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DIFFUSION IN A MEMBRANE SYSTEM�Tadeusz KosztoªowizInstitute of Physis, Pedagogial UniversityKonopnikiej 15, 25-406 Kiele, Polande-mail: tkoszt�pu.kiele.pl(Reeived Otober 30, 2000)Di�usion in a one-dimensional system with a thin membrane (whih istreated as a partially permeable wall) for the disrete and ontinuous timeand spae variables is disussed. The internal struture of the membraneis not expliitly involved into onsideration. Starting from mirosopimodels of di�usion we obtain the boundary ondition at the membrane formarosopi di�usion equation.PACS numbers: 05.40.+j, 05.60.+w, 02.30.�f1. IntrodutionDi�usion in a system with the homogeneity being disturbed at one point(whih orresponds to a system with a thin membrane) is important in var-ious �elds of physis, hemistry and biophysis (see e.g. [1℄, [2℄). It is alsointeresting from the mathematial point of view. Sine the onentrationgradients are assumed to be only along the x-diretion, the problem is ef-fetively one-dimensional. Usually the di�usion in the membrane system isonsidered within the di�usion equation�C�t = D�2C�x2 ; (1)where two boundary onditions at a thin membrane are needed (when themembrane is of �nite thikness the number of the boundary onditions at themembrane inreases to four). Assuming that the �ux �owing through themembrane is ontinuous, we need a seond boundary ondition. The internalstruture of the membrane is not expliitly involved into our onsiderations.� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (373)



374 T. KosztoªowizInstead, we assume that the permeability of the membrane is desribed bythe general permeability oe�ient. For example, it an be de�ned as a ratioof the total surfae of all holes to the membrane surfae. There are two waysto determine the boundary onditions at the membrane from the mirosopimodels. In the �rst one, the random walk on the disrete lattie in termsof the disrete Master equations is onsidered [3, 4℄, while the seond one isbased on the di�usion in the phase-spae [5℄. The boundary onditions forthe systems with fully re�eting, fully absorbing or partially absorbing wallshave been onsidered previously [1�6℄. In ontrast to the membrane system,the di�usion is then investigated only in half-spae bounded by the wall.We note that the di�usion in the membrane system is qualitatively di�erentfrom that in the system with partially absorbing wall, beause in the latterone the partile one absorbed has no hane to return to the system. Tillnow there is not satisfatory proedures of obtaining the boundary onditionat the partially permeable wall form the mirosopi models. In this paperwe present new results of our investigations onerning this issue.2. Di�usion in the disrete membrane systemWe start from the following birth-death equations for the system with athin membrane, whih is plaed between the N and N + 1 sites:�P (m; t)�t = a [P (m� 1; t)+P (m+ 1; t)� 2P (m; t)℄ ; m 6= N;N + 1 ;�P (N; t)�t = bP (N + 1; t)+aP (N � 1; t)� (a+ b)P (N; t) ;�P (N + 1; t)�t = aP (N + 2; t)+bP (N; t)� (a+ b)P (N + 1; t) ;where b = (1� q) a. To solve above equations we use the method of Montrolland Weiss [7℄. The solutions are [8℄P�� (m; t;m0) = exp (�2at) �Ijm�m0j (2at) + qI2N�m�m0+1 (2at)�2q (1� q) 1Xk=0 (2q � 1)k I2N�m�m0+k+2 (2at)# ; m; m0 � N ; (2)P+� (m; t;m0) = exp (�2at) (1� q) �Im�m0(2at)+2q 1Xk=0 (2q � 1)k Im�m0+k+1 (2at)# ; m � N + 1; m0 � N ; (3)where m0 is the initial position of the partile, Im denotes the modi�edBessel funtion. The indies + and � of Green's funtions refer to the signs



