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A Modified Alloy Analogy (MAA) for the single-band Hubbard model
is used to investigate the interplay of ferromagnetic order and electrical
conductivity in a system of itinerant band electrons. The alloy analogy is
evaluated within the framework of the Coherent Potential Approximation
(CPA). The tensor conductivity, normally a two-particle Green function,
can be represented by single-particle terms if CPA-consistent approaches
are applied [B.Velicky, Phys. Rev. 184, 614 (1969)]. The MAA is used for
fcec and bec lattices. Spontaneous ferromagnetism appears in the fcc lattice
for a more than half-filled energy band (1 <n < 2). In the bce lattice
collective order is restricted to a small n-region. The electrical conductiv-
ity is investigated for different Coulomb strengths U as function of band
occupation n and temperature 7. The conductivity turns out to be sub-
stantially higher in the ferromagnetic than in the paramagnetic phase, even
diverging in the case of ferromagnetic saturation (I' — 0), where electron—
electron scattering is excluded. Majority-spin carriers contribute the main
part to the current in the ferromagnetic phase. The electrical resistivity
exhibits a power-like low-temperature behavior becoming critical at 7¢.
Formal similarity to the spin disorder resistivity of local moment systems
is observed.
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1. Introduction

The electrical conductivity in magnetic materials may be classified into
two categories that divides such materials into two classes. The first contains
all those substances, in which different groups of electrons are responsible
for the electrical current and for the magnetism. Prototypes are the mag-
netic rare earth elements and certain of their compounds such as Gd and
GdS, GdTe. Materials, in which both phenomena are carried by the same
electrons, belong to the second category. In the following we focus our con-
siderations on this class of magnetic materials.

We assume charge carriers moving in a narrow energy band with an on-
site Coulomb interaction U, only. Restricting the considerations furthermore
to a single s-band, so that a lattice site can be occupied at most by two elec-
trons of opposite spins, the highly idealized situation is exactly fitted by the
Hubbard model [1-3]. Being one of the simplest but non-trivial models it
describes correlated electrons on a lattice. Correlations among itinerant elec-
trons have proven to be responsible for various interesting phenomena like
spontaneous magnetic order, the metal-insulator Hubbard-Mott transition
as well as probably the high-temperature superconductivity.

Since a long time it has been a challenging task to derive transport prop-
erties, in particular the electrical conductivity, within the framework of the
single-band Hubbard model [4-16]. In spite of its simple structure the Hub-
bard Hamiltonian provokes a highly sophisticated many-body problem. It
is impossible up to now to formulate for the general case the exact single-
electron properties. Approximations must be tolerated. Two-particle Green
functions additionally required for the investigation of transport properties
are even more difficult to achieve. Within the Hubbard model only very few
special cases can be treated rigorously. Bari et al. [4] have calculated the
conductivity by means of linear response executing all averaging processes
in the atomic limit, only. Kubo [17] uses as a starting point the well-known
Kubo formula [18] by which the conductivity is expressed by a two-particle
Green function. The first equation of motion of that function is decoupled
in strict conformity with the procedure introduced by Hubbard [1] for the
single-electron Green function (“Hubbard-I-solution”). However, ferromag-
netism is possible within this approach only for rather exotic densities of
states. The reaction of the conductivity on magnetic phase transitions is,
therefore, not disputable. Kikoin and Flerov [19] arrive with a different
Green function decoupling procedure at essentially the same conductivity
expression as given by Kubo [17]. Bari and Kaplan [5] investigate the inter-
esting limiting case: limyy_ U/W27 where W is Bloch bandwidth. While
the conductivity o naturally vanishes in the zero-bandwidth limit, o/W?
remains finite and can be calculated exactly.
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In the recent past, great progress has been achieved in the understanding
of the Hubbard model mainly due to the study of the limit of infinite spatial
dimensions [20,21], where the Hubbard model can be mapped onto a single-
impurity Anderson model [22,23] for which numerically exact solutions can
be found by quantum Monte-Carlo calculations. To find an analytical, of
course, approximate solution for the electronic selfenergy may be useful, on
the other hand, for the derivation of the electrical conductivity, too, if it is
possible to express the conductivity by single-particle functions. Velicky [24]
was the first who demonstrated that this can be realized for the alloy problem
treated within the CPA [25].

