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We analyze the doping dependence of the thermopower and conductiv-
ity of ropes of single wall carbon nanotubes using a tight binding model.
A sizeable value of the Seebeck coefficient in these systems together with
its Fermi liquid like temperature behavior indicate an asymmetry near the
Fermi surface. We discuss two possible explanations for this asymmetry
of the electronic structure of the nanotube ropes, one due to defect states,
another resulting from the intertube interactions.
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1. Introduction

The transport properties of the ropes of single wall carbon nanotubes
(NTs) [1] exhibit several so far unexplained features:

1. Substantial value of the thermopower (TEP) which increases initially
linearly with temperature like in the Fermi liquid [2—4]. This is sur-
prising because the band structure calculations performed for the in-
dividual NT does not show much [5] (or any [6]) asymmetry around
the Fermi surface and TEP should vanish in such a case.

* Presented at the XXIV International School of Theoretical Physics “Transport
Phenomena from Quantum to Classical Regimes”, Ustron, Poland, September 25—
October 1, 2000.
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2. The electrical conductivity measured on undoped mats of ropes of NTs
first slowly increases with decrease of temperature then, upon reach-
ing some temperature minimum, starts to decrease rapidly. This low
temperature decrease may be understood as onset of a weak local-
ization [7,8] and is not unlike to the behavior observed in the doped
polyacetylene, where it was described using a variable range hopping
model [9].

3. Upon doping with either hole or electron donors conductivity can
be considerably enhanced (even up to 120 times for Cs-doped NT
mats [10]). At the same time, the K-doped mats no longer show the
resistivity increase in low temperature region [11].

4. The conductance measurements made on the individual rope on NTs
show irregular fluctuations with the gate voltage, which may be due to
the defect states. The doping of the single rope in situ with K atoms,
increases the conductance by a factor of 20 at T' = 5.3 K [11], and at the
same time the fluctuations disappear. This fact is in contradiction with
expectations of increased role of disorder due to introduced dopant
ions.

5. The transport properties of NTs were shown to be very sensitive to
the presence of oxygen in their environment [12,13]. The gas acts
probably as the electron acceptor, shifting the position of the Fermi
level downwards by a fraction of eV. This in agreement with observa-
tion of a chemical potential shift in multiwall carbon nanotubes [14] as
well as the known charge transfer from the oxygen to planar defected
graphite [12]. The surprisingly large TEP of degassed N'Ts indicates,
however, an “important asymmetry in the electronic carbon 7 bands”
near the Fermi energy [13].

In this paper we try to understand qualitatively the general features of
the transport properties of the NT ropes, with a help of simple calcula-
tions using a tight binding model of these systems. At present the nature
of scattering processes which determine the temperature behavior of the
conductivity and the thermopower is not clear. Here we assume that the
electron scattering is due mainly to the presence of defects.

In Section 2 we consider influence of the doping on transport properties
of an individual NT. We restrict our attention to armchair N'Ts, which are
gapless and therefore exhibit metal-like properties. We calculate the posi-
tion of the Fermi level of the NT as a function of electron concentration. We
estimate the resistance of the NT in a semiclassical approximation, neglect-
ing interference in scattering from different defects. This will allow us to
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derive an approximate result for the thermopower as a function of electron
or hole doping for a wide range of doping.

In the Section 3 we analyze the influence of the intertube interactions on
the asymmetry of the electronic structure near the Fermi level (for undoped
tubes). We calculate the influence of this asymmetry on the conductivity
and the thermopower in the rope of NT for small electron and hole doping.

In Section 4 we discuss the above mentioned experimental facts in the
light of our computations.

