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DIFFUSION IN A MEMBRANE SYSTEM�Tadeusz Kosztoªowi
zInstitute of Physi
s, Pedagogi
al UniversityKonopni
kiej 15, 25-406 Kiel
e, Polande-mail: tkoszt�pu.kiel
e.pl(Re
eived O
tober 30, 2000)Di�usion in a one-dimensional system with a thin membrane (whi
h istreated as a partially permeable wall) for the dis
rete and 
ontinuous timeand spa
e variables is dis
ussed. The internal stru
ture of the membraneis not expli
itly involved into 
onsideration. Starting from mi
ros
opi
models of di�usion we obtain the boundary 
ondition at the membrane forma
ros
opi
 di�usion equation.PACS numbers: 05.40.+j, 05.60.+w, 02.30.�f1. Introdu
tionDi�usion in a system with the homogeneity being disturbed at one point(whi
h 
orresponds to a system with a thin membrane) is important in var-ious �elds of physi
s, 
hemistry and biophysi
s (see e.g. [1℄, [2℄). It is alsointeresting from the mathemati
al point of view. Sin
e the 
on
entrationgradients are assumed to be only along the x-dire
tion, the problem is ef-fe
tively one-dimensional. Usually the di�usion in the membrane system is
onsidered within the di�usion equation�C�t = D�2C�x2 ; (1)where two boundary 
onditions at a thin membrane are needed (when themembrane is of �nite thi
kness the number of the boundary 
onditions at themembrane in
reases to four). Assuming that the �ux �owing through themembrane is 
ontinuous, we need a se
ond boundary 
ondition. The internalstru
ture of the membrane is not expli
itly involved into our 
onsiderations.� Presented at the XXIV International S
hool of Theoreti
al Physi
s �TransportPhenomena from Quantum to Classi
al Regimes�, Ustro«, Poland, September 25�O
tober 1, 2000. (373)
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zInstead, we assume that the permeability of the membrane is des
ribed bythe general permeability 
oe�
ient. For example, it 
an be de�ned as a ratioof the total surfa
e of all holes to the membrane surfa
e. There are two waysto determine the boundary 
onditions at the membrane from the mi
ros
opi
models. In the �rst one, the random walk on the dis
rete latti
e in termsof the dis
rete Master equations is 
onsidered [3, 4℄, while the se
ond one isbased on the di�usion in the phase-spa
e [5℄. The boundary 
onditions forthe systems with fully re�e
ting, fully absorbing or partially absorbing wallshave been 
onsidered previously [1�6℄. In 
ontrast to the membrane system,the di�usion is then investigated only in half-spa
e bounded by the wall.We note that the di�usion in the membrane system is qualitatively di�erentfrom that in the system with partially absorbing wall, be
ause in the latterone the parti
le on
e absorbed has no 
han
e to return to the system. Tillnow there is not satisfa
tory pro
edures of obtaining the boundary 
onditionat the partially permeable wall form the mi
ros
opi
 models. In this paperwe present new results of our investigations 
on
erning this issue.2. Di�usion in the dis
rete membrane systemWe start from the following birth-death equations for the system with athin membrane, whi
h is pla
ed between the N and N + 1 sites:�P (m; t)�t = a [P (m� 1; t)+P (m+ 1; t)� 2P (m; t)℄ ; m 6= N;N + 1 ;�P (N; t)�t = bP (N + 1; t)+aP (N � 1; t)� (a+ b)P (N; t) ;�P (N + 1; t)�t = aP (N + 2; t)+bP (N; t)� (a+ b)P (N + 1; t) ;where b = (1� q) a. To solve above equations we use the method of Montrolland Weiss [7℄. The solutions are [8℄P�� (m; t;m0) = exp (�2at) �Ijm�m0j (2at) + qI2N�m�m0+1 (2at)�2q (1� q) 1Xk=0 (2q � 1)k I2N�m�m0+k+2 (2at)# ; m; m0 � N ; (2)P+� (m; t;m0) = exp (�2at) (1� q) �Im�m0(2at)+2q 1Xk=0 (2q � 1)k Im�m0+k+1 (2at)# ; m � N + 1; m0 � N ; (3)where m0 is the initial position of the parti
le, Im denotes the modi�edBessel fun
tion. The indi
es + and � of Green's fun
tions refer to the signs