In this paper we combine the recently developed MAA [26] of the Hub-
bard model with the CPA-consistent Velicky theory for the electrical con-
ductivity [24]. In Sec. 2 we prepare the problem. The Hubbard model and
its many-body problem are introduced. Sec. 3 introduces the electrical con-
ductivity along the line pre-described by Velicky [24]. The details of the
MAA [26] vital for the following discussion are presented in Sec. 4. Sec. 5 il-
lustrates our proposals for the interplay of spontaneous ferromagnetic order
and the electrical conductivity within the framework of the Hubbard model.
The results are gathered in Sec. 6.

2. Hubbard model

The Hubbard—Hamiltonian represents the simplest starting point for the
investigation of correlated fermion systems. Kinetic energy, Coulomb inter-
action, Pauli principle and lattice structure must be considered the minimum
set of terms, the interplay of which determines the electric and magnetic
properties

1
H= Z(Tij — [10;;) c;'rgcja + §U Z NigNi—c - (1)

ij,o i

The model assumes that the phenomena to be described are caused by
a strongly screened Coulomb interaction being therefore restricted to its
intraatomic part only. Itinerant electrons are moving in a non-degenerate
s-band. Electrons which meet at the same lattice site R; to perform a Cou-
lomb interaction must, therefore, have opposite spins. n;, = c;-[aci[, is the

occupation number operator, cza (cis) the creation (annihilation) operator
of an electron with spin o at site R;. p denotes the chemical potential.
T;; represent the Fourier transforms of the Bloch energies (k). Model pa-
rameters are the effective Coulomb coupling U/W, where W is width of the
“free” Bloch band, the band occupation n = ) _(n,) (0 < n < 2) and the
lattice structure.
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The Hubbard-Hamiltonian provokes a non-trivial many-body problem
being considered as solved as soon as the single-electron Green function is
found:

1 k(R —R.
Gijo(E) = N%:e""(& B G (E), (2)
_ o LBt o
GolB) = —i [t = )i [a,.cl, )] ). @)
0
(...) stands for the thermodynamic average and [...,...]; is the anticommu-

tator. By use of the (complex) electronic selfenergy
Eka(E) = RkU(E) + iIkO’(E) ) (4)

a formal solution for the Green function reads as follows:

Gro(E) = h[E + i — (k) — o ()] . (5)

The Green function is not directly observable but the spectral density Sgq(F)

_E Ika(E)
™ (B + p — e(k) — Rio(E))? + I}, (E)

Ska(E) = _%ImGkU(E) = ) (6)

which except for transition matrix elements represents the bare lineshape
of an angle and spin resolved (direct, inverse) photoemission experiment.
An additional wave-vector summation yields the Quasiparticle Density Of
States (QDOS):

polB) = 37 3 Skl — ). ©
k

All single-particle properties, we are interested in, can be derived from the
Green function (5). However, this function cannot rigorously be calculated
for the Hubbard model. Nevertheless some exact limiting cases are known
which, suitably composed, may help to find a reliable approach for the gen-
eral case.

Very simple but not unimportant is the zero bandwidth limit

W — 0; Tij — T() (51']'; E(k) — T(); Vk (8)

realized, e.g., by a diverging lattice constant. The energy band is reduced
to an N-fold degenerate Bloch level Ty. A straightforward calculation yields
a spectral density (6) consisting of two §-functions at the quasiparticle levels
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To and Ty + U with spectral weights a1, = 1 — (n_,) and a1, = (n_4),
respectively. (n,) is the spin-dependent average occupation number

+o00o

(ne) = / dE f_(E)p,(E). (9

—Oo0

~—

where
f-(B) = (exp (B(E — p)) + 1)~

is the Fermi function. Here and in what follows we assume translational
symmetry restricting ourselves to paramagnetic and ferromagnetic systems,
only. The spectral weights as well as the respective selfenergy [1]

E+u—-1T

E((TU) (E) = U<7L—U>E +pu—Ty— U(l - <n70>) ’

(10)

are determined by (n_,) being therefore, at least in principle, particle
number-, temperature- and spin-dependent. The selfconsistent evaluation
in the zero bandwidth limit, however, yields (n_,) = (1/2)n, preventing
therewith spontaneous magnetism for this special case.

