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SIMULATIONS OF LOCALIZED DISSIPATIVESTRUCTURES IN EXCITABLE MEDIABY AN ENSEMBLE OF BROWNIAN WALKERS�Marin Kostura;b and Lutz Shimansky-GeieraaInstitut für Physik,Humboldt-Universität zu BerlinD-10115 Berlin, GermanybInstitute of Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Poland(Reeived January 11, 2001)The e�etive method of simulation of stohasti exitable media byen ensemble of Brownian partiles is presented. The system studied is avariant of Rinzel�Keller model with global inhibition. The formation, timeevolution, and statistial properties of loalized strutures � spots � areinvestigated.PACS numbers: 53.35.Mw 1. IntrodutionBeside the great breakthrough in the understanding of the physial sideof nature, whih has been aused at the beginning of XX entury by the de-velopment of Quantum Mehanis and Relativity Theory, the notion of self-organization in non-equilibrium systems has led to the remarkable hangesin outlook upon the living nature. The fat that a system an inrease itsomplexity, whih was before thought to be a feature of the living materia,has also been observed in experiments with non-living objets. Sine the�rst works, struture formation phenomena have attrated muh attentionfrom both theoretial as well experimental sientists over.In the beginning of 50's the Russian hemist Belousov observed temporalosillations in the onentration of some hemials during atalyti oxidationof itri aid [1℄. This, as it was ahead of its time, was strongly ritiizedand due to its novelty was not even taken seriously1. One had to wait till the� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000.1 His manusript was rejeted due to the referee omments �it is impossi-ble�. A brief survey of Belousov life and work an be found on Web pagehttp://www.math.halmers.se/�jaques/kf2na/Historia/Belousev.html(351)



352 M. Kostur, L. Shimansky-Geier70's, when the new �ndings of a study in the �eld of non-equilibrium ther-modynamis made by groups of Prigogine and Haken dramatially hangedommon beliefs on the omplexity of systems (see e.g. [2,3℄). In this time, Be-lousov's work was ontinued by A.M. Zabotynsky. He modi�ed the originalreation; his variant was easier to reprodue and the osillations were visual-ized by hanges of olor [4℄. Finally, due to his ontribution, the existene ofhemial osillations have been aepted in professional irles. Nowadays,the so alled Belousov�Zabotynsky (BZ) reation due to its novel and uni-versal features belongs to one of the most popular hemial reations, evenamongst non-hemists.If one onduts the BZ reation in a medium where the di�usion lengthof reatants is smaller than the size of the reation volume, spatial patternsappear � hemial waves [5℄. There are many types of hemial wavespossible, the most frequently investigated are rotating spirals. They haveattrated muh attention in reent years many di�erent aspets have beenstudied e.g.: the problem of the motion of spiral tip [6℄, the in�uene of�utuations on its motion, [7℄ and the ontrol of the spiral tip by the meansof feedbak e�ets [8, 9℄.The struture formation is not only limited to the BZ reation; in prini-ple any nonlinear spatially extended system with e.g. exitable type in someregime beomes a medium where dissipative strutures an exist. Exper-imentally, some suh systems are know like the atalyti oxidation of COon Pt(110) [10℄, and the gas disharge and transport proesses in semion-dutors [11℄. In these systems, however, other fators beome signi�ant.Firstly the global oupling plays an important role. In the ase of atalytioxidation proesses it is due to oupling of di�erent reating parts of solidphase via partial pressure variation of the surrounding gas phase. Seondly,in ontrary to the strutures obtained in typial BZ reation, the stru-tures observed in the above proesses are mirosopi, hene the in�ueneof �utuations beomes important.In this paper we will study loalized strutures whih arise in exitablemedium with global inhibition � spots. Suh strutures have been inves-tigated theoretially in [12℄. It has been shown that spots an be in tworegimes: traveling and stationary. The aim of our work will be to investi-gate how the internal �utuations in�uene the behavior the spots. In orderto to that we will propose a partile oriented algorithm, whih will naturallyinlude random fators. The paper is organized as follows: in the next se-tion we present the system of interest, in the third setion we explain themethod of simulation used here, in the fourth setion the main results arepresented.



