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ELECTRICAL CONDUCTIVITY AND MAGNETICORDER IN THE SINGLE-BAND HUBBARD MODEL�W. Borgieªa, T. Herrmannb, W. Noltingband R. KosimowaaInstitute of Physis, Silesian UniversityUniwersyteka 4, 40-007 Katowie, PolandbHumboldt-Universität zu Berlin, Institut für PhysikInvalidenstrasse 110, 10115 Berlin, Germany(Reeived Otober 28, 2000)A Modi�ed Alloy Analogy (MAA) for the single-band Hubbard modelis used to investigate the interplay of ferromagneti order and eletrialondutivity in a system of itinerant band eletrons. The alloy analogy isevaluated within the framework of the Coherent Potential Approximation(CPA). The tensor ondutivity, normally a two-partile Green funtion,an be represented by single-partile terms if CPA-onsistent approahesare applied [B.Veliký, Phys. Rev. 184, 614 (1969)℄. The MAA is used forf and b latties. Spontaneous ferromagnetism appears in the f lattiefor a more than half-�lled energy band (1 < n < 2). In the b lattieolletive order is restrited to a small n-region. The eletrial ondutiv-ity is investigated for di�erent Coulomb strengths U as funtion of bandoupation n and temperature T . The ondutivity turns out to be sub-stantially higher in the ferromagneti than in the paramagneti phase, evendiverging in the ase of ferromagneti saturation (T ! 0), where eletron�eletron sattering is exluded. Majority-spin arriers ontribute the mainpart to the urrent in the ferromagneti phase. The eletrial resistivityexhibits a power-like low-temperature behavior beoming ritial at TC.Formal similarity to the spin disorder resistivity of loal moment systemsis observed.PACS numbers: 75.10.Lp, 71.27.+a, 72.15.�v, 72.15.Eb
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384 W. Borgieª et al.1. IntrodutionThe eletrial ondutivity in magneti materials may be lassi�ed intotwo ategories that divides suh materials into two lasses. The �rst ontainsall those substanes, in whih di�erent groups of eletrons are responsiblefor the eletrial urrent and for the magnetism. Prototypes are the mag-neti rare earth elements and ertain of their ompounds suh as Gd andGdS, GdTe. Materials, in whih both phenomena are arried by the sameeletrons, belong to the seond ategory. In the following we fous our on-siderations on this lass of magneti materials.We assume harge arriers moving in a narrow energy band with an on-site Coulomb interation U , only. Restriting the onsiderations furthermoreto a single s-band, so that a lattie site an be oupied at most by two ele-trons of opposite spins, the highly idealized situation is exatly �tted by theHubbard model [1�3℄. Being one of the simplest but non-trivial models itdesribes orrelated eletrons on a lattie. Correlations among itinerant ele-trons have proven to be responsible for various interesting phenomena likespontaneous magneti order, the metal-insulator Hubbard�Mott transitionas well as probably the high-temperature superondutivity.Sine a long time it has been a hallenging task to derive transport prop-erties, in partiular the eletrial ondutivity, within the framework of thesingle-band Hubbard model [4�16℄. In spite of its simple struture the Hub-bard Hamiltonian provokes a highly sophistiated many-body problem. Itis impossible up to now to formulate for the general ase the exat single-eletron properties. Approximations must be tolerated. Two-partile Greenfuntions additionally required for the investigation of transport propertiesare even more di�ult to ahieve. Within the Hubbard model only very fewspeial ases an be treated rigorously. Bari et al. [4℄ have alulated theondutivity by means of linear response exeuting all averaging proessesin the atomi limit, only. Kubo [17℄ uses as a starting point the well-knownKubo formula [18℄ by whih the ondutivity is expressed by a two-partileGreen funtion. The �rst equation of motion of that funtion is deoupledin strit onformity with the proedure introdued by Hubbard [1℄ for thesingle-eletron Green funtion (�Hubbard-I-solution�). However, ferromag-netism is possible within this approah only for rather exoti densities ofstates. The reation of the ondutivity on magneti phase transitions is,therefore, not disputable. Kikoin and Flerov [19℄ arrive with a di�erentGreen funtion deoupling proedure at essentially the same ondutivityexpression as given by Kubo [17℄. Bari and Kaplan [5℄ investigate the inter-esting limiting ase: limW!0 �=W 2, where W is Bloh bandwidth. Whilethe ondutivity � naturally vanishes in the zero-bandwidth limit, �=W 2remains �nite and an be alulated exatly.