In the case of finite electron hopping but still restricted to the strong
coupling regime (W <« U) the spectral density consists of two main peaks,
which evolve from the two quasiparticle levels in the W — 0 limit [27].
In addition satellite peaks appear due to higher order processes which are
connected to changes in the number of double occupancies in the system.
The spectral weights of these satellites are at most of order (W/U)?* so that
the higher-order processes are certainly negligible in the strong coupling
regime. The detailed structure of the two main peaks is not known but their
spectral weights

ala(k) =1- a?a(k) ~1- <n70>a (11)
as well as their centers of gravity [27]:
Tio(k) = (1 —{(n_,))e(k)+ (n_s)Br o, (12)
Tos(k) = U+ (n_g)e(k)+ (1 —(n_4))Br—s- (13)
Bj,_, is a “higher” correlation function,
By =B ;+bg g, (14)
consisting of a local term
) =
B ,—-Ty= — TZ-'<c-_0_c',a(2ni£7 — 1)> , (15)
<n—a>(1 - <n—a>) N Z A !

Y]
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and a k-dependent part:

i#j
by = T, 0~k (Ri—R;)
(n— >(1— Z !

X {(ni_gnj_g)m_U)? + <c;r Uc;racz Ucw> + <c}acj_gc;-'ﬂcw>}. (16)

The local term can rigorously be expressed by the single-electron spectral
density (6) although containing a “higher” expectation value [28]. It there-
fore allows for a selfconsistent determination within respective approaches
to the fundamental spectral density. As soon as the “bandshift” B_, gets
a real spin-dependence it becomes decisive for the possibility of spontaneous
ferromagnetism [29,30]. It shifts the centers of gravity of the quasiparticle
subbands.

The second term by, in (15) consists of a density—density term, a double
hopping and a spinflip correlation. Because of

D bk =0, (17)
k

it does not affect the center of gravity but the widths of the quasiparti-
cle subbands, and that possibly in a different manner for different spin o.
(15) and (16) show that Bg_, — Ty in the W — 0 limit so that (11)—(13)
reproduce the the exact zero bandwidth limit (8).

In this paper we shall investigate the influence of magnetic order on the
electrical conductivity of correlated band electrons. Since ferromagnetism
is surely a strong-coupling phenomenon we restrict our considerations and
the proposed approach accordingly. Since the rough structure of Sk, (F) is
known in the strong coupling regime, one could start with a correspond-
ing ansatz for this fundamental function. If one assumes that quasiparti-
cle damping is not decisive for ferromagnetism a two-pole ansatz suggests
itself [29]:

Sko(E —hz% §(E + p— Ejs(k)) . (18)

The spectral weights o, (k) and the quasiparticle energies E;, (k) are fixed
by equating the first four spectral moments,

o0
1 n
M,(c’;):ﬁ/dEE Sko(E);  n=0,....3, (19)

—0o0
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which can be calculated rigorously and independently of the spectral density
by use of the equivalent relation:

) = ([(ing) ewnt00lo)] ) . (20)

This completes the Spectral Density Approach (SDA) which leads to a self-
energy with formally the same structure as that of the zero-bandwidth
limit (10). The only but decisive difference is that the “free” center of
gravity Ty is replaced by the “higher” spin-dependent correlation function
Bg—, (14). 1In spite of its simple concept the SDA provides a convinc-
ing qualitative description of band ferromagnetism [28,29, 31]. For later
purposes we cite the explicit expressions for the spectral weights and the
quasiparticle energies [29]:

1
EiM k) = 5 [e(k) +U + Bio

(=) U +Bro—e(k))? +4U (n_s) (e (k) ~ B ) |, (21)

Bi 5 +U(1 = (n_,)) — EiPA (k)
O‘i]r)A(k) = FSDA _ pSDA ! =1- ag(]rjA(k) . (22)
20 lo

It is easy to check that these results reproduce the correct strong coupling
behavior (11)-(13). However, the neglect of quasiparticle damping will turn
out to be a serious disadvantage for the application of the SDA concept to
the electrical conductivity as can be seen in the next section. It will force
us to think about an extension of the method (see Sec. 4).

3. Electrical conductivity

In general transport properties require the application of two-particle
Green functions. According to the well-known Kubo formula [18] the elec-
trical tensor conductivity, e.g., is expressed by a current—current correlation
function:

(ksT)~

o / d\ / dt t+z>\h)> R(EHODE (93

a, (B indicate Cartesian components. For the Hubbard model (1) this formula
leads to a Green function of the type [9]:

(et ine)
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As mentioned at the end of the last section we are going to extend the
SDA concept to account for a realistic inclusion of quasiparticle damping.
This will be done by a “modified” alloy analogy [26] to the Hubbard model
which is evaluated by use of the Coherent Potential Approximation (CPA)
[25,32,33]. The electrical conductivity should therefore be evaluated within
the same scheme. Velicky has done the pioneering work [24] showing that
the conductivity of (fictitious) alloys can be expressed in a simple form
completely consistent with the CPA ansatz. The CPA attacks the single-
electron resolvent G = (E — H)~!, the operator form of (5). In the case of
alloys only the configuration average (G). is important. The configuration
average of the Kubo formula (23) can be traced back to the averaging of
a direct product of two single-electron resolvents (GG).. The idea of the
Velicky-theory is to use diagrams of the same order and of the same topology
(“single site approximation”) for the evaluation of (GG). as applied in the
CPA for (G).. The range of validity of the approach to (GG). shall be
equally broad as that of (G). in the CPA. When the “vertex corrections”
I'® = (GG)¢ — (G)(G). following from the Kubo formula for the electrical
conductivity are treated in this internally consistent manner then they can
be shown [24,33] to vanish identically as long as time inversion symmetry is
satisfied:

e(k) = e(—k), (24)
valk) = 3 Ok, e(k) = ~va(~k). (25)

The de-conductivity o™ (E = 0) of the (fictitious) alloy turns out to be
expressable in terms of single-electron functions as, e.g., the spectral den-

sity (6):

o / an (- (m)) Zva (k) (S (B - M))2 (26

fL(E) is the derivative with respect to E of the Fermi function. The k-inde-
pendence of the CPA selfenergy [25] allows for an equivalent representation:

2
~ Z/dE )/dﬂ” ((E—x—é:g;mrgw))
<Y valk)va(k) d(z — e (k). (27)
k

Obviously the conductivity separates into two independent spin contribu-
tions. Eq. (27) permits a clear physical interpretation. The first part, the E
integration, is due to the quantum statistics of the charge carriers (fermions).
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The second part, the z-integral, depends on the dynamical properties of the
system (1) being therefore most decisive. The third part, the k-summation,
refers to the bandstructure and therewith to the crystal structure. It is of-
ten called the “velocity function”. For a cubic crystal (o™ = 0 if o # 8,
o™ = g¥¥ = ¢*%) its contribution to (27) reduces to:

NZ< Vie(k )25($—€(k))- (28)

v(z) represents a continuous and non-singular function of z being unequal
zero just in that energy region where the “free” Bloch-Density Of States

(B-DOS), ,
=¥ Z 8(z —e(k)), (29)

is finite. For the cubic lattices Vie ( ) = —ca’e(k) (a — lattice constant,
Cse = 1, ehee = 3/4, ciee = 1/2) so that (28) can be rewritten by using the
method of partial integration [34]:

ca’
%v(m) =5t po(z) . (30)

From this we can justify the numerically useful representation of the velocity

function:
T

CCL2

v(z) = 37 de e po(e) . (31)
—00

The subsequent evaluation of our theory will be applied to bce and fcc
lattices. The corresponding B-DOS are plotted in Fig. 1(a). For testing
reasons we also consider a simple symmetric triangular model DOS (full line
in Fig. 1(a)). For a given B-DOS the velocity function (31) is easily calcu-
lated (see Fig. 1(b)). For the symmetric triangular B-DOS the dispersion
relation e(k) is unknown. We, therefore, simply postulate that the velocity
function in this case, too, is determined by the integral on the right-hand
side of (31) together with an unimportant numerical pre-factor. The curves
in Fig. 1(b) demonstrate that because of the integration v(x) is more reg-
ular than pg(z). Eventually the conductivity (27) can be written for cubic
lattices in the following form:

590 (0) = UOZ / az (- 1.(2)) / dr d(z, E)o(z),  (32)

o 12(2)
o) ((E—x—RU(E))2+Ig(E))2’ &
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Fig.1. (a) Bloch density of states po as function of energy E for three different
model systems: fcc lattice — dotted line; bcce lattice — broken line; fictitious test
system — full line. (b) Normalized velocity function v as function of energy E for
the three “free” B-DOS of part (a).

T

o(z) = — /de ep(e) . (34)

— 00

The numerical factor g gathers all the constants. If the imaginary part
of the selfenergy is rather small and a smooth function of £ in the region
around the chemical potential  where f’ (F) is unequal zero, then we can
replace in good approximation:

—1,(E)
b, BE) —» s RO TIE 78(E — z — Ry(E))
= " §(E -2 — R, (E)) (35)
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That means for the conductivity expression:
aa @(E — RU(E))
g (0) :—ﬂgoz/dE(—fl(E)>T. (36)

At T =0K the derivative f’ (E) becomes a d-function at u(T = 0) = Ep
and o®*(0) simplifies further to:

c®*(0) = —7oy Z ﬁ(EFI;(gSEF)) . (37)

Vanishing imaginary part of the selfenergy at the Fermi energy (Fermi liquid)
leads to a diverging conductivity.

