase reads�f�t = �D�f;x + fT V;x�+MT;x�;x (6.1)or after using (4.5) we have�f�t = �D�f;x + fT V;x��;x ; (6.2)where V;x = V;x + ND T;xT (6.3)is a given funtion. If N and D are onstants, we haveV = V + ND ln TT0 (6.4)whih means that a thermodi�usion leads to a modi�ation of the externalpotential V . Solution of equations of type (6.2) was disussed by Smolu-howski [18,19℄, f. also Cherkasov [20℄ and Riiardi [21℄.



The Brownian Motion in a Thermal Field 343Eq. (6.2) an be used as a mathematial model for the onsidered system.We take into aount (5.9) as a potential V and (5.10) as a temperaturedistribution T (x). Then T;x = T1 � T0 and we make the approximationT;xT � 2T1 � T0T1 + T0 :From (6.3) we have DV;x = Dg + 2T1 � T0T1 + T0N: (6.5)In the equation �f�t = D�2f�x2 + DV;x�f�x (6.6)we hange the sale of length and time as follows:� = xx0 � = Dx20 t (6.7)and obtain �f�� = �2f��2 + �f�� ; (6.8)where  = x0V;x = onst: (6.9)A solution of Eq. (6.8) for (�; �) 2 (0;1)� (0;1) subjet to the onditionsf(�; 0) = Æ(� � 1); � 2 (0;1)�f�� (0; �) + f(0; �) = 0; � > 0f(�; �)! 0; � !1; � > 0 (6.10)takes the formf(�; �) = 12p�� �e (��1)24� � e� (�+1)24� � e� ��12 �2 �4+ p� e�� 1Z�+1��2p� e�z2dz: (6.11)In Fig. 3 the funtion f(�; �) and the orresponding heat sourer = r(�; �) as funtions of � for a given moment of time are plotted. Theinterpretation of the heat soure funtion r = r(�) shown in Fig. 3 is the fol-lowing: For � < 1:1, (x < 1:1x0) a Brownian partile that falls in the gravity
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Fig. 3. The distribution f and the heat soure r as funtion of � for � = 1:5, andfor  = 3� 10�15J=�x and g = 0:3� 10�15J=�x. The unit of f is (�x)�3 and the unitof r is 10�15J(�x)�3(�t)�1, where �x � x0 and �t � x20=D are the new units of lengthand time, f. Eq. (6.7).�eld produes a positive amount of heat (r > 0). For 1:1 < � <1 the par-tile goes up due to absorption of an environmental heat, whih orrespondsto r < 0 over that interval.In Figs. 4, 5 and 6 the solution f(�; x0; �) as a funtion of � for a set ofvalues of  and for �xed values of time � is presented.

Fig. 4. The distribution f versus � for  = 5 and times � = 0:001; 0:01; 0:1; 0:5.It follows from these �gures that ifg + 2T1 � T0T1 + T0 ND
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Fig. 5. The distribution f versus � for  = 1:5 and times � = 0:001; 0:01; 0:1; 0:2; 1.

Fig. 6. The distribution f versus � for  = �5 and times � = 0:001; 0:01; 0:1; 0:5.hanges sign from positive to negative (T0 � T1) then  beomes negative,f. Eqs. (6.5) and (6.9), and the Brown partiles move towards a older partof the region, i.e. most of them do not fall down in the gravitational �eld.This means that in ase  < 0 the thermodi�usive fores are greater thanthe gravitational ones. 7. Conlusions1. A onsistent thermodynami desription of the motion of Brownianpartiles subjet to both thermodi�usive fores and the gravity fores,is given following the Einstein�Smoluhowski and Streater approahesto the Brownian partile motion problem, f. [22℄.