2. Transport properties of an individual NT
2.1. Doping dependence of the Fermi level in an individual NT

A Hamiltonian of the system of noninteracting armchair NTs can be
written as

H, W 0 O

0J

In above, ¥ represents a 4N,-dimensional vector of electron operators of
(Ng, N,) armchair NT for the j cell of the NT in a position defined by a

vector p, W;j = (aLj, bLj). The 2N, x 2N, dimensional matrices H,, Hj, de-
scribe hopping processes within subsystems of ¢ and b orbitals. W describes
hopping between a and b type orbitals within the same cell. ¢ is an inter-
cell hopping matrix between a and b orbitals. The specific forms of these
matrices are defined in [16]. The hopping parameter between NN carbon
atoms is here t = —3 eV. Writing the Hamiltonian of the NT in the form
of Eq. (1) we assume that effects of Coulomb interactions may be treated
within a one-particle approach and the hopping integrals include the effect
of interaction by means of Hartree—Fock approximation. The effect of the
interactions on the site energy (i.e. Hartree term) leads in the case of indi-
vidual NT to a uniform shift of all bands because all sites are equivalent (we
do not consider a possibility of the CDW state here).

In this work we assume periodic boundary condition in direction parallel
to the N'Ts axis (which is justified for long enough N'Ts). In this case energy
spectrum of an individual NT can be explicitly obtained [1]

k k
Ekps = st\/l + 4 cos 3 cos(qy) + 4 cos? 5 8= +1 (2)

where ¢, = m 3~, v =1...2N,, v # N, and |k| < m [15]. For v = N, one
has

k
6kNas:st<1—2cos§> . (3)
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For undoped NT, only two bands with v = N, and s = 1 cross the Fermi
surface, which takes place for k£ = :l:%”. The band structure for (10,10) NT
is shown in Fig. 1. We have 4N, bands for (N,, N,) NT, corresponding to
4N, atoms in the unit cell of the armchair NT 1 — d lattice, some of them
are degenerate. The bands for which a;, = cos(gy) > 0 (v = Z=,...,2N,),
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Fig.1. Band structure of (10,10) NT.

are monotonous functions of the wave vector and may cross the Fermi level
at two points. The bands with «, < 0, which have minimum at some point
kg, (0 < ko < 7) may cross the Fermi level in two or four points. One has
for e, < 0 (below I drop s index and consider only s = 41 bands, except
the one with v = N,)

Ev0 Evm

1 de 1 de de g
polw) =+ / ~ o)t / B Sw—e) = L (4
o} oy ()] dk

Ekgr Evkg

where the velocity v, is represented as a function of the energy for the given
band, by inverting Eq. (2). The result is

pu() = 7)) + A9 (0)
~ O(w— 5yk0)0(5,,0 —w)  O(w—epky)l(evn — w)
ol ()| ol ()|
w/t)t O(w—t/1—a2)0(t — w)

VR I\ g+ (- /) A - R s e

O(w —ty/1—a2)0(tV/5 + 4oy, — w)
\/1—a2 (1 —w?/2) /A + %\ /a2 + WP —

(5)
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for @, < 0 and for s = +1. For o, > 0, s = +1 one has

O(w — €0)0(w — €pr)
o ()]
_ w/|t]t B(w — ty/1— a2)8(tv/5 T da, — w)
R L I O Y

For v = N,,s = 41 one gets

py(w) =

(6)

0(t? — w?)/|t
o () = — I ©
/1 — (1 —w/t)2/4
The DOS for subbands with s = —1 may be obtained from the relation:

pv,s(w) = py,—s(—w). In Fig. 2 we show the total density of states (normal-
ized to 1) of the (10,10) NT for w/t > 0,

) = 3 D pua(e).

The 1 — d van Hove singularities seen at w = t1/1 — a2, t/5 + 4« corre-
spond to band minima and maxima, respectively (see Fig. 1).
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Fig. 2. Density of states of (10,10) NT.

At half filling (undoped NT) the Fermi energy is positioned at w = 0.
Doping with K will shift the position of the Fermi level in such a way that
for the limiting (unrealistic) case CK; the band system will be completely
full. In Fig. 3 we show the position of the Fermi level as a function of, say,
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Fig.3. Dependence of the position of the Fermi level on K doping in (10,10) NT
for x < 0.25.