Di�usion in a Membrane System 375of (m�N)and (m0 �N), respetively. In the above equations we take intoaount only those terms where the lower arguments of the binomials areinteger. The funtions P++ and P�+ an be obtained from the funtions(2) and (3) respetively, by �mirror re�etion� of the spae axis with respetto the membrane (when the terms m � m0, 2N � m � m0 et. hangetheir sign). The series ourring in (2) and (3) are onvergent, so we anapproximate the full series by the �nite one (whih ontain only several �rstterms). From physial point of view the omitting the terms with large k isjusti�ed. The term ourring in the series exp (�2at) I2N�m�m0+k+2 (2at)an be interpreted as a probability of �nding the partile at site m underondition that initially it is at the site 2N �m0 + k + 2. This means thatthe partile must take at least n = 2N �m�m0+ k+2 steps (m;m0 � N)during the time interval t. Sine the probability 	n (t) of take n steps in thetime interval dereases with n aording to the Poisson distribution [9℄	n (t) = 1n! � t��n exp�� t�� ;the terms with large k an be rejeted from the series ourring in (2) and (3).Thus, in the following onsiderations we take the disrete Green's funtionsin the form:P�� (m; t;m0) = exp (�2at) hIjm�m0j (2at) + qI2N�m�m0+1 (2at)�2q (1� q) pXk=0 (2q � 1)k I2N�m�m0+k+2 (2at)i ; m; m0 � N ;P+� (m; t;m0) = exp (�2at) (1� q) hIm�m0 (2at)+2q pXk=0 (2q � 1)k Im�m0+k+1 (2at)i ; m � N + 1; m0 � N :3. From disrete to ontinuous spae variableTo pass from disrete to ontinuous spae variable we take the standardproedure, where the following relations are assumed [2, 6, 10℄x = n" ;D = a"2 ;



376 T. Kosztoªowizthe parameter " is interpreted as a distane between disrete sites, D is thedi�usion oe�ient. The Green's funtions for the ontinuous system areobtained in the limit of small "lim"!0 1"P (m; t;m0) = G (x; t;x0) : (4)For the homogeneous system the Green's funtion isP0 (m; t;m0) = exp (�2at) Ijm�m0j (2at) ;and obeys the limit lim"!0 1"P0 (m; t;m0) = G0 (x; t;x0) :where G0 (x; t;x0) = 12p�Dt exp�� (x�x0)24Dt � is the Green's funtion for theontinuous system without the membrane . To alulate the limit of small "for the disrete Green's funtions, we need to onsider the following problem:does the re�eting oe�ient q depend on the parameter " (and what isthe funtion q = q ("))? To obtain the answer we keep our attention fora moment on the system with partially absorbing wall, where the Green'sfuntions and boundary onditions at the wall are well-known for the disrete[4, 6, 11℄ as well as for the ontinuous system [5℄. For the disrete system theGreen's funtion, whih ful�lls the following mirosopi boundary onditionat the partially absorbing wall plaed between N and N + 1 states (herem0 � N) P (N + 1; t;m0) = �P (N; t;m0)is P (m; t;m0) = exp (�2at) �Ijm�m0j (2at) + �I2N�m�m0+1 (2at)� �1� �2� 1Xk=0�kI2N�m�m0+k+2 (2at)# ; (5)where � is the absorbing parameter of the wall, � 2 [0; 1℄. The boundaryondition at the wall for the ontinuous system isJ (xN ; t;x0) = �G (xN ; t;x0) ;where J = �D �G�x is the di�usive �ux, � is the �marosopi� absorbingparameter of the wall. In this ase the Green's funtion readsG�� (x; t;x0) = 12p�Dt "exp �(x� x0)24Dt !+ exp �(2xN � x� x0)24Dt !#� �D exp�� (2xN � x� x0 + �t)D � erf�2xN � x� x0 + 2�t2pDt � : (6)