Di�usion in a Membrane System 375of (m�N)and (m0 �N), respe
tively. In the above equations we take intoa

ount only those terms where the lower arguments of the binomials areinteger. The fun
tions P++ and P�+ 
an be obtained from the fun
tions(2) and (3) respe
tively, by �mirror re�e
tion� of the spa
e axis with respe
tto the membrane (when the terms m � m0, 2N � m � m0 et
. 
hangetheir sign). The series o

urring in (2) and (3) are 
onvergent, so we 
anapproximate the full series by the �nite one (whi
h 
ontain only several �rstterms). From physi
al point of view the omitting the terms with large k isjusti�ed. The term o

urring in the series exp (�2at) I2N�m�m0+k+2 (2at)
an be interpreted as a probability of �nding the parti
le at site m under
ondition that initially it is at the site 2N �m0 + k + 2. This means thatthe parti
le must take at least n = 2N �m�m0+ k+2 steps (m;m0 � N)during the time interval t. Sin
e the probability 	n (t) of take n steps in thetime interval de
reases with n a

ording to the Poisson distribution [9℄	n (t) = 1n! � t��n exp�� t�� ;the terms with large k 
an be reje
ted from the series o

urring in (2) and (3).Thus, in the following 
onsiderations we take the dis
rete Green's fun
tionsin the form:P�� (m; t;m0) = exp (�2at) hIjm�m0j (2at) + qI2N�m�m0+1 (2at)�2q (1� q) pXk=0 (2q � 1)k I2N�m�m0+k+2 (2at)i ; m; m0 � N ;P+� (m; t;m0) = exp (�2at) (1� q) hIm�m0 (2at)+2q pXk=0 (2q � 1)k Im�m0+k+1 (2at)i ; m � N + 1; m0 � N :3. From dis
rete to 
ontinuous spa
e variableTo pass from dis
rete to 
ontinuous spa
e variable we take the standardpro
edure, where the following relations are assumed [2, 6, 10℄x = n" ;D = a"2 ;
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zthe parameter " is interpreted as a distan
e between dis
rete sites, D is thedi�usion 
oe�
ient. The Green's fun
tions for the 
ontinuous system areobtained in the limit of small "lim"!0 1"P (m; t;m0) = G (x; t;x0) : (4)For the homogeneous system the Green's fun
tion isP0 (m; t;m0) = exp (�2at) Ijm�m0j (2at) ;and obeys the limit lim"!0 1"P0 (m; t;m0) = G0 (x; t;x0) :where G0 (x; t;x0) = 12p�Dt exp�� (x�x0)24Dt � is the Green's fun
tion for the
ontinuous system without the membrane . To 
al
ulate the limit of small "for the dis
rete Green's fun
tions, we need to 
onsider the following problem:does the re�e
ting 
oe�
ient q depend on the parameter " (and what isthe fun
tion q = q ("))? To obtain the answer we keep our attention fora moment on the system with partially absorbing wall, where the Green'sfun
tions and boundary 
onditions at the wall are well-known for the dis
rete[4, 6, 11℄ as well as for the 
ontinuous system [5℄. For the dis
rete system theGreen's fun
tion, whi
h ful�lls the following mi
ros
opi
 boundary 
onditionat the partially absorbing wall pla
ed between N and N + 1 states (herem0 � N) P (N + 1; t;m0) = �P (N; t;m0)is P (m; t;m0) = exp (�2at) �Ijm�m0j (2at) + �I2N�m�m0+1 (2at)� �1� �2� 1Xk=0�kI2N�m�m0+k+2 (2at)# ; (5)where � is the absorbing parameter of the wall, � 2 [0; 1℄. The boundary
ondition at the wall for the 
ontinuous system isJ (xN ; t;x0) = �G (xN ; t;x0) ;where J = �D �G�x is the di�usive �ux, � is the �ma
ros
opi
� absorbingparameter of the wall. In this 
ase the Green's fun
tion readsG�� (x; t;x0) = 12p�Dt "exp �(x� x0)24Dt !+ exp �(2xN � x� x0)24Dt !#� �D exp�� (2xN � x� x0 + �t)D � erf
�2xN � x� x0 + 2�t2pDt � : (6)