K-doping for the NT compound CK,. (The picture is the same for electron
and hole doping because the band structure is completely symmetric here).

One can note that very small doping (z = 0.0115 for (10,10) NT) is
sufficient to shift the Fermi level to the position of the first van Hove sin-
gularity in DOS which is at w/t = sin[r/N,] =(=~ £7/N, for N, =~ 10).
Note that Fermi energy increases initially linearly with . More precisely,
by integration of DOS one obtains, for |u/t| < sin(7/N,)

1 1+ 1-4
T = N [arcsin( 5 t) —arcsin< 5 t)] , (8)

31N,
%:‘fg ... (9)

The linear term in z of Eq. (9) gives about 1% accuracy, until u reaches first
van Hove singularity.

2.2. Resistance of the NT in the semiclassical approzimation

According to the Landauer theory [17] the conductance of a mesoscopic
sample in 7' — 0 limit may be related to a reflection coefficient R with a

formula

e’n.

h

Here n. denotes the number of conducting channels. The coefficient R mea-
sures a probability of an electron reflection from the sample and its return to

I'=TIy(1—R), where I})= (10)
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the lead from which it was injected. R is measured at the Fermi level. The
limit of the maximum conductance, Iy, is obtained for the vanishing reflec-
tion, in the case when the only source of scattering is the contact between
the sample and the measuring leads. For macroscopic samples the main fac-
tor limiting the conductance is usually the scattering of the electrons within
the sample, by defects or interactions of electrons with other quasiparticles.
It is convenient to separate the contact contribution to the total resistance,
R. =1/I} from the total resistance, R = 1/I" and rewrite R in the form

R
R:RC+R1, Rizncm. (11)

Above R; denotes the internal (‘actual’ [17]) resistance related to the prop-
erties of the sample itself. R;, which may be measured directly in the four
lead measurement, is determined by the potential drop within the sample
and may vanish in absence of defects. The internal resistance may be readily
obtained in the case of a single point-like defects, by calculation of the reflec-
tion R from the scattering theory. The exact computation for a large number
of the defects is difficult due to effects of interference between electron waves
scattered from the different defects. The interference effects, which manifest
as very irregular fluctuations of the conductance of the sample, lead even-
tually to localization of electron states and vanishing of the conductance
(at T'=0) in the limit of an infinitely long sample. For a not too long sam-
ple or a small enough number of the defects, in between the ballistic limit
and the localized one, we may neglect the interference effects and still ob-
tain fair enough qualitative description of the resistance. The neglect of the
interference effects may also be justified in the presence of other scattering
processes (due to phonons, unpaired spins, electron—electron interactions,
intertube hopping), which break the phase coherence of the carriers between
the consecutive elastic collisions with defects within the NT. The reflection
of a sample containing m identical defects, obtained in the approximation
neglecting the interference effects, reads [18§]

le

Rp=— 2
mn 1+(m—1)R1’

(12)
where R; denotes a reflection of the sample with a single defect. Using

Egs. (11),(12) we obtain the approximate expression for the internal resis-
tance, which obeys the Ohm’s law [17]

Ry

Rg(m) :Rcml_Rl.

(13)
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In Fig. 4 we show the internal conductance per single defect, o=m/Rgn(m),
as a function of the Fermi level u. We used here the values of the single point
defect reflection Ry obtained with a help of the transfer matrix method [16].
We show here the results obtained for positive values of Eq, which corre-
spond to electron donor substitution. The results for negative values of Fgq
may be deduced from the presented figures by a replacement: p — —pu.
The calculation for the weak defects (Eq4/|t| = 0.1) are similar to what one
obtains from the Boltzmann theory applied to the 1 — d system, with the
relaxation time calculated using the Born (i.e. second order with respect to
E4) approximation,