Eletrial Condutivity and Magneti Order in : : : 385In the reent past, great progress has been ahieved in the understandingof the Hubbard model mainly due to the study of the limit of in�nite spatialdimensions [20,21℄, where the Hubbard model an be mapped onto a single-impurity Anderson model [22, 23℄ for whih numerially exat solutions anbe found by quantum Monte-Carlo alulations. To �nd an analytial, ofourse, approximate solution for the eletroni selfenergy may be useful, onthe other hand, for the derivation of the eletrial ondutivity, too, if it ispossible to express the ondutivity by single-partile funtions. Veliký [24℄was the �rst who demonstrated that this an be realized for the alloy problemtreated within the CPA [25℄.In this paper we ombine the reently developed MAA [26℄ of the Hub-bard model with the CPA-onsistent Veliký theory for the eletrial on-dutivity [24℄. In Se. 2 we prepare the problem. The Hubbard model andits many-body problem are introdued. Se. 3 introdues the eletrial on-dutivity along the line pre-desribed by Veliký [24℄. The details of theMAA [26℄ vital for the following disussion are presented in Se. 4. Se. 5 il-lustrates our proposals for the interplay of spontaneous ferromagneti orderand the eletrial ondutivity within the framework of the Hubbard model.The results are gathered in Se. 6.2. Hubbard modelThe Hubbard�Hamiltonian represents the simplest starting point for theinvestigation of orrelated fermion systems. Kineti energy, Coulomb inter-ation, Pauli priniple and lattie struture must be onsidered the minimumset of terms, the interplay of whih determines the eletri and magnetiproperties H =Xi;j;�(Tij � �Æij) yi�j� + 12UXi;� ni�ni�� : (1)The model assumes that the phenomena to be desribed are aused bya strongly sreened Coulomb interation being therefore restrited to itsintraatomi part only. Itinerant eletrons are moving in a non-degenerates-band. Eletrons whih meet at the same lattie site Ri to perform a Cou-lomb interation must, therefore, have opposite spins. ni� = yi�i� is theoupation number operator, yi� (i�) the reation (annihilation) operatorof an eletron with spin � at site Ri. � denotes the hemial potential.Tij represent the Fourier transforms of the Bloh energies "(k). Model pa-rameters are the e�etive Coulomb oupling U=W , where W is width of the�free� Bloh band, the band oupation n = P�hn�i (0 � n � 2) and thelattie struture.



386 W. Borgieª et al.The Hubbard�Hamiltonian provokes a non-trivial many-body problembeing onsidered as solved as soon as the single-eletron Green funtion isfound: Gij�(E) = 1N Xk eik(Ri�Rj)Gk�(E) ; (2)Gk�(E) = �i 1Z0 d(t� t0) e i~E(t�t0)D hk�(t); yk�(t0)i+E : (3)h: : :i stands for the thermodynami average and [:::; :::℄+ is the antiommu-tator. By use of the (omplex) eletroni selfenergy�k�(E) � Rk�(E) + iIk�(E) ; (4)a formal solution for the Green funtion reads as follows:Gk�(E) = ~ hE + �� "(k)��k�(E)i�1: (5)The Green funtion is not diretly observable but the spetral density Sk�(E)Sk�(E) = � 1� ImGk�(E) = �~� Ik�(E)(E + �� "(k)�Rk�(E))2 + I2k�(E) ; (6)whih exept for transition matrix elements represents the bare lineshapeof an angle and spin resolved (diret, inverse) photoemission experiment.An additional wave-vetor summation yields the Quasipartile Density OfStates (QDOS): ��(E) = 1N~Xk Sk�(E � �) : (7)All single-partile properties, we are interested in, an be derived from theGreen funtion (5). However, this funtion annot rigorously be alulatedfor the Hubbard model. Nevertheless some exat limiting ases are knownwhih, suitably omposed, may help to �nd a reliable approah for the gen-eral ase.Very simple but not unimportant is the zero bandwidth limitW �! 0; Tij �! T0 Æij ; "(k) �! T0; 8k (8)realized, e.g., by a diverging lattie onstant. The energy band is reduedto an N -fold degenerate Bloh level T0. A straightforward alulation yieldsa spetral density (6) onsisting of two Æ-funtions at the quasipartile levels



