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DIFFUSION IN A MEMBRANE SYSTEM*
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Diffusion in a one-dimensional system with a thin membrane (which is
treated as a partially permeable wall) for the discrete and continuous time
and space variables is discussed. The internal structure of the membrane
is not explicitly involved into consideration. Starting from microscopic
models of diffusion we obtain the boundary condition at the membrane for
macroscopic diffusion equation.

PACS numbers: 05.40.+j, 05.60.+w, 02.30.—f

1. Introduction

Diffusion in a system with the homogeneity being disturbed at one point
(which corresponds to a system with a thin membrane) is important in var-
ious fields of physics, chemistry and biophysics (see e.g. [1], [2]). It is also
interesting from the mathematical point of view. Since the concentration
gradients are assumed to be only along the z-direction, the problem is ef-
fectively one-dimensional. Usually the diffusion in the membrane system is
considered within the diffusion equation

oC 0*C
o DW ) (1)

where two boundary conditions at a thin membrane are needed (when the
membrane is of finite thickness the number of the boundary conditions at the
membrane increases to four). Assuming that the flux flowing through the
membrane is continuous, we need a second boundary condition. The internal
structure of the membrane is not explicitly involved into our considerations.

* Presented at the XXIV International School of Theoretical Physics “Transport
Phenomena from Quantum to Classical Regimes”, Ustron, Poland, September 25—
October 1, 2000.

(373)



374 T. KOSZTOLOWICZ

Instead, we assume that the permeability of the membrane is described by
the general permeability coefficient. For example, it can be defined as a ratio
of the total surface of all holes to the membrane surface. There are two ways
to determine the boundary conditions at the membrane from the microscopic
models. In the first one, the random walk on the discrete lattice in terms
of the discrete Master equations is considered [3, 4], while the second one is
based on the diffusion in the phase-space [5]. The boundary conditions for
the systems with fully reflecting, fully absorbing or partially absorbing walls
have been considered previously [1-6]. In contrast to the membrane system,
the diffusion is then investigated only in half-space bounded by the wall.
We note that the diffusion in the membrane system is qualitatively different
from that in the system with partially absorbing wall, because in the latter
one the particle once absorbed has no chance to return to the system. Till
now there is not satisfactory procedures of obtaining the boundary condition
at the partially permeable wall form the microscopic models. In this paper
we present new results of our investigations concerning this issue.

2. Diffusion in the discrete membrane system

We start from the following birth-death equations for the system with a
thin membrane, which is placed between the N and N + 1 sites:

OPUMD) [P (m—1.0+P(m+1.) = 2P (m.0)]. m# N.N +1.
% =bP (N +1,t)4+aP (N —1,t) — (a+ b) P (N, 1) ,
W = aP (N +2,8)+bP (N,t) — (a+b) P (N +1,) ,

where b = (1 — ¢) a. To solve above equations we use the method of Montroll
and Weiss [7]. The solutions are [§]

P__ (m,t;mo) = exp (=2at) [T —mq| (20t) + qIoN —m—mo+1 (2at)

o0
~2¢(1—q) > (20 = 1)* Lin—m—mq+h+2 (2at)] , m,mg< N, (2
k=0

Py (m 1 mO) = €xp (—Q(Zt) (1 - q) [Imfmo(Qat)

+2qz 2 —1)*1,_ m0+k+1(2at)], m>N+1,my<N, (3)

where myg is the initial position of the particle, I,,, denotes the modified
Bessel function. The indices + and — of Green’s functions refer to the signs
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of (m — N)and (mg — N), respectively. In the above equations we take into
account only those terms where the lower arguments of the binomials are
integer. The functions P,y and P_, can be obtained from the functions
(2) and (3) respectively, by “mirror reflection” of the space axis with respect
to the membrane (when the terms m — mg, 2N — m — myg etc. change
their sign). The series occurring in (2) and (3) are convergent, so we can
approximate the full series by the finite one (which contain only several first
terms). From physical point of view the omitting the terms with large k is
justified. The term occurring in the series exp (—2at) Ion—m—mqo+k+2 (2at)
can be interpreted as a probability of finding the particle at site m under
condition that initially it is at the site 2N — mqg + k + 2. This means that
the particle must take at least n = 2N —m —mg + k + 2 steps (m, mg < N)
during the time interval ¢. Since the probability ¥, () of take n steps in the
time interval decreases with n according to the Poisson distribution [9]

vy, (1) = % G)nexp <—;> :

the terms with large k can be rejected from the series occurring in (2) and (3).
Thus, in the following considerations we take the discrete Green’s functions
in the form:
P (ma 1 mU) = €xXp (_2at) [I\m—mo\ (2at) + qI?mefmoJrl (2(Zt)
p