o2
op(p) = ;) Z

The equivalence of the two approaches may be explicitly shown in Eq — 0
limit using the results for the single defect reflection Ry [18,19]. However,
even in the case of the weak defect E4q/|t| = 0.1 one can see clearly the
quantitative differences of these results. The scattering time from the Born
approximation [20] leads to the result for o which is symmetric with respect
to u = 0 and is only weakly dependent on p in the central two band region,
—m/10 < p/|t| < w/10. On the contrary, the expression for Ry includes
single defect scattering exactly and leads to a noticeable asymmetry in o.
The asymmetry increases with increase of the defect strength. For the very
large value of Ey the reflection Ry exhibits the maximum corresponding to
appearance of the quasibound state within the two band region [16] and at
this point the internal conductance is strongly suppressed.

. ) 1
pu((/;)), T (p) = ﬁ;pu(u)Eﬁ- (14)

o()/a(0)

Fig. 4. Internal conductance per single defect for the (10,10) nanotube as a function
of the Fermi level (in units of |t]) at T'= 0 K. Thin line: Eq4/|t| = 0.1, dotted line:
Eq/|t| = 1, dashed line: Eq4/|t| = 6.
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In the real system one may expect the internal resistance which is ap-
proximately the weighted average of the contributions from different defects.
In particular, the amount of the oxygen adsorbed at the NT walls may be
probably estimated from the shift of the chemical potential with respect to
=0, i.e. it is the order of 1% or less. If it exist in a form of the negatively
charged ion, it may probably raise the site energy of the neighboring car-
bon atoms by a value of order of several eV. The topological Stone-Wales,
or 5-77-5, defect may be approximately represented (for w = 0) by the
strong point defect, Eq/|t| ~ 6 [16], and it was estimated to appear once in
every 105 C-C bonds [21]. Unfortunately, little is known about frequency
of appearance of other defects (NT bending, vacancies, 5-7 pairs...), what
precludes systematic quantitative comparison with experiments. One may
wonder, however, if the present results allow to understand the doping de-
pendence of the conductance, mentioned in the Introduction. The saturation
intake of the potassium is probably close to z = 0.125, which corresponds
the chemical potential shift Au/|t| ~ 0.8, with respect to u = 0. Assump-
tion, that the only effect of doping is the chemical potential shift, does not
explain the increase of the conductance in the case of the dominating weak
defect (see Fig. 4, thin solid line for E4/|t| = 0.1) because in this case the
conductance decreases by a factor of 2. This may be understood in part as
the effect of the relatively low Fermi velocity at the shifted Fermi level (see
Fig. 1). Indeed the number of the conducting bands increases 5-fold, but
the average Fermi velocity decreases to about 75% of its value at u = 0.
The more important effect comes from the enhanced scattering due to the
increased, by a factor of 6, density of states at pu/|t| ~ 0.8 as compared
to p(u = 0) (see Fig. 2). The resulting decrease of conductance to about
5 x 0.75/6 = 0.625 of its value at u = 0 is seen in Fig. 4.

The situation is similar in the case of the moderate (FEq/|t| = 1) defect.
Only the dominance of the strong defects changes the situation radically
and the conductance may considerably increase as the Fermi level moves far
from the vicinity of the quasibound state (see Fig. 4 for Eq/|t| = 6). Also
the factors not included in the model may be responsible for the increase
of the conductance for the strong doping. One of the most important ones
is the increase of the number of conducting N'Ts in the rope from the orig-
inal fraction of % to unity. Another possible effect is a better screening of
the charged defects (including the dopant ions) due to increased density of
charge carriers. Indeed, the measurement of the gate voltage dependence
of the pristine and K-doped rope shows an almost featureless and voltage
independent conductance in the doped rope as compared to strongly oscil-
lating and asymmetric with respect to Vg = 0 dependence in the undoped
rope. At the same time the low temperature upturn of the resistance with
T — 0 K is either reduced (in the single rope) or completely suppressed (in
NTs mats) for the doped samples. These facts suggest the decrease of the
effective value of the defect strength as a result of the doping.
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2.3. Thermoelectric power

The standard approach to the low temperature thermopower uses the
Mott formula -

g_T kT dlogo(p) . (15)

3e du

The linear contribution to S, indicated by Eq. (15), has been indeed ob-
served [3], although the general temperature behavior of the NT mats is
more complicated. The variation and the substantial value of the ther-
mopower was interpreted as resulting from the unpaired spins of transition
metal ions [3] (Kondo effect) or due to presence of semiconducting N'Ts in
the ropes [2]. Here we consider a contribution coming from a substantial
energy variation of the conductance, which may be related to local defects
and the vicinity of the quasibound state minimum in the conductance.