Di�usion in a Membrane System 377The funtion (5) beome the funtion (6) in the limit (4) if the followingrelation is taken � (") = exp��"�D � :For the system of partially permeable wall let us assume a more general formof the funtion q = q (") q (") = q0 exp��"�D � : (7)Sine q (") 2 (0; 1℄, then q0 2 (0; 1℄ and � � 0 (we exlude here the trivialase of q0 = 0). The parameters q0 and � ontrol the permeability of themembrane. In the following we onsider two ases whih give the resultsnot equivalent to eah other. In the limit of small " the result depends onthe parameter q0. After the alulations we obtain the following Green'sfuntions for the ontinuous membrane system [8℄ (here xN = "N is theloation of the membrane, x0 = "m0).For q0 = 1G�� (x; t;x0)= 12p�Dt "exp �(x� x0)24Dt !+ exp �(2xN � x� x0)24Dt !#� �D exp�2� (2xN � x� x0 + 2�t)D � erf�2xN � x� x0 + 4�t2pDt �G+� (x; t;x0) = �D exp�2� (x� x0 + 2�t)D � erf�x� x0 + 4�t2pDt � :These funtions ful�ll the boundary onditionsJ�� �x�N ; t;x0� = � �G�� �x�N ; t;x0��G+� �x+N ; t;x0�� ; (8)J+� �x+N ; t;x0� = � �G�� �x�N ; t;x0��G+� �x+N ; t;x0�� ; (9)where Jij (x; t;x0) = �D �Gij (x;t;x0)�x . Let us note that from (8) and (9) weimmediately obtain that the �ux is ontinuous at the membraneJ�� �x�N ; t;x0� = J+� �x+N ; t;x0� :For q0 < 1G�� (x; t;x0) = 12p�Dt "exp �(x� x0)24Dt !+Æ exp �(2xN � x� x0)24Dt !# ; x; x0 < xN ; (10)G+� (x; t;x0) = (1� Æ)2p�Dt exp �(x� x0)24Dt ! ; x > xN ; x0 < xN ;(11)



378 T. Kosztoªowizwhere the parameter Æ = q (2q � 1)p (whih does not depend on time) on-trols the membrane permeability. This parameter is interpreted as a on-ditional probability of �nding the partile in the region x > xN under theondition that after removing the wall it is found in this region [10℄. TheGreen's funtions (10) and (11) satisfy the ontinuity of the di�usive �uxesat the membrane. Furthermore they generate the seond boundary onditionwhih an be formulated in the following two equivalent forms.1. The ratio of onentrations at the both sides of the membrane isindependent of time G+� �x�N ; t;x0�G�� �x+N ; t;x0� = 1� Æ1 + Æ : (12)2. The �ux �owing through the membrane is proportional to the analo-gous �ux �owing in the system with removed membraneJ (xN ; t;x0) = (1� Æ) J0 (xN ; t;x0) ;where J0 = �D �G0�x is the �ux �owing in the system with removed mem-brane. Equivalene of these boundary onditions means that the solutions ofthe di�usion equation (1) with these onditions are the same. The boundaryondition generated by the funtions (10) and (11) an be also formulated inmore heuristi form [10℄: if during a given time interval some partiles reahthe membrane plaed at point xN , the fration Æ of them will be stoppedwhile (1� Æ) will go through.4. Di�usion in the phase-spaeTo derive the boundary ondition at the membrane from the onsidera-tions performed in the phase-spae, we assume that the distribution funtionof the di�using partiles f (x; v; t) (where x and v are, respetively, the par-tile position and veloity at the time t), satis�es the relations [12℄f �x�N ;�v; t� = (1� �) f �x�N ; v; t�+ �f �x+N ;�v; t� ; (13)f �x+N ; v; t� = (1� �) f �x+N ;�v; t�+ �f �x�N ; v; t� : (14)The terms proportional to (1� �) orrespond to the re�eted partiles andthose proportional to � to the partiles whih go through the membrane (�an be treated as a ratio of the total surfae of all holes to the membranesurfae). De�ning the partile �ow as J (x; t) = J+ (x; t)� J� (x; t) withJ+ (x; t) = 1Z0 vf (x; v; t) dv ;