4. Modified alloy analogy

The de-conductivity (32) is known as soon as we have found the electronic
selfenergy (4). According to the simplifications (36) and (37) in particular
the imaginary part plays a decisive role. One of the first and best known
approaches to the Hubbard model that includes quasiparticle damping, and
therewith a complex selfenergy, uses an alloy analogy as proposed by Hub-
bard himself [21]. If one assumes for the moment that the (—o)-electrons are
frozen at certain lattice sites then a propagating o-electron encounters an
effective binary alloy. At empty lattice sites it finds the atomic energy F1,,
at sites with a (—o)-electron present the atomic energy Fo,. The two levels
are randomly distributed over the lattice with “concentrations” x1, and zo,
corresponding to the respective probabilities for the o-electron to meet the
one or the other situation. In the conventional alloy analogy the energies E,,,
and the “concentrations” z,, are taken from the zero-bandwidth limit (8):

EM = Ty, EMA =Ty + U, (38)
xﬁ? =1- <n—a>; xQAz;X = <n—a> . (39)

A standard method for solving such alloy problems is the CPA [24,25, 32].
It represents a single-site approximation leading therewith to a k-indepen-
dent selfenergy Yy, (F) = X, (F) which solves the following equation:

2
= T EP(T B Z’U(E) — TO
0= pz_:l "1 = 1G,(B)[Ep — 5,(E) - To] (40)

Gol(B) = 32 Gro(B). (a1)
k
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Ty is the center of gravity of the Bloch dispersion e(k). It has to be included
in (40) to ensure the correct behavior in the zero bandwidth limit W = 0.
The solution of (40) yields a selfenergy with a non-zero imaginary part in
certain energy regions. However, spontaneous ferromagnetism is excluded,
in remarkable contradiction to the SDA results [29]. On the other hand,
the CPA has gained strong support by the recently proven fact [35] that
it is an exact treatment of the alloy problem in infinite lattice dimensions.
The CPA solution for the alloy analogy (38), (39), however, does not repro-
duce the correct strong coupling behavior ((11)—(13)) of the Hubbard model.
This discrepancy can be explained only by the conclusion that the underly-
ing alloy analogy (38), (39) must be wrong. In particular, the assumption
of frozen (—o)-electrons is surely not acceptable.

The CPA theory allows exact analytical statements in the “split band
regime”, where the atomic levels of the alloy constituents are far away from
each other. Within the alloy analogy this corresponds to the strong coupling
regime (W < U) of the Hubbard model. In this regime the CPA predicts
a spectral density Sg,(F) which consists of two well-separated peaks. The
detailed shapes of the peaks are not known but their centers of gravity:

TN (k) — Bjy + 210 (=(k) — Ty). (42)

The peak areas coincide with the concentrations z,. By comparing these
exact CPA results with the respective strong coupling results (11)-(13) we
come to new atomic levels Fj;, and “concentrations” zj,. The comparison
makes sense, of course, only if the single-site aspect of the CPA is accounted
for in (12) and (13), too. This requires the suppression of the “bandwidth
correction” bg_, (16). The “modified” alloy analogy turns out to be ex-
pressable by the SDA results (21) and (22) in the strong coupling limit
(U/W > 1):

E;, = ESDA (L ) 43
J (( AR . (43)

(o0
o = ((052209) ) (a4

By extending these considerations, which are justified for the strongly cou-
pled Hubbard model, in an obvious way to moderate couplings,

EMAA — ESDA 4
= (BA®) o (45)
MAA _ (. SDA

R G 0) I (46)
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a Modified Alloy Analogy (MAA) is created. The energy levels E%AA and

the concentrations m?/ffAA are given by the SDA results (21) and (22), when
the “free” energies e(k) are replaced by the center of gravity Tp. Note that
this also implies Bg_, — B_,, because the bandwidth correction by, (16)
vanishes for e(k) — Ty (see Eq. (26) in Ref. [29]).