We restrict our discussion to small enough doping that the Fermi level
stays within the central two band system, —m/10< u/|t| <7 /10, i.e. z <0.01.
We assume that the conductivity of the whole system is proportional to the
conductance of the single rope. In this case we can use the result for o
obtained above to determine the thermopower with a help Eq. (15). We
assume for simplicity that only one kind of defect is present in the system.
Generalization to several types of defects is easy, in this case S would depend
on the defects concentration and would vary between the value calculated
for strong and weak defects taken separately.

In Fig. 5 we show the value of dlog[o(u)]/dp corresponding to the com-
puted resistance presented in Fig. 4. To obtain the thermopower from the
results showed in Fig. 5 we have to multiply the derivative by the prefactor
(72/3)(kn/e)(kpT/|t]) from Eq. (15) which is equal to ~ 8 x 1072 T [uV /K],
where T is given in Kelvin degrees. For example, the value of TEP corre-

dlog[o(u)]/du

Fig. 5. The derivative of the logarithm of conductance with respect to the position
of the Fermi level, for the (10,10) nanotube as a function of the Fermi level (in
units of ¢) at 7' = 0 K. Thin line: Eq/|t| = 0.1, dotted line: Eq/|t| = 1, dashed
line: Eq/|t| = 6.
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sponding to dlog(o)/dp = 2 in Fig. 5 and extrapolated to T' = 300 K, is
equal to 8 x 1073 x 3 x 102 x 2 ~ 5 [uV/K].

As follows from the presented results, the absolute value of the ther-
mopower depends considerably on the defect strength. For the weak—to—
moderate value of Eq (Eq/|t| < 1) the derivative of log(o) changes rather
weakly with . The exception is the behavior of the derivative close to the
van Hove singularities at &+ sin(7/10) where, however, application of Eq. (15)
is questionable. The calculated figures correspond to TEP of order of few
pV/K at T = 300 K. Note, that the positive value of dlog(o)/du corre-
sponds to electron-like charge carriers, and would change sign with the sign
change of Ejy.

The situation is very much different for the strong defect, which leads
to the formation of the quasibound state. The derivative of log(c) may
reach quite substantial values, corresponding (for Eq/|t| = 6) to TEP not
less than ~ 20pV /K at T = 300 K. At the position of the quasibound state
minimum in ¢ the derivative changes sign. On the left side of the minimum
the thermopower is hole-like, on the right electronlike. Note that the change
of sign of E4 does not change the last conclusion — for the negative value of
Eq/|t| the corresponding zero of TEP will only be shifted to a positive value
of p. In the limiting case Eq/|t| — oo (which is sometimes used to mimic
a carbon vacancy), o is symmetric with respect to change p — —pu and the
change of sign of Eq does not change the value of dlog(o)/du at all.

3. Transport properties of ropes of NTs

3.1. Tight binding model for a rope of NTs

We form a model of crystalline rope of the N'Ts by all possible translations
of a copy of the individual NT by all vectors of the triangular Bravais lattice,
perpendicular to the NT’s z-axis. The resulting (infinite) lattice is perfectly
periodic although it does not in general possess the inversion symmetry.
The exceptions are the cases of N, = 6,12,18... for arrangements with
NT’s symmetry axis coinciding with symmetry axis of the triangular lattice.
Intertube hopping processes in thus obtained lattice can be described by a
Hamiltonian [22]

M= Y (W;jTAst+Aj+s+h-C-> ; (16)
s=0,£1;pA

) _ Ve(As)  V%(As)
where: Ta,, = < Vha(As)  VP(As) ) .