Eletrial Condutivity and Magneti Order in : : : 387T0 and T0 + U with spetral weights �1� = 1 � hn��i and �1� = hn��i,respetively. hn�i is the spin-dependent average oupation numberhn�i = +1Z�1 dE f�(E)��(E) ; (9)where f�(E) = (exp (�(E � �)) + 1)�1is the Fermi funtion. Here and in what follows we assume translationalsymmetry restriting ourselves to paramagneti and ferromagneti systems,only. The spetral weights as well as the respetive selfenergy [1℄�(0)� (E) = Uhn��i E + �� T0E + �� T0 � U(1� hn��i) ; (10)are determined by hn��i being therefore, at least in priniple, partilenumber-, temperature- and spin-dependent. The selfonsistent evaluationin the zero bandwidth limit, however, yields hn��i = (1=2)n, preventingtherewith spontaneous magnetism for this speial ase.In the ase of �nite eletron hopping but still restrited to the strongoupling regime (W � U) the spetral density onsists of two main peaks,whih evolve from the two quasipartile levels in the W ! 0 limit [27℄.In addition satellite peaks appear due to higher order proesses whih areonneted to hanges in the number of double oupanies in the system.The spetral weights of these satellites are at most of order (W=U)4 so thatthe higher-order proesses are ertainly negligible in the strong ouplingregime. The detailed struture of the two main peaks is not known but theirspetral weights �1�(k) = 1� �2�(k) � 1� hn��i ; (11)as well as their enters of gravity [27℄:T1�(k) � (1� hn��i)"(k) + hn��iBk�� ; (12)T2�(k) � U + hn��i"(k) + (1� hn��i)Bk�� : (13)Bk�� is a �higher� orrelation funtion,Bk�� = B�� + bk�� ; (14)onsisting of a loal termB�� � T0 = 1hn��i(1� hn��i) 1N i 6=jXi;j TijDyi��j��(2ni� � 1)E ; (15)



388 W. Borgieª et al.and a k-dependent part:bk�� = 1hn��i(1� hn��i) 1N i 6=jXi;j Tije�ik�(Ri�Rj)�nhni��nj��ihn��i2 + Dyj��yj�i��i�E+ Dyj�j��yi��i�Eo: (16)The loal term an rigorously be expressed by the single-eletron spetraldensity (6) although ontaining a �higher� expetation value [28℄. It there-fore allows for a selfonsistent determination within respetive approahesto the fundamental spetral density. As soon as the �bandshift� B�� getsa real spin-dependene it beomes deisive for the possibility of spontaneousferromagnetism [29, 30℄. It shifts the enters of gravity of the quasipartilesubbands.The seond term bk�� in (15) onsists of a density�density term, a doublehopping and a spin�ip orrelation. Beause ofXk bk�� = 0 ; (17)it does not a�et the enter of gravity but the widths of the quasiparti-le subbands, and that possibly in a di�erent manner for di�erent spin �.(15) and (16) show that Bk�� ! T0 in the W ! 0 limit so that (11)�(13)reprodue the the exat zero bandwidth limit (8).In this paper we shall investigate the in�uene of magneti order on theeletrial ondutivity of orrelated band eletrons. Sine ferromagnetismis surely a strong-oupling phenomenon we restrit our onsiderations andthe proposed approah aordingly. Sine the rough struture of Sk�(E) isknown in the strong oupling regime, one ould start with a orrespond-ing ansatz for this fundamental funtion. If one assumes that quasiparti-le damping is not deisive for ferromagnetism a two-pole ansatz suggestsitself [29℄: Sk�(E) = ~ 2Xj=1 �j�(k)Æ(E + ��Ej�(k)) : (18)The spetral weights �j�(k) and the quasipartile energies Ej�(k) are �xedby equating the �rst four spetral moments,M (n)k� = 1~ 1Z�1dE EnSk�(E) ; n = 0; : : : ; 3 ; (19)