—2¢(1—-¢q)Y (2 —1)* N —m—mo+k+2 (2at)] , m,mog< N,
k=0

Py (m,t;mo) = exp (~2at) (1 = g) [ In—m, (202)

p
+243 (20 = D Lpngin (2at)] , m>N+1,mg<N.
k=0

3. From discrete to continuous space variable

To pass from discrete to continuous space variable we take the standard
procedure, where the following relations are assumed [2, 6, 10]
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the parameter ¢ is interpreted as a distance between discrete sites, D is the
diffusion coefficient. The Green’s functions for the continuous system are
obtained in the limit of small

lim 1P (m,t;mg) = G (z,t;x0) - (4)

e—=0 €

For the homogeneous system the Green’s function is
PO (m7 t; mO) = €xXp (—20,15) I\mfmo\ (2at) )

and obeys the limit
1
lim =Py (m,t;mo) = Go (2, t;20) -
e—=0 ¢

2
where Gy (z,t;29) = 2\/71ﬁ exp (—(ngg) ) is the Green’s function for the

continuous system without the membrane . To calculate the limit of small ¢
for the discrete Green’s functions, we need to consider the following problem:
does the reflecting coefficient ¢ depend on the parameter ¢ (and what is
the function ¢ = ¢(¢))? To obtain the answer we keep our attention for
a moment on the system with partially absorbing wall, where the Green’s
functions and boundary conditions at the wall are well-known for the discrete
[4, 6, 11] as well as for the continuous system [5]. For the discrete system the
Green’s function, which fulfills the following microscopic boundary condition
at the partially absorbing wall placed between N and N + 1 states (here
mo < N )
P (N +1,t;mp) = aP (N, t;mo)

18

P (m,t;mg) = exp (—2at) [I|m_m0| (2at) + aloN —m—mo+1 (2at)

—(1-0”)) "Ly momorkr2 (2at)] ; (5)
k=0

where « is the absorbing parameter of the wall, a € [0,1]. The boundary
condition at the wall for the continuous system is

J(zn,t;20) = AG (2N, t;70)

where J = —D%—g is the diffusive flux, A is the “macroscopic” absorbing
parameter of the wall. In this case the Green’s function reads

RS (@ — z0) (2zy —x — 20)”
G,,(:E,t,mo)—%/m [exP (_T;>+exp (_ N4Dt : >]

)\e <)\(2:EN—x—x0+)\t)>erfc <2xN—x—x0+2)\t) (©)
—— X .
P D 2V Dt

D



Diffusion in a Membrane System 377

The function (5) become the function (6) in the limit (4) if the following

relation is taken
() EA
ale)=exp| —— | .
PA™D

For the system of partially permeable wall let us assume a more general form
of the function g = ¢ (¢)

a(e) = qoexp (-3 - (7)

Since ¢ (¢) € (0,1], then go € (0,1] and n > 0 (we exclude here the trivial
case of ¢qo = 0). The parameters ¢y and 71 control the permeability of the
membrane. In the following we consider two cases which give the results
not equivalent to each other. In the limit of small ¢ the result depends on
the parameter ¢qg. After the calculations we obtain the following Green’s
functions for the continuous membrane system [8] (here zy = eN is the
location of the membrane, zy = emy).
For qo =1

G (2.t 79) 1 (z — z0)? n Quy — z — x0)?
——(z,t;20)= exp |————— | +exp |-
RS Ut TP\ 4Dt P 4Dt
2n (2zy —x — 2nt 2eny —x — 4dnt
—ﬂexp<n(mN T — 1o+ n))erfc<$N r — T+ n)

D D 2v/ Dt
Gy (z,t;10) = % exp <27l (= _20 * 2nt)) erfc <%\/Dit4nt> .
These functions fulfill the boundary conditions
J (.’L‘]_V,t; mo) =17 [G,, (m]_v,t; mo) -Gy (:E"]\},t;xo)] ) (8)
Ji_ (x"]\},t; xo) =1 [G__ (ac]_v,t; xo) —Gy_ (x"]\},t;xo)] , (9)
where J;j (z,t;20) = _DW' Let us note that from (8) and (9) we

immediately obtain that the flux is continuous at the membrane

J__ (x]_v,t;xo) =J;_ (x"]\},t; xo) .