In the Modified Alloy Analogy the energy levels and concentrations are
not only dependent on the model parameters Ty and U but also on the occu-
pation number (n_,) and the bandshift B_,. Both have to be determined

selfconsistently, (n_,) via (9) and B_, by use of 26,28, 36]:

+00o
(-1~ (- )(Bo ~To) = I [ dB 1 (B) (%z_gua - 1)

X[(E = 5 o(B = p) = Ty)G—o(E — ) — ). (47)

In the strict zero-bandwidth limit B_, is identical to T and the conventional
alloy analogy (38), (39) is reproduced. As soon as the hopping is switched
on, however, B_, deviates from Ty and the type of the underlying alloy
changes in each step of the iteration process. The atomic levels E’%AA
possibly get real spin-dependencies. It can be demonstrated [26] that the
itineracy of the (—o)-electrons comes indirectly via B_, into play, removing
therewith a shortcoming of the conventional alloy analogy. When we insert
the “modified” alloy data (45), (46) into the CPA equation (40) we find
a solution strongly related to the SDA (Sec. 2) but now with the inclusion of
quasiparticle damping. The strong coupling behavior is exactly reproduced.
In Ref. [37] the MAA is additionally justified and confirmed from the rigorous
high-energy expansion of the propagator G,(E) and the selfenergy X, (FE)
in (40) by equating exactly calculated spectral moments (20).

5. Magnetic order and electrical conductivity

Contrary to the conventional alloy analogy of the Hubbard model the
MAA predicts ferromagnetism in restricted parameter regions. Fig. 2 shows
as an example the spectral density Sk, () of a strongly correlated (U/W =5)
electron system on an fcc lattice. As B-DOS (29) a tight-binding version |38]
has been chosen. For less than half-filled bands (n < 1) the system is param-
agnetic, no spontaneous spin order appears. The band occupation n = 1.6
in Fig. 2, however, allows band ferromagnetism provided the Coulomb inter-
action U exceeds a critical value. Two types of splitting occur. At first the
spectral density consists, for each k-vector, of a high-energy and a low-
energy peak separated by an energy of the order U. The finite widths
of the peaks are due to quasiparticle damping. The weight (area) of the
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Fig.2. Spectral density as a function of energy for an fcc lattice calculated within
the MAA. (a) T =100K, (b) T'=615K. k-vectors equidistant along the (0,0,1)
direction of the 1. Brillouin zone. Further parameters: n=1.6, U =20eV, W =4¢eV.

lower peak refers to the probability that the propagating (k, o)-electron in
the more than half-filled band enters an empty site, while the weight of
the upper peak scales with the probability that the (k,o)-electron meets
a (—o)-electron. This splitting appears for all temperatures. Ferromag-
netism arises when these two spectral density peaks exhibit an additional
spin splitting. At low temperatures ("= 100K in Fig. 2(a)) the system
is very close to its saturation (m =2 — n), i.e., the up-spin states are al-
most fully occupied. A down-spin electron cannot avoid to meet an up-spin
electron at every lattice site and has to perform a Coulomb interaction.
Consequently the low-energy peak of Sy (FE) disappears. At higher tem-
peratures (Fig. 2(b)) the peak reappears because of a partial demagnetiza-
tion of the electron system. At low temperatures the high-energy peaks of
Sk (E) are very sharp, indicating long-living quasiparticles. An interesting
k-dependence of the peak position (quasiparticle energy) is observed in the
region around the chemical potential . At the top of the dispersion a “nor-
mal” exchange splitting appears, ¢.e., the |-peak is located above the 1-peak.
At the bottom of the dispersion, however, the 1-energy is higher than the
respective |-energy (“inverse exchange splitting”). The quasiparticle disper-
sions of the two spin parts are crossing as functions of the wave-vector k.
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Fig. 3. Quasiparticle density of states p, (upper half) and imaginary part of the
selfenergy I, (lower half) as function of energy and different temperatures up to T¢.
Left part for the lower subband, right part for the upper subband. The chemical
potential p marks the energy zero. Other parameters as in Fig. 2

This behavior is due to two competing correlation effects, a spin-dependent
exchange shift of the centers of gravity of the quasiparticle spectra and a
spin-dependent band narrowing.