Eletrial Condutivity and Magneti Order in : : : 389whih an be alulated rigorously and independently of the spetral densityby use of the equivalent relation:M (n)k� = �h�i~ ��t�nk�(t); yk�(t0)i+�t=t0 : (20)This ompletes the Spetral Density Approah (SDA) whih leads to a self-energy with formally the same struture as that of the zero-bandwidthlimit (10). The only but deisive di�erene is that the �free� enter ofgravity T0 is replaed by the �higher� spin-dependent orrelation funtionBk�� (14). In spite of its simple onept the SDA provides a onvin-ing qualitative desription of band ferromagnetism [28, 29, 31℄. For laterpurposes we ite the expliit expressions for the spetral weights and thequasipartile energies [29℄:ESDAj� (k) = 12�"(k) + U +Bk��+(�)jq(U+Bk���"(k))2+4Uhn��i("(k)�Bk��) �; (21)�SDA1� (k) = Bk�� + U(1� hn��i)�ESDA1� (k)ESDA2� �ESDA1� = 1� �SDA2� (k) : (22)It is easy to hek that these results reprodue the orret strong ouplingbehavior (11)�(13). However, the neglet of quasipartile damping will turnout to be a serious disadvantage for the appliation of the SDA onept tothe eletrial ondutivity as an be seen in the next setion. It will foreus to think about an extension of the method (see Se. 4).3. Eletrial ondutivityIn general transport properties require the appliation of two-partileGreen funtions. Aording to the well-known Kubo formula [18℄ the ele-trial tensor ondutivity, e.g., is expressed by a urrent�urrent orrelationfuntion:���(E) = V (kBT )�1Z0 d� 1Z0 dt Dj�(0)j�(t+ i�~)E e i~ (E+i0+)t : (23)�, � indiate Cartesian omponents. For the Hubbard model (1) this formulaleads to a Green funtion of the type [9℄:DDyi�m� ; yj�0n�0EE:



390 W. Borgieª et al.As mentioned at the end of the last setion we are going to extend theSDA onept to aount for a realisti inlusion of quasipartile damping.This will be done by a �modi�ed� alloy analogy [26℄ to the Hubbard modelwhih is evaluated by use of the Coherent Potential Approximation (CPA)[25,32,33℄. The eletrial ondutivity should therefore be evaluated withinthe same sheme. Veliký has done the pioneering work [24℄ showing thatthe ondutivity of (�titious) alloys an be expressed in a simple formompletely onsistent with the CPA ansatz. The CPA attaks the single-eletron resolvent G = (E �H)�1, the operator form of (5). In the ase ofalloys only the on�guration average hGi is important. The on�gurationaverage of the Kubo formula (23) an be traed bak to the averaging ofa diret produt of two single-eletron resolvents hGGi. The idea of theVeliký-theory is to use diagrams of the same order and of the same topology(�single site approximation�) for the evaluation of hGGi as applied in theCPA for hGi. The range of validity of the approah to hGGi shall beequally broad as that of hGi in the CPA. When the �vertex orretions�� (2) = hGGi �hGihGi following from the Kubo formula for the eletrialondutivity are treated in this internally onsistent manner then they anbe shown [24,33℄ to vanish identially as long as time inversion symmetry issatis�ed: "(k) = "(�k) ; (24)v�(k) = 1~ �k�"(k) = �v�(�k) : (25)The d-ondutivity ���(E = 0) of the (�titious) alloy turns out to beexpressable in terms of single-eletron funtions as, e.g., the spetral den-sity (6): ��� � Z dE �� f 0�(E)�Xk� v�(k)v�(k)�Sk�(E � �)�2 : (26)f 0�(E) is the derivative with respet to E of the Fermi funtion. The k-inde-pendene of the CPA selfenergy [25℄ allows for an equivalent representation:��� � X� Z dE �� f 0�(E)� Z dx � I�(E)(E � x�R�(E))2 + I�(E)�2�Xk v�(k) v�(k) Æ(x � "(k)) : (27)Obviously the ondutivity separates into two independent spin ontribu-tions. Eq. (27) permits a lear physial interpretation. The �rst part, the Eintegration, is due to the quantum statistis of the harge arriers (fermions).