Di�usion in a Membrane System 377The fun
tion (5) be
ome the fun
tion (6) in the limit (4) if the followingrelation is taken � (") = exp��"�D � :For the system of partially permeable wall let us assume a more general formof the fun
tion q = q (") q (") = q0 exp��"�D � : (7)Sin
e q (") 2 (0; 1℄, then q0 2 (0; 1℄ and � � 0 (we ex
lude here the trivial
ase of q0 = 0). The parameters q0 and � 
ontrol the permeability of themembrane. In the following we 
onsider two 
ases whi
h give the resultsnot equivalent to ea
h other. In the limit of small " the result depends onthe parameter q0. After the 
al
ulations we obtain the following Green'sfun
tions for the 
ontinuous membrane system [8℄ (here xN = "N is thelo
ation of the membrane, x0 = "m0).For q0 = 1G�� (x; t;x0)= 12p�Dt "exp �(x� x0)24Dt !+ exp �(2xN � x� x0)24Dt !#� �D exp�2� (2xN � x� x0 + 2�t)D � erf
�2xN � x� x0 + 4�t2pDt �G+� (x; t;x0) = �D exp�2� (x� x0 + 2�t)D � erf
�x� x0 + 4�t2pDt � :These fun
tions ful�ll the boundary 
onditionsJ�� �x�N ; t;x0� = � �G�� �x�N ; t;x0��G+� �x+N ; t;x0�� ; (8)J+� �x+N ; t;x0� = � �G�� �x�N ; t;x0��G+� �x+N ; t;x0�� ; (9)where Jij (x; t;x0) = �D �Gij (x;t;x0)�x . Let us note that from (8) and (9) weimmediately obtain that the �ux is 
ontinuous at the membraneJ�� �x�N ; t;x0� = J+� �x+N ; t;x0� :For q0 < 1G�� (x; t;x0) = 12p�Dt "exp �(x� x0)24Dt !+Æ exp �(2xN � x� x0)24Dt !# ; x; x0 < xN ; (10)G+� (x; t;x0) = (1� Æ)2p�Dt exp �(x� x0)24Dt ! ; x > xN ; x0 < xN ;(11)
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zwhere the parameter Æ = q (2q � 1)p (whi
h does not depend on time) 
on-trols the membrane permeability. This parameter is interpreted as a 
on-ditional probability of �nding the parti
le in the region x > xN under the
ondition that after removing the wall it is found in this region [10℄. TheGreen's fun
tions (10) and (11) satisfy the 
ontinuity of the di�usive �uxesat the membrane. Furthermore they generate the se
ond boundary 
onditionwhi
h 
an be formulated in the following two equivalent forms.1. The ratio of 
on
entrations at the both sides of the membrane isindependent of time G+� �x�N ; t;x0�G�� �x+N ; t;x0� = 1� Æ1 + Æ : (12)2. The �ux �owing through the membrane is proportional to the analo-gous �ux �owing in the system with removed membraneJ (xN ; t;x0) = (1� Æ) J0 (xN ; t;x0) ;where J0 = �D �G0�x is the �ux �owing in the system with removed mem-brane. Equivalen
e of these boundary 
onditions means that the solutions ofthe di�usion equation (1) with these 
onditions are the same. The boundary
ondition generated by the fun
tions (10) and (11) 
an be also formulated inmore heuristi
 form [10℄: if during a given time interval some parti
les rea
hthe membrane pla
ed at point xN , the fra
tion Æ of them will be stoppedwhile (1� Æ) will go through.4. Di�usion in the phase-spa
eTo derive the boundary 
ondition at the membrane from the 
onsidera-tions performed in the phase-spa
e, we assume that the distribution fun
tionof the di�using parti
les f (x; v; t) (where x and v are, respe
tively, the par-ti
le position and velo
ity at the time t), satis�es the relations [12℄f �x�N ;�v; t� = (1� �) f �x�N ; v; t�+ �f �x+N ;�v; t� ; (13)f �x+N ; v; t� = (1� �) f �x+N ;�v; t�+ �f �x�N ; v; t� : (14)The terms proportional to (1� �) 
orrespond to the re�e
ted parti
les andthose proportional to � to the parti
les whi
h go through the membrane (�
an be treated as a ratio of the total surfa
e of all holes to the membranesurfa
e). De�ning the parti
le �ow as J (x; t) = J+ (x; t)� J� (x; t) withJ+ (x; t) = 1Z0 vf (x; v; t) dv ;