Simulations of Loalized Dissipative Strutures : : : 3532. The model systemWe will here onsider an exitable system whih is a variant of Rinzel�Keller model [13℄ desribed by following Reation�Di�usion equations:�tu = ku�(u� a)(v0 � vkoppv)� ksuu+Dur2u; (1)�tv = kvu� ksvv +Dvr2v;where u and v are onentrations of ativator and inhibitor orrespondingly,ki are kineti onstants, � is Heaviside step funtion, a is an exitabilitythreshold, and Du, Dv are di�usion onstants. Notie that the only nonlin-earity is the term ontaining the step funtion �(u� a). Above system dueto its exitable kinetis exhibits suh features as: moving exitable fronts,rotating spiral waves et. In order to obtain the loalized solutions we willimpose the global inhibition:a = a0 + �Z Z u(x; y)dxdy; (2)where � is global inhibition onstant. The stable solution of the system (1)with (2) is the loalized exitation, whih looks as a piee of spiral with endwhih are hindered to grow. The value of the oupling strength � ontrolsits shape (see �gure 1). We are interested in the ase of large � � in suha ase the spot is well loalized.
Fig. 1. Spots for small � = 1:2 (left) and large � = 2:2 (right); the number ofpartiles is di�erent but the shape hanges dramatially.3. The simulation by an ensemble of Brownian partilesThere are several methods of simulating Ativator�Inhibitor systems onthe mirosopi sale. They di�er in assumptions, the preision, and therequired amount of omputational power. Perhaps the most straightfor-ward approah is the numerial simulation of mean �eld equations with anadditional noise term. This, however, does not guarantee that the miro-sopi origin of �utuations are su�iently good reprodued. Nevertheless



354 M. Kostur, L. Shimansky-Geierthe e�ieny of suh treatment, espeially for one dimensional systems, hasbeen ommonly used [14℄. The next, reently very popular and e�ient wayof produing spatial strutures, are Cellular Automata (CA) [15�18℄. Thebiggest advantage of this approah is its omputational e�ieny, howeverpitures of mirosopi sale is in this approah relatively rough. In theontrary the most aurate is a diret simulation of individual moleules:Moleular Dynamis. Unfortunately it is omputationally the most expen-sive method. Here we will propose a partile oriented algorithm whih dueto some approximations is not as preise as MD, however is well re�etingunderlying moleular nature of the medium.We represent eah �eld u and v by an ensemble of Brownian partileswhih performs a stohasti motion on two dimensional domain as well asare destroyed or born aording to deterministi kinetis.The additional parameter whih appears in suh approah is the numberof partiles. It ontrols the amount of noise in our system: less partileswe put in the simulation, more noisy piture we get. In the limit of in-�nite number of partiles we expet the quantitative equivalene with thedeterministi model desribed by the equation (1). We want to introduethe number of partiles independently of the mean �eld properties of themedium. Therefore we will sale the onentration û � N=V by the density�: u = û=�. The interpretation of � if following: it is a number of parti-les whih are on the average in the unit of volume when the dimensionlessonentration is u = 1. In our simulation the typial values of � will varybetween 3000�100000.Let us explain details of the implementation. The di�usion terms Dur2u(Dvr2v) in (1) are simulated by the Langevin dynamis:_xi = p2D�i(t);_yi = p2D�i(t); (3)where �i(t) and �i(t) are unorrelated white Gaussian noises.Linear terms in (1) an be straightforwardly implemented in terms ofbirth and death proesses. The only term in (1) whih inludes many par-tiles interation is and an not be simulated in partile piture diretly with-out taking into the aount orrelation between partiles is:ku�(u� a)(v0 � vkopplv). In the sake of e�ieny we will introdue follow-ing approximation. We introdue the retangular grid with box volume VB.During eah time step the number of partiles in eah box ni is alulated.Then, having the density � we an alulate the loal onentration in thebox ui = ni=(�VB). The �eld of loal onentrations is used for evaluationof the nonlinear �-term in (1). It is done in two steps:



Simulations of Loalized Dissipative Strutures : : : 355� In eah box it is heked if ui > a ( �(ui�a) ), if so the box is markedas exited.� Eah exited box box produes partiles with a rate �VB(v0�vkopplv);new partiles are plaed within the given box with random position.The natural time stepping is given by the simulation of the Langevin dy-namis (3). The ounting of partile on a grid is done one per simulationstep.We have simulated spots using above algorithm with following restri-tions onerning harateristi volumes and marosopi observable � thesize of the spot Vs:� Vs � VB; the spot should be muh bigger than anisotropy of themedium.� VB � Vp; if the volume of the partile is bigger than the box it meansthat there are less than one partile per box in exited region. Thusthe relative �utuation of the partiles are extremally large. In suha ase the spot is usually unstable and we are not interested in suhregime. 4. ResultsAt �rst let us look at the spot for di�erent parameters values. The basiontrol on the size of the spot is provided by the global inhibition onstant�. In the �gure 1 we have plotted two spots for di�erent values of � = 1:2and 2:2. The spot with the smaller feedbak is larger and resembles morea piee of spiral whereas the strongly inhibited one is almost round. Themedium here has a onstant partile density � the number of partiles ofwhih the spot is built is proportional then to its area. Hene, one ould haveused the global inhibition as a ontrol of the transition between mirosopiand marosopi spots. However, as we see in �gure 1, not only the sizebut also the shape of spot is in�uened by the hange of �. Therefore inorder to isolate features onneted with the partile number of the spot,we deided to use the density of the medium �. The spots for di�erent �have approximately the same shape but di�er in the number of partiles (see�gure 2). In this paper we will onsider only the spot with relatively strongglobal inhibition � ' 2:0 (like in �gure 2).In the ontrary to the deterministi ase, due to the stohasti haraterof the simulation the spot never beomes stationary. It hanges the shapeand the diretion of motion permanently. We neglet the �utuation of the
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Fig. 2. Spots for small � = 42000 (left) and large � = 10000 (right). The numberof partiles is di�erent without essential hange of the shape.shape and take trae of the enter of mass:~xu(t) = 1U Z dx~xu(~x; t); (4)~xv(t) = 1V Z dx~xv(~x; t); (5)where U = Puik = R u(x)dx and V = R v(x)dx. A typial path of ~xu isdepited in �gure 3.
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Fig. 3. A typial trajetory for a running spot in presene of �utuation. In theinsert we show magni�ation, of the trajetory. On the large sale the path lookssimilar to Brownian partile but on small sale the orrelation of the diretion ofmotion are notieable.