Eletrial Condutivity and Magneti Order in : : : 391The seond part, the x-integral, depends on the dynamial properties of thesystem (1) being therefore most deisive. The third part, the k-summation,refers to the bandstruture and therewith to the rystal struture. It is of-ten alled the �veloity funtion�. For a ubi rystal (��� = 0 if � 6= �,�xx = �yy = �zz) its ontribution to (27) redues to:v(x) = 1N Xk �1~rk"(k)�2 Æ(x� "(k)) : (28)v(x) represents a ontinuous and non-singular funtion of x being unequalzero just in that energy region where the �free� Bloh-Density Of States(B-DOS), �0(x) = 1N Xk Æ(x� "(k)) ; (29)is �nite. For the ubi latties r2k"(k) = �a2"(k) (a � lattie onstant,s = 1, b = 3=4, f = 1=2) so that (28) an be rewritten by using themethod of partial integration [34℄:ddxv(x) = �a2~2 x �0(x) : (30)From this we an justify the numerially useful representation of the veloityfuntion: v(x) = �a2~2 xZ�1 d� � �0(�) : (31)The subsequent evaluation of our theory will be applied to b and flatties. The orresponding B-DOS are plotted in Fig. 1(a). For testingreasons we also onsider a simple symmetri triangular model DOS (full linein Fig. 1(a)). For a given B-DOS the veloity funtion (31) is easily alu-lated (see Fig. 1(b)). For the symmetri triangular B-DOS the dispersionrelation "(k) is unknown. We, therefore, simply postulate that the veloityfuntion in this ase, too, is determined by the integral on the right-handside of (31) together with an unimportant numerial pre-fator. The urvesin Fig. 1(b) demonstrate that beause of the integration v(x) is more reg-ular than �0(x). Eventually the ondutivity (27) an be written for ubilatties in the following form:���(0) = �0X� Z dE �� f 0�(E)� Z dx�(x;E)v̂(x) ; (32)�(x;E) = I2�(E)��E � x�R�(E)�2 + I2�(E)�2 ; (33)
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Fig. 1. (a) Bloh density of states �0 as funtion of energy E for three di�erentmodel systems: f lattie � dotted line; b lattie � broken line; �titious testsystem � full line. (b) Normalized veloity funtion v as funtion of energy E forthe three �free� B-DOS of part (a).v̂(x) = � xZ�1 d� ��(�) : (34)The numerial fator �0 gathers all the onstants. If the imaginary partof the selfenergy is rather small and a smooth funtion of E in the regionaround the hemial potential � where f 0�(E) is unequal zero, then we anreplae in good approximation:�(x;E) �! �I�(E)(E � x�R�(E))2 + I2�(E) �Æ(E � x�R�(E))= ��I�(E) Æ(E � x�R�(E)) : (35)



Eletrial Condutivity and Magneti Order in : : : 393That means for the ondutivity expression:���(0) = ���0X� Z dE �� f 0�(E)� v̂(E �R�(E))I�(E) : (36)At T = 0K the derivative f 0�(E) beomes a Æ-funtion at �(T = 0) = EFand ���(0) simpli�es further to:���(0) � ���0X� v̂(EF �R�(EF))I�(EF) : (37)Vanishing imaginary part of the selfenergy at the Fermi energy (Fermi liquid)leads to a diverging ondutivity.4. Modi�ed alloy analogyThe d-ondutivity (32) is known as soon as we have found the eletroniselfenergy (4). Aording to the simpli�ations (36) and (37) in partiularthe imaginary part plays a deisive role. One of the �rst and best knownapproahes to the Hubbard model that inludes quasipartile damping, andtherewith a omplex selfenergy, uses an alloy analogy as proposed by Hub-bard himself [21℄. If one assumes for the moment that the (��)-eletrons arefrozen at ertain lattie sites then a propagating �-eletron enounters ane�etive binary alloy. At empty lattie sites it �nds the atomi energy E1�,at sites with a (��)-eletron present the atomi energy E2�. The two levelsare randomly distributed over the lattie with �onentrations� x1� and x2�orresponding to the respetive probabilities for the �-eletron to meet theone or the other situation. In the onventional alloy analogy the energies Ep�and the �onentrations� xp� are taken from the zero-bandwidth limit (8):EAA1� = T0 ; EAA2� = T0 + U; (38)xAA1� = 1� hn��i ; xAA2� = hn��i : (39)A standard method for solving suh alloy problems is the CPA [24, 25, 32℄.It represents a single-site approximation leading therewith to a k-indepen-dent selfenergy �k�(E) � ��(E) whih solves the following equation:0 = 2Xp=1 xp� Ep� ���(E)� T01� 1~G�(E)[Ep� ���(E)� T0℄ : (40)G�(E) = 1N Xk Gk�(E) ; (41)