346 R. Wojnar2. In partiular, it is shown that the Brownian partiles in a gravity�eld move upward provided the partiles absorb the heat from thesurrounding, and they fall down when they generate heat in a fritionproess.3. A relation (4.5) between the oe�ients of diret and reiproal ther-modi�usion is found, and veri�ed using examples from the elementarygas theory (Appendix A) and the rari�ed gas theory (Appendix B).4. A generalization of Streater's proposition regarding the Prigogine on-jeture to inlude 3dim nonhomogeneous anisotropi ase is also given.Appendix AOnsager relations in an elementary thermodi�usion theoryLet n; v; � and " be the number density of gas partiles, the mean veloityof gas partiles, the length of mean free path and the mean energy of apartile, respetively. Then a one-dimensional stream of partiles j and ofheat q is, respetivelyj = �16 d(nv)dx 2� and q = �16 d("v)dx 2�; (A.1)where " = nsT and s is a number of partile degree of freedom. Sine12mv2 � 12sT; (A.2)where m is a mass of partile, we �nd thatv =rsTm : (A.3)Hene j = �13��vdndx + nr sm 12pT dTdx�and q = �13��12sTvdndx + CpdTdx� ; (A.4)where Cp = nd"=dT . Therefore, the thermodi�usion oe�ientsM = 13�nr sm 12pT N = 13�12sTv (A.5)



The Brownian Motion in a Thermal Field 347and MN = nsT 2 : (A.6)This is an expression of the type of Eq. (4.5). In a one-dimensional problemin whih s = 1 the last equation is idential with (4.5).Appendix BOnsager relations in a Enskog�Chapman thermodi�usion theoryThe set of thermodi�usion equations as derived from the Boltzmannequation for the gas mixture in whih the partial density distribution ofone onstituent is n1 = n1(r; t) and the density distribution of the seondonstituent is n2 = n2(r; t), and the onditions of the onstant pressure pprevail, reads C1 �C2 = � n2n1n2 �D12d12 +DT 1T �T�r � ;q = ���T�r + nTkT (C1 �C2) ; (B.1)whered12 � �n10�r � �1�2p� (F 1 � F 2); n10 � n1n and p = nT; (B.2)f. Chapman and Cowling [7℄, Chapter 8. Here, D12, DT and � are the oef-�ients of di�usion, thermal di�usion and thermal ondution, respetively,while kT is alled the thermodi�usion ratiokT = DTD12 ; (B.3)moreover, C1 and C2 are the mean peuliar veloities (measured relative tothe mean mass veloity of the gas) of the partile of the onstituent number1 and of number 2, respetively; the number density of the s-th onstituentis ns(s = 1; 2), the mass of the partile is ms, the partial density of thisonstituent is �s = nsms and the density � of the whole gas is � = �1 + �2.The total number density is denoted by n = n1+n2. We ombine equationsof (B.1) and obtainC1 �C2 = � n2n1n2 �D12d12 +DT 1T �T�r � ;q = �TDT n3n1n2d12 ���+ kT n3n1n2DT� �T�r : (B.4)



348 R. WojnarFor the ase of Brownian partilen1 � n2 thus n2 � n:Then d12 = 1n �n1�r � �1nT (F 1 � F 2)and instead of (B.4) we have the following systemn1(C1 �C2) = � ��n1�r � �1T (F 1 � F 2)�� nDT 1T �T�r ;q = �TDT nn1 ��n1�r � �1T (F 1 � F 2)����+ kT n2n1DT� �T�r :(B.5)Comparing the system (B.5) with Eq. (2.1) we �ndM = nT DT N = TDT nn1 : (B.6)Hene MN = n1T 2 : (B.7)If the distribution funtion f is identi�ed with the number density n1 thenEq. (B.7) is idential with Eq. (4.5).REFERENCES[1℄ R.F. Streater, Rep. Math. Phys. 40, 557 (1997).[2℄ S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamis, North-HollandPubl. Co., Amsterdam 1962.[3℄ R.F. Streater, J. Stat. Phys. 88, 447 (1997).[4℄ R.F. Streater, Preprint KCL- MTH-98-32, Department of Mathematis, King'sCollege, London 1998.[5℄ R.W. Pohl, Mehanik, Akustik und Wärmelehre, Springer Verlag, Berlin-Göttingen-Heidelberg 1955.[6℄ O.Ae. Meyer, De Gasorum Theoria, Dissertatio inauguralis math.-phys.,Maelzer, Vratislaviae 1866.[7℄ S. Chapman, T.G. Cowling, The Mathematial Theory of Non-Uniform Gases,University Press, Cambridge 1960.[8℄ K. Clusius, L. Waldmann, Narurwissenshaften 30, 711 (1942).[9℄ L. Waldmann, Narurwissenshaften 31, 204 (1943).
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