Di�usion in a Membrane System 379J� (x; t) = � 0Z�1 vf (x; v; t) dv ;one rewrites the relations (13) and (14) asJ� �x�N ; t� = (1� �) J+ �x�N ; t�+ �J� �x+N ; t� ;J+ �x+N ; t� = (1� �) J� �x+N ; t�+ �J+ �x�N ; t� :One observes that adding the partial �uxes we get the 
onservation of thesubstan
e �ow at the membrane i.e.J �x�N ; t� = J �x+N ; t� :We 
an de
ompose the distribution fun
tion as [5℄f (x; v; t) = f0 (x; v; t) + f1 (x; v; t) ;where f0 is the equilibrium distribution fun
tion i.e.f0 (x; v; t) = C (x; t)p2�mkBT exp�� mv22kBT � ;with C, T and kB denoting the 
on
entration of the di�using parti
les,temperature and Boltzmann 
onstant, respe
tively. In 
ontrast to the equi-librium distribution fun
tion, whi
h is even (f0 (x;�v; t) = f0 (x; v; t)), thefun
tion f1 is assumed to be odd (f1 (x;�v; t) = �f1 (x; v; t)). From aboverelations, after simple 
al
ulations we obtain following boundary 
onditionat the membrane J (xN ; t) = �� �C �x+N ; t�� C �x�N ; t�� ; (15)where J (xN ; t) = J �x+N ; t� = J �x�N ; t�, and the membrane permeability
oe�
ient � is de�ned as � = �1� �r kBT2�m :5. Final remarksFinding of the boundary 
ondition at the membrane for the 
ase of 
on-tinuous system appears as a nontrivial problem. The pro
edure of passingfrom dis
rete to 
ontinuous system gives two qualitatively di�erent results.We note that within presented formalism there is no possibility to obtain
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zdi�erent boundary 
ondition than the ones (8) and (9) (or (15)) and (12).In the paper [13℄ the time evolution of near-membrane layer has been in-vestigated. The near-membrane layer is a region where the 
on
entration ofthe substan
e transported a
ross the membrane is signi�
antly de
reased.Its thi
kness is de�ned as a length over whi
h the 
on
entration drops 
times with respe
t to the 
on
entration given at the membrane surfa
e(
 is arbitrary large number). It is shown that within the experimentalerrors the thi
kness of the near-membrane layers � grows in time for any 
as �pt with the 
oe�
ient � being independent of the membrane permeabil-ity. From theoreti
al point of view su
h a result is obtained on the basis ofGreen's fun
tions (10) and (11).For interpretation of the 
ases 
onsidered in Se
. 3, we add that thefun
tions (10) and (11) is also obtained when we put � = 0 (with q0 < 1)in (7). Then the parameter q does not depend on the ". Su
h a situation ispossible when the dis
rete sites N and N +1 lay on the membrane surfa
eswhen " ! 0, so any additional dis
rete sites between these sites and themembrane surfa
es do not appear in this limit. In opposite situation (whenq0 = 1), there appear the additional sites between the sites N (and N + 1)and the membrane surfa
es and their number goes to in�nity proportionallyto 1" . So, the boundary 
onditions (8) and (9) rather 
orrespond to thepoints whi
h are not pla
ed at the membrane surfa
es.The author wishes to express his thanks to Stanisªaw Mrów
zy«ski for thefruitful dis
ussions and 
riti
al 
omments on the manus
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