394 W. Borgieª et al.T0 is the enter of gravity of the Bloh dispersion "(k). It has to be inludedin (40) to ensure the orret behavior in the zero bandwidth limit W = 0.The solution of (40) yields a selfenergy with a non-zero imaginary part inertain energy regions. However, spontaneous ferromagnetism is exluded,in remarkable ontradition to the SDA results [29℄. On the other hand,the CPA has gained strong support by the reently proven fat [35℄ thatit is an exat treatment of the alloy problem in in�nite lattie dimensions.The CPA solution for the alloy analogy (38), (39), however, does not repro-due the orret strong oupling behavior ((11)�(13)) of the Hubbard model.This disrepany an be explained only by the onlusion that the underly-ing alloy analogy (38), (39) must be wrong. In partiular, the assumptionof frozen (��)-eletrons is surely not aeptable.The CPA theory allows exat analytial statements in the �split bandregime�, where the atomi levels of the alloy onstituents are far away fromeah other. Within the alloy analogy this orresponds to the strong ouplingregime (W � U) of the Hubbard model. In this regime the CPA preditsa spetral density Sk�(E) whih onsists of two well-separated peaks. Thedetailed shapes of the peaks are not known but their enters of gravity:TCPApj� (k) �! Ej� + xj�("(k)� T0) : (42)The peak areas oinide with the onentrations xj�. By omparing theseexat CPA results with the respetive strong oupling results (11)�(13) weome to new atomi levels Ej� and �onentrations� xj�. The omparisonmakes sense, of ourse, only if the single-site aspet of the CPA is aountedfor in (12) and (13), too. This requires the suppression of the �bandwidthorretion� bk�� (16). The �modi�ed� alloy analogy turns out to be ex-pressable by the SDA results (21) and (22) in the strong oupling limit(U=W � 1): Ej� = ��ESDAj� (k)�U=W�1�"(k)!T0 ; (43)xj� = ���SDAj� (k)�U=W�1�"(k)!T0 : (44)By extending these onsiderations, whih are justi�ed for the strongly ou-pled Hubbard model, in an obvious way to moderate ouplings,EMAAj� = �ESDAj� (k)�"(k)!T0 ; (45)xMAAj� = ��SDAj� (k)�"(k)!T0 : (46)



Eletrial Condutivity and Magneti Order in : : : 395a Modi�ed Alloy Analogy (MAA) is reated. The energy levels EMAAj� andthe onentrations xMAAj� are given by the SDA results (21) and (22), whenthe �free� energies "(k) are replaed by the enter of gravity T0. Note thatthis also implies Bk�� ! B��, beause the bandwidth orretion bk�� (16)vanishes for "(k)! T0 (see Eq. (26) in Ref. [29℄).In the Modi�ed Alloy Analogy the energy levels and onentrations arenot only dependent on the model parameters T0 and U but also on the ou-pation number hn��i and the bandshift B��. Both have to be determinedselfonsistently, hn��i via (9) and B�� by use of [26, 28, 36℄:hn��i(1 � hn��i)(B�� � T0) = 1~ Im +1Z�1 dE f�(E)� 2U ���(E � �)� 1��[(E ����(E � �)� T0)G��(E � �)� ~℄ : (47)In the strit zero-bandwidth limit B�� is idential to T0 and the onventionalalloy analogy (38), (39) is reprodued. As soon as the hopping is swithedon, however, B�� deviates from T0 and the type of the underlying alloyhanges in eah step of the iteration proess. The atomi levels EMAAj�possibly get real spin-dependenies. It an be demonstrated [26℄ that theitineray of the (��)-eletrons omes indiretly via B�� into play, removingtherewith a shortoming of the onventional alloy analogy. When we insertthe �modi�ed� alloy data (45), (46) into the CPA equation (40) we �nda solution strongly related to the SDA (Se. 2) but now with the inlusion ofquasipartile damping. The strong oupling behavior is exatly reprodued.In Ref. [37℄ the MAA is additionally justi�ed and on�rmed from the rigoroushigh-energy expansion of the propagator G�(E) and the selfenergy ��(E)in (40) by equating exatly alulated spetral moments (20).5. Magneti order and eletrial ondutivityContrary to the onventional alloy analogy of the Hubbard model theMAA predits ferromagnetism in restrited parameter regions. Fig. 2 showsas an example the spetral density Sk�(E) of a strongly orrelated (U=W =5)eletron system on an f lattie. As B-DOS (29) a tight-binding version [38℄has been hosen. For less than half-�lled bands (n<1) the system is param-agneti, no spontaneous spin order appears. The band oupation n = 1:6in Fig. 2, however, allows band ferromagnetism provided the Coulomb inter-ation U exeeds a ritial value. Two types of splitting our. At �rst thespetral density onsists, for eah k-vetor, of a high-energy and a low-energy peak separated by an energy of the order U . The �nite widthsof the peaks are due to quasipartile damping. The weight (area) of the
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Fig. 3. Quasipartile density of states �� (upper half) and imaginary part of theselfenergy I� (lower half) as funtion of energy and di�erent temperatures up to TC.Left part for the lower subband, right part for the upper subband. The hemialpotential � marks the energy zero. Other parameters as in Fig. 2This behavior is due to two ompeting orrelation e�ets, a spin-dependentexhange shift of the enters of gravity of the quasipartile spetra and aspin-dependent band narrowing.Aording to (7) a wave-vetor summation of the spetral density yieldsthe Quasipartile Density Of States (QDOS). For the same model parametersas in Fig. 2 the temperature-dependent QDOS is plotted in