Simulations of Loalized Dissipative Strutures : : : 3574.1. Transition from ballisti to di�usive motionontrolled by internal �utuationsThe trajetory of the spot on short time sale (see �gure 3) exhibits fea-tures of the ballisti motion (the veloity and diretion remain onstant). Onthe other hand on the large time sale the motion seems to be of di�usionaltype. This has been thoroughly investigated by measuring the displaementof the spot from the initial point and averaging over an ensemble of realiza-tions. In the general ase the dependene of mean square displaement ofthe partile position an be written in the form:ph�r2i = p2Dt�: (6)The exponent � is equal to one for ballisti motion and 1=2 for pure di�u-sive one. Therefore one ould expet a transition from ballisti to di�usivemotion for on a ertain time-sale. The another appropriate indiator ofharater of the motion of partile is the orrelation funtion of veloity.At small time-sales one should expet strong orrelation of spot's veloity,while for long time intervals the veloity should be unorrelated.We have generated an ensemble of long enough trajetories of the spot,then the mean displaement from initial point, the exponent � and �nallythe orrelation funtion of the veloity (t) have been alulated. In �gure 4we have plotted for running and stationary spots all above harateristis.Firstly one an notie that the exponent � varies from 1 for small timesales (t < 100) to 0:5 for long times (t > 1000). Seondly, the time whenthe orretion funtion vanish oinides with the time of the transition � :1! 0:5.The numerial experiment has been repeated for di�erent number ofpartiles; the ontrolled by the parameter �. The number of partiles isonneted with the amount of noise in the system: smaller value of �, larger�utuations our in the system. The results are shown in �gure 4. Onean observe that more noisy running spots undergo the transition into thedi�usive motion on shorter time-sale then less noisy ones.It has been shown in [12℄ that the steady solution of reation�di�usionsystem might be in one of two regimes: steady or moving. The transitionbetween those states an be ontrolled by the di�usion of inhibitor Dv. Wehave also studied the in�uene of marosopi features of the spot on thetransition point. For values of inhibitor di�usion: Dv = 0:30; 0:20; 0:11 wehave analyzed the trajetory as in the previous ase �gure 5. The transitionpoint depends signi�antly on the type of spot. For stationary spots theballisti motion is hanges into di�usive for shorter times.
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Fig. 4. The omparison of statistial properties for spots with onsisting of di�erentnumber of partiles. The spot is in running regime: Dv = 0:2. The number ofpartiles is ontrolled via parameter � = 3000; 5000; 10000. One an observe thatthe transition from ballisti into di�usive motion is shifted to smaller times asamount of noise inreases (� dereases). In the upper plot we have shown theorrelation funtion of veloity v(t), in the middle the mean displaement of thespot, and the bottom ontains the exponent � (see equation (6)).4.2. Mean �eld limitThe important issue is the question whether the partile algorithm anreprodue the mean �eld desription in the limit of large number of partileson orrespondingly small grid:� ! 1;VB ! 0; (7)�VB ' onst:� 1:We have been able to inrease the number of partiles to a. 106 and numberof boxes to a. 105. In this ase we expet that the properties of thespot are omparable with properties of deterministi spot i.e. the solutionof the system (1). Beause one of the most important parameters of thespot is its veloity, we have ompared distribution funtion of veloitiesof the stohasti spot with the numerially obtained value of veloity ofdeterministi spot. In �gure 6 we have plotted the veloity distribution forthree spot build by inreasing number of partiles and deterministi veloityfor the same marosopi parameters. We see that the algorithm reproduessolution of RDS system when the number of boxes within one spot andnumber of partiles whih ompose one spot are large.
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Fig. 5. The omparison of statistial properties for spots with di�erent veloitiesontrolled via di�usion onstant of inhibitor Dv. The spot onsists of relativelysmall number of partiles: � = 5000. The upper plot shows exponent �, middleorrelation funtion of veloity (t), and the last shows mean displaement. Thestraight lines show approximately time sales at whih the transition from ballistiinto di�usive motion ours. In the upper plot we have shown the orrelationfuntion of veloity v(t), in the middle the mean displaement of the spot, andthe bottom ontains the exponent � (see equation (6)).
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