For ¢y < 1
1 (.’L‘—Io)2
G__ (z,t;29) = exp | ————+—
( 0) 5D [ p( D1
(2zn — x — xg)*
— 1
+4 exp ( 1D , T, To < TN , (10)

B N 2
G+_ (iE,t;.’L'()) = (1 5) €xXp <_%> s T>IN, o < TN a(ll)
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where the parameter § = ¢ (2¢ — 1)? (which does not depend on time) con-
trols the membrane permeability. This parameter is interpreted as a con-
ditional probability of finding the particle in the region x > zx under the
condition that after removing the wall it is found in this region [10]. The
Green’s functions (10) and (11) satisfy the continuity of the diffusive fluxes
at the membrane. Furthermore they generate the second boundary condition
which can be formulated in the following two equivalent forms.
1. The ratio of concentrations at the both sides of the membrane is
independent of time
Gy (x]_v,t;xo) 1=
G__ (x"]\},t;xo) 144"

(12)

2. The flux flowing through the membrane is proportional to the analo-
gous flux flowing in the system with removed membrane

J(:ENat’:EO) = (1_5) JO (INata:L‘O) )

where Jy = —D% is the flux flowing in the system with removed mem-
brane. Equivalence of these boundary conditions means that the solutions of
the diffusion equation (1) with these conditions are the same. The boundary
condition generated by the functions (10) and (11) can be also formulated in
more heuristic form [10]: if during a given time interval some particles reach
the membrane placed at point zy, the fraction § of them will be stopped
while (1 — §) will go through.

4. Diffusion in the phase-space

To derive the boundary condition at the membrane from the considera-
tions performed in the phase-space, we assume that the distribution function
of the diffusing particles f (z,v,t) (where z and v are, respectively, the par-
ticle position and velocity at the time t), satisfies the relations [12]

f(xj_\fa_vat) = (1 _5)f (iE]_V,U,t) +Bf (iE;,—U,t) 9 (13)

f ey, vt) = (1=B) f (2§, —v,t) + Bf (wy,v,1) . (14)

The terms proportional to (1 — /) correspond to the reflected particles and
those proportional to 8 to the particles which go through the membrane (3

can be treated as a ratio of the total surface of all holes to the membrane
surface). Defining the particle flow as J (z,t) = J4 (z,t) — J- (z,t) with

o0

T (@t) = [ of (w0, 0)do,

0
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0

J_(z,t) = — / vf (z,v,t) dv,

— 00

one rewrites the relations (13) and (14) as
J- (xli\/"t) = (1 - /8) J+ (xjivat) +/8J— (iE},t) )

I (z5,t) = (1 = B) J_ (24, t) + BJs (zy,t) -
One observes that adding the partial fluxes we get the conservation of the
substance flow at the membrane i.e.

J(zy,t) =J (zx.1) .

We can decompose the distribution function as [5]

f(:L‘a,Uat) :fO (.’L‘,’U,t)+f1 (.’L‘,’U,t) )

where fq is the equilibrium distribution function i.e.

fo p = C(x,t) o _mv2
OO = ormbeT P\ 2T )

with C, T and kg denoting the concentration of the diffusing particles,
temperature and Boltzmann constant, respectively. In contrast to the equi-
librium distribution function, which is even (fo (z, —v,t) = fo (z,v,t)), the
function f; is assumed to be odd (fy (z, —v,t) = —f1 (z,v,t)). From above
relations, after simple calculations we obtain following boundary condition
at the membrane

J(zn,t) = —kK (C (x},t) - C (x]_v,t)) , (15)

where J (zn,t) = J (x"]\},t) =J (x]_v,t), and the membrane permeability
coefficient k is defined as

El

BT

B
1-8V 2rm’

K =

5. Final remarks

Finding of the boundary condition at the membrane for the case of con-
tinuous system appears as a nontrivial problem. The procedure of passing
from discrete to continuous system gives two qualitatively different results.
We note that within presented formalism there is no possibility to obtain
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different boundary condition than the ones (8) and (9) (or (15)) and (12).
In the paper [13] the time evolution of near-membrane layer has been in-
vestigated. The near-membrane layer is a region where the concentration of
the substance transported across the membrane is significantly decreased.
Its thickness is defined as a length over which the concentration drops 7y
times with respect to the concentration given at the membrane surface
(v is arbitrary large number). It is shown that within the experimental
errors the thickness of the near-membrane layers p grows in time for any -~y
as pv/t with the coefficient p being independent of the membrane permeabil-
ity. From theoretical point of view such a result is obtained on the basis of
Green’s functions (10) and (11).

For interpretation of the cases considered in Sec. 3, we add that the
functions (10) and (11) is also obtained when we put n = 0 (with ¢ < 1)
in (7). Then the parameter ¢ does not depend on the €. Such a situation is
possible when the discrete sites NV and N + 1 lay on the membrane surfaces
when ¢ — 0, so any additional discrete sites between these sites and the
membrane surfaces do not appear in this limit. In opposite situation (when
qo = 1), there appear the additional sites between the sites N (and N + 1)
and the membrane surfaces and their number goes to infinity proportionally
to 1. So, the boundary conditions (8) and (9) rather correspond to the
points which are not placed at the membrane surfaces.

The author wishes to express his thanks to Stanistaw Mréwczyrnski for the
fruitful discussions and critical comments on the manuscript. This paper was
partially supported by the Polish State Committee for Scientific Research
(KBN) under Grant No. 2 P03B 129 16.
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