Fig. 3. The twotypes of splitting of the spetral density (Fig. 2) ause respetive splittingsof the QDOS. The spin-splitting of eah of the two �Hubbard bands� reatesthe ritial temperature TC. With dereasing temperature an inreasing spinasymmetry appears. For low temperatures (T =100K in Fig. 3) the MAApredits an almost saturated ferromagnetism. The "-states are pratiallyall oupied. The lower #-subband therefore disappears beause a #-eletronhas no hane to �nd an empty lattie site. Sine eah site is oupied byone "-eletron no sattering proesses happen for the #-eletrons. The up-per #-subband has therefore at low temperatures the shape of the �free� fB-DOS (Fig.1(a)). The imaginary part I�(E) of the selfenergy, also shown



398 W. Borgieª et al.in Fig. 3, is a measure for quasipartile damping. Consequently I#(E) van-ishes for T ! 0. With inreasing temperature (inreasing demagnetization)quasipartile damping is enhaned, aompanied by a growing up of theimaginary part of the selfenergy. The shape of the QDOS more and moredeviates from that of the B-DOS. The behavior of I�(E) deisively in�uenesthe d-ondutivity (32).Within the MAA the f Hubbard model shows ferromagnetism onlyfor more than half-�lled bands. The bandoupation dependene of TC isplotted in Fig. 4 for very strongly orrelated band eletrons (U=W =5 andU=W =12:5). For these ouplings ferromagnetism is possible in the wholeregion 1 < n < 2. For n�1:5 the phase transitions are of seond order hang-ing to �rst order transitions for 1< n< 1:5. It is not lear to us whetherthe �rst order transitions are artifats of the MAA or true harateristis of
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Eletrial Condutivity and Magneti Order in : : : 399Let us now disuss the in�uene of magneti order on the d-ondutivity(32). Fig. 5 shows the band oupation dependene of the ondutivity atT = 0K for three di�erent k-values, and that for a paramagneti eletronsystem. Paramagnetism is always a mathematial solution within the MAAsheme. We disregard in Fig. 5 that additional ferromagneti solutions,
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400 W. Borgieª et al.if they exist, are always more stable than the paramagneti one. For thetriangular B-DOS (Fig. 5(a)) ferromagnetism does not appear at all. Theb lattie exhibits in a small region of n and for a su�iently high U fer-romagneti order [26℄, while the f lattie orders ferromagnetially for allband oupations above half-�lling (Fig. 4). All the urves in Fig. 5 onernthe paramagneti solution. In any ase the ondutivity ���(0) turns outto be a ontinuously dereasing funtion of the arrier onentration n dis-appearing for n = 1. Beause of the strong oupling splitting of the Blohband into two quasipartile subbands (Hubbard bands) (Fig. 3) the systemis insulating for n = 1 (Mott insulator). The lower subbands are fully ou-pied, the upper subbands are empty. The divergene of ���(0) for n ! 0re�ets the situation of harge arriers freely moving in the periodi lattiewithout any sattering. The ondutivity urves for di�erent lattie stru-tures are very similar. They show a slight derease with inreasing Coulomboupling U .The ferromagneti order drastially in�uenes the ondutivity behavior.Spin up and spin down hannels ontribute additively to the total ondu-tivity in the onsidered eletron system [24℄. In the ferromagneti phasethe ondutivity of "-eletrons is strongly enhaned ompared to the para-magneti ase, while that of #-eletrons is suppressed. Aording to formula(36) the imaginary part of the selfenergy I�(E) in the thin stripe around �(� � 4kBT ), where f 0�(E) is �nite, determines the ondutivity. For theless than half-�lled band jI#(E)j > jI"(E)j is found [26℄. Near the hemi-al potential #-eletrons are substantially stronger damped than "-eletrons.This results in a higher ontribution of the "-eletrons to the ondutivity.Fig. 6 shows the temperature dependene of the ondutivity in the flattie for band oupations 1< n< 2. The dominating ontribution tothe ondutivity in the ferromagneti phase omes from the #-eletrons.Again the explanation is the imaginary part of the selfenergy in Eq. (36),whih aording to Fig. 3 is at low temperatures very muh smaller for #than ". For T ! 0 the magneti moment is almost saturated, the "-statesare oupied. Therefore ���(0) disappears for "-eletrons at very low tem-peratures. With inreasing temperature (T <!TC) the #-ondutivity stronglydereases and the "-ondutivity slightly inreases to oinide at TC. The�rst order transition for n=1:4 manifests itself in a orresponding jump ofthe ondutivity at TC. The eletrial resistivity (Fig. 6(b)) disappears inthe ferromagneti phase for T!0. The urrent is then build up exlusivelyby #-eletrons whih do not satter within the framework of the Hubbardmodel (1).