Di�usion in a Membrane System 379J� (x; t) = � 0Z�1 vf (x; v; t) dv ;one rewrites the relations (13) and (14) asJ� �x�N ; t� = (1� �) J+ �x�N ; t�+ �J� �x+N ; t� ;J+ �x+N ; t� = (1� �) J� �x+N ; t�+ �J+ �x�N ; t� :One observes that adding the partial �uxes we get the onservation of thesubstane �ow at the membrane i.e.J �x�N ; t� = J �x+N ; t� :We an deompose the distribution funtion as [5℄f (x; v; t) = f0 (x; v; t) + f1 (x; v; t) ;where f0 is the equilibrium distribution funtion i.e.f0 (x; v; t) = C (x; t)p2�mkBT exp�� mv22kBT � ;with C, T and kB denoting the onentration of the di�using partiles,temperature and Boltzmann onstant, respetively. In ontrast to the equi-librium distribution funtion, whih is even (f0 (x;�v; t) = f0 (x; v; t)), thefuntion f1 is assumed to be odd (f1 (x;�v; t) = �f1 (x; v; t)). From aboverelations, after simple alulations we obtain following boundary onditionat the membrane J (xN ; t) = �� �C �x+N ; t�� C �x�N ; t�� ; (15)where J (xN ; t) = J �x+N ; t� = J �x�N ; t�, and the membrane permeabilityoe�ient � is de�ned as � = �1� �r kBT2�m :5. Final remarksFinding of the boundary ondition at the membrane for the ase of on-tinuous system appears as a nontrivial problem. The proedure of passingfrom disrete to ontinuous system gives two qualitatively di�erent results.We note that within presented formalism there is no possibility to obtain



380 T. Kosztoªowizdi�erent boundary ondition than the ones (8) and (9) (or (15)) and (12).In the paper [13℄ the time evolution of near-membrane layer has been in-vestigated. The near-membrane layer is a region where the onentration ofthe substane transported aross the membrane is signi�antly dereased.Its thikness is de�ned as a length over whih the onentration drops times with respet to the onentration given at the membrane surfae( is arbitrary large number). It is shown that within the experimentalerrors the thikness of the near-membrane layers � grows in time for any as �pt with the oe�ient � being independent of the membrane permeabil-ity. From theoretial point of view suh a result is obtained on the basis ofGreen's funtions (10) and (11).For interpretation of the ases onsidered in Se. 3, we add that thefuntions (10) and (11) is also obtained when we put � = 0 (with q0 < 1)in (7). Then the parameter q does not depend on the ". Suh a situation ispossible when the disrete sites N and N +1 lay on the membrane surfaeswhen " ! 0, so any additional disrete sites between these sites and themembrane surfaes do not appear in this limit. In opposite situation (whenq0 = 1), there appear the additional sites between the sites N (and N + 1)and the membrane surfaes and their number goes to in�nity proportionallyto 1" . So, the boundary onditions (8) and (9) rather orrespond to thepoints whih are not plaed at the membrane surfaes.The author wishes to express his thanks to Stanisªaw Mrówzy«ski for thefruitful disussions and ritial omments on the manusript. This paper waspartially supported by the Polish State Committee for Sienti� Researh(KBN) under Grant No. 2 P03B 129 16.REFERENCES[1℄ C.W. Gardiner, Handbook of Stohasti Methods for Physis, Chemistry andthe Natural Sienes, Springer-Verlag, Berlin 1990.[2℄ N.G. van Kampen, Stohasti Proesses in Physis and Chemistry, North-Holland, Amsterdam 1987.[3℄ S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).[4℄ G.H. Weiss, Aspets and Appliations of the Random Walk, North-Holland,Amsterdam 1994.[5℄ K. Razi-Naqvi, K.J. Mork, S. Waldenstrom, Phys. Rev. Lett. 49, 304 (1982).[6℄ N.G. van Kampen, I. Oppenheim, J. Math. Phys. 13, 842 (1972).[7℄ E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965).[8℄ T. Kosztoªowiz (submitted for publiation).
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