According to (7) a wave-vector summation of the spectral density yields
the Quasiparticle Density Of States (QDOS). For the same model parameters
as in Fig. 2 the temperature-dependent QDOS is plotted in Fig. 3. The two
types of splitting of the spectral density (Fig. 2) cause respective splittings
of the QDOS. The spin-splitting of each of the two “Hubbard bands” creates
the critical temperature Tc. With decreasing temperature an increasing spin
asymmetry appears. For low temperatures (T'=100K in Fig. 3) the MAA
predicts an almost saturated ferromagnetism. The f-states are practically
all occupied. The lower |-subband therefore disappears because a |-electron
has no chance to find an empty lattice site. Since each site is occupied by
one T-electron no scattering processes happen for the |-electrons. The up-
per J-subband has therefore at low temperatures the shape of the “free” fcc
B-DOS (Fig.1(a)). The imaginary part I,(F) of the selfenergy, also shown
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in Fig. 3, is a measure for quasiparticle damping. Consequently I|(FE) van-
ishes for ' — 0. With increasing temperature (increasing demagnetization)
quasiparticle damping is enhanced, accompanied by a growing up of the
imaginary part of the selfenergy. The shape of the QDOS more and more
deviates from that of the B-DOS. The behavior of I,(FE) decisively influences
the dc-conductivity (32).

Within the MAA the fcc Hubbard model shows ferromagnetism only
for more than half-filled bands. The bandoccupation dependence of T is
plotted in Fig. 4 for very strongly correlated band electrons (U/W =5 and
U/W =12.5). For these couplings ferromagnetism is possible in the whole
region 1 < n < 2. For n>1.5 the phase transitions are of second order chang-
ing to first order transitions for 1 < m» < 1.5. It is not clear to us whether
the first order transitions are artifacts of the MAA or true characteristics of
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Fig.4. Curie temperature T¢ as a function of band occupation n for two different
values of U. The inset shows the magnetization m as a function of temperature
T for various band occupations n (dashed-dotted line — n = 1.8; dashed line —
n=1.7; solid line — n = 1.6; long-dashed line — n =1.5; dotted line — n =1.4).
Further parameters: fcc B-DOS, W=4¢eV.

the Hubbard model. The U-dependence of T¢ for fixed bandoccupation n
can be described as follows: U must exceed a critical value U, to allow for
a spontaneous ferromagnetic order. With increasing U the Curie tempera-
ture T¢ steeply shifts to higher values running very soon, however, into a
saturation. U, as well as the saturation value are different for different band
occupations.
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Let us now discuss the influence of magnetic order on the dc-conductivity
(32). Fig. 5 shows the band occupation dependence of the conductivity at
T =0K for three different k-values, and that for a paramagnetic electron
system. Paramagnetism is always a mathematical solution within the MAA
scheme. We disregard in Fig. 5 that additional ferromagnetic solutions,

60

a) TRIANGLE BDOS
sl ——U=5eV :
30 |
15 |
2w
C
3 b) BCC BDOS
] T N U=5eV |
5, R - U=10 eV
> N ——U=20eV
2l |
©
>
'8 15
(o]
O
60 : T T T
\ ¢) FCC BDOS
e ——U=5eV 1]
N U=10 eV
ol U=20 eV
15 T i
0 1 1 1 1 T‘
00 02 04 06 08 1.0

n - particle number

Fig.5. Total electrical conductivity as function of particle density n in the param-
agnetic state at high temperature for three different Coulomb interactions U (solid
line — U=5¢eV; dashed line — U =10 eV; dotted line — U=20¢€V). (a) fictitious
triangle B-DOS, (b) bce, (c) fec.
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if they exist, are always more stable than the paramagnetic one. For the
triangular B-DOS (Fig. 5(a)) ferromagnetism does not appear at all. The
bece lattice exhibits in a small region of n and for a sufficiently high U fer-
romagnetic order [26], while the fcc lattice orders ferromagnetically for all
band occupations above half-filling (Fig. 4). All the curves in Fig. 5 concern
the paramagnetic solution. In any case the conductivity o®*(0) turns out
to be a continuously decreasing function of the carrier concentration n dis-
appearing for n = 1. Because of the strong coupling splitting of the Bloch
band into two quasiparticle subbands (Hubbard bands) (Fig. 3) the system
is insulating for n = 1 (Mott insulator). The lower subbands are fully occu-
pied, the upper subbands are empty. The divergence of ¢®*(0) for n — 0
reflects the situation of charge carriers freely moving in the periodic lattice
without any scattering. The conductivity curves for different lattice struc-
tures are very similar. They show a slight decrease with increasing Coulomb
coupling U.