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Fig. 6. Eletrial ondutivity as funtion of temperature for three di�erent bandoupations n in an f lattie (B-DOS as in Fig. 1(a)). U = 20 eV, W = 4 eV. Fullline � � ="; dotted line � � =#; dashed line � � ="; # (paramagneti phase).Note the �rst order transition at TC for n = 1:4. (b) Total eletrial resistivity asfuntion of temperature alulated for the same parameters as in (a).6. ConlusionsWe have developed for the single-band Hubbard model a Modi�ed Al-loy Analogy (MAA) whih we solved by use of CPA. The main goal is toinvestigate the possibility of ferromagnetism in the Hubbard model and thein�uene of quasipartile damping on the stability of the magneti state.The atomi levels and the onentrations of the onstituents of the �titiousalloy are found by �tting the exat strong oupling regime of the Hubbardmodel. The results di�er from the �normal� alloy analogy whih refers tothe zero-bandwidth limit. In the MAA atomi levels and onentration on-



402 W. Borgieª et al.tain ertain (spin-dependent) expetation values whih depend on the modelparameters (Bloh band width, band oupation, temperature, . . . ). Thatmeans that the harater of the alloy alters at eah step of the iterationproess therewith aounting for the itineray of (��)-eletrons when the�-eletron is propagating through the alloy. The MAA yields ferromag-netism in the Hubbard model for the non-bipartite f lattie in the ase ofa more than half-�lled energy band (1 < n < 2) and also for the b lattie,but in a rather restrited region of the partile density n. Additionally theCoulomb interation U must exeed a ritial value.We have used the CPA onsistent theory of Veliký [24℄ to disuss theeletrial ondutivity of the Hubbard model and its interplay with thespontaneous magneti order. Beause of vanishing vertex orretions theondutivity is expressed by the real and imaginary part of the eletroniselfenergy. The latter are found by use of the MAA. In the ferromagnetiphase the ondutivity is substantially higher than in the paramagneti one,and is mainly due to the majority-spin arriers. In the ferromagneti sat-uration, where eletron-eletron sattering annot happen, the imaginarypart of the selfenergy vanishes giving rise to a diverging ondutivity forT ! 0. The eletrial resistivity exhibits a power-like temperature behaviorat low temperatures (it was established numerialy that � � T� with � loseto 3) beoming ritial at TC. The temperature urves for the ondutivityand the resistivity, respetively, are qualitatively very similar to those ofmetalli rare earth elements and their alloys, for whih an exhange intera-tion between itinerant band eletrons and loalized (magneti) 4f eletronsdominates the physial properties (�spin disorder resistivity�) [39�41℄. Thepresent theory disusses exlusively the e�et of eletron�eletron satteringon the eletrial ondutivity; phonon and impurity ontributions are nottaken into aount.This work has been done within the Sonderforshungsbereih 290 �Metal-lishe dünne Filme: Struktur, Magnetismus und elektronishe Eigenshaf-ten� of the Deutshe Forshungsgemeinshaft and the Polish State Commit-tee for Sienti� Researh (KBN) projet number P03B 129 14.REFERENCES[1℄ J. Hubbard, Pro. R. So. Lond., A Math. Phys. Si. 276, 238 (1963).[2℄ J. Hubbard, Pro. R. So. Lond., A Math. Phys. Si. 277, 237 (1964).[3℄ J. Hubbard, Pro. R. So. Lond., A Math. Phys. Si. 281, 401 (1964).[4℄ R.A. Bari, D. Adler, R.V. Lange, Phys. Rev. B2, 2898 (1970).[5℄ R.A. Bari, T.A. Kaplan, Phys. Rev. B6, 4623 (1972).
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