The ferromagnetic order drastically influences the conductivity behavior.
Spin up and spin down channels contribute additively to the total conduc-
tivity in the considered electron system [24]. In the ferromagnetic phase
the conductivity of f-electrons is strongly enhanced compared to the para-
magnetic case, while that of |-electrons is suppressed. According to formula
(36) the imaginary part of the selfenergy I,(F) in the thin stripe around p
(A ~ 4kpT), where f' (F) is finite, determines the conductivity. For the
less than half-filled band |I|(E)| > |I;(F)| is found [26]. Near the chemi-
cal potential |-electrons are substantially stronger damped than {-electrons.
This results in a higher contribution of the f-electrons to the conductivity.

Fig. 6 shows the temperature dependence of the conductivity in the fcc
lattice for band occupations 1< m < 2. The dominating contribution to
the conductivity in the ferromagnetic phase comes from the |-electrons.
Again the explanation is the imaginary part of the selfenergy in Eq. (36),
which according to Fig. 3 is at low temperatures very much smaller for |
than 1. For T'— 0 the magnetic moment is almost saturated, the {-states
are occupied. Therefore o®*(0) disappears for t-electrons at very low tem-

peratures. With increasing temperature (T-ST¢) the |-conductivity strongly
decreases and the f-conductivity slightly increases to coincide at T¢. The
first order transition for n=1.4 manifests itself in a corresponding jump of
the conductivity at T¢. The electrical resistivity (Fig. 6(b)) disappears in
the ferromagnetic phase for T'— 0. The current is then build up exclusively
by J-electrons which do not scatter within the framework of the Hubbard
model (1).
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Fig.6. Electrical conductivity as function of temperature for three different band
occupations n in an fcc lattice (B-DOS as in Fig. 1(a)). U =20eV, W =4¢V. Full
line — o =1; dotted line — o =]; dashed line — o =1, | (paramagnetic phase).
Note the first order transition at T for n = 1.4. (b) Total electrical resistivity as
function of temperature calculated for the same parameters as in (a).

6. Conclusions

We have developed for the single-band Hubbard model a Modified Al-
loy Analogy (MAA) which we solved by use of CPA. The main goal is to
investigate the possibility of ferromagnetism in the Hubbard model and the
influence of quasiparticle damping on the stability of the magnetic state.
The atomic levels and the concentrations of the constituents of the fictitious
alloy are found by fitting the exact strong coupling regime of the Hubbard
model. The results differ from the “normal” alloy analogy which refers to
the zero-bandwidth limit. In the MAA atomic levels and concentration con-
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tain certain (spin-dependent) expectation values which depend on the model
parameters (Bloch band width, band occupation, temperature, ...). That
means that the character of the alloy alters at each step of the iteration
process therewith accounting for the itineracy of (—o)-electrons when the
o-electron is propagating through the alloy. The MAA yields ferromag-
netism in the Hubbard model for the non-bipartite fcc lattice in the case of
a more than half-filled energy band (1 < n < 2) and also for the bcc lattice,
but in a rather restricted region of the particle density n. Additionally the
Coulomb interaction U must exceed a critical value.

We have used the CPA consistent theory of Velicky [24] to discuss the
electrical conductivity of the Hubbard model and its interplay with the
spontaneous magnetic order. Because of vanishing vertex corrections the
conductivity is expressed by the real and imaginary part of the electronic
selfenergy. The latter are found by use of the MAA. In the ferromagnetic
phase the conductivity is substantially higher than in the paramagnetic one,
and is mainly due to the majority-spin carriers. In the ferromagnetic sat-
uration, where electron-electron scattering cannot happen, the imaginary
part of the selfenergy vanishes giving rise to a diverging conductivity for
T — 0. The electrical resistivity exhibits a power-like temperature behavior
at low temperatures (it was established numericaly that p ~ T* with « close
to 3) becoming critical at Tc. The temperature curves for the conductivity
and the resistivity, respectively, are qualitatively very similar to those of
metallic rare earth elements and their alloys, for which an exchange interac-
tion between itinerant band electrons and localized (magnetic) 4f electrons
dominates the physical properties (“spin disorder resistivity”) [39-41]. The
present theory discusses exclusively the effect of electron—electron scattering
on the electrical conductivity; phonon and impurity contributions are not
taken into account.

This work has been done within the Sonderforschungsbereich 290 “Metal-
lische diinne Filme: Struktur, Magnetismus und elektronische Eigenschaf-
ten” of the Deutsche Forschungsgemeinschaft and the Polish State Commit-
tee for Scientific Research (KBN) project number P03B 129 14.
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