Here A is a vector joining nearest neighbors of the triangular lattice. The
4N, x 4N, matrix Tas describes all hopping processes between orbitals of
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the j-cell of NT in position p and m-cell of NT in position p + A. In above
we restricted ourselves to the hopping processes between j and m cells of
neighboring NTs to the ones with j =m and 7 =m £ 0, 1.

Besides appearance of the intertube hopping the electron states of the
individual NTs can be modified as a result of Coulomb interaction between
electrons from the different nanotubes. Now however, because the carbon
sites are no longer equivalent, the corresponding Hartree terms may lead
to a site dependent potential with symmetry of the triangular lattice. This
additional local potential may be accounted for by change of the diagonal
elements of matrices H,, Hy, in Eq. (1).

We can use the periodicity of the total Hamiltonian, and rewrite it using
space Fourier transform of the site operators ¥,

1

- tkj+igp
Yo = NN, 2= © Pk
1M

where N, N represent the number of N'Ts in the bundle and the number
of the cells in each NT. The Hamiltonian can be now rewritten as

— T Hy + 04 W + t! exp(—ik) t
"= ; |:!pkq <W + texp(ik) Hy, + 51, qu + !pkq,ﬁ"qukq ) (17)
q

where J,, 0p represent change of the site energy due to assembling of the NT
to form a rope and the Hermitian matrix 7, is a Fourier transform of the
intertube hopping one. The Hamiltonian in Eq. (17) can be diagonalized
easily with a help of canonical transformation. However, such a procedure
involves diagonalization of 4N, x 4N, matrices with rather irregular distri-
bution of elements and one can hardly hope to get explicit result. Instead
we work in the representation in which the part Hy of Eq. (17) is made
diagonal with a help of a transformation, ¥, = fx®p, (the detailed form of
the unitary matrix f is given in [16]). The intertube Hamiltonian can be
then treated analytically as a perturbation.

In the new representation the intertube part of the Hamiltonian takes a
form

M= Y T 1
kq

=% [eiks+iqA (fIZTAka> 4 o iks—igA (f]ITATsfk)] _
As

Independent of the NT radius there are two bands (A and B say) which
intersect the Fermi surface, differing in symmetry properties of the corre-
sponding eigenstates. The minima of the other bands start several tenths
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of eV away from the FS. We neglect the remaining bands in considering low
energy transport properties of these systems. In doing so we assume that
neither intertube hopping nor the change dy (defined by Eq. (17)) due to
crystal lattice potential is strong enough to make admixture of the other
bands significant in vicinity of the FS. The same restriction holds for the
potential of impurities.

All information about the changes introduced in the electronic structure
by the intertube interactions is contained in the matrices’ elements (EQ)W

and (5};)W = (f,I(Ska)W for p,v = A, B. To describe the details of the
changes of the FS we have to know the explicit dependence of the matrix
upon the wave vectors k, q. Using the results for the unitary transformation
fr derived in Ref. [16] we find

(708) e 3 [(700 s an)
+VL(AS) u (— 1) ”Zk/2+_vba(;s) v(— 1)“_”e_ik/2], (19)
(i) =i 3 [(Vo(ashe 4 v(29,0)

= VO (As)pe B2 = VI A), et 2] (20)
(fT@an) = o 2 (v - V@) o

+ VO (As) o (—1)e k2 VV??(;S) S(=1)rethr2] (21)

We estimated the couplings from Egs. (19)—(21), by considering (10,10) N'Ts
placed AR = 0.28 nm apart (wall-wall distance). In units of intratube NN
carbon distance (= 0.14 nm), AR = 2.

We assumed the hopping between a pair of carbon atoms from different
tubes in a form

tAz Ay,Az = toel/roe— Sin(¢)AR/T0€_ (Ax)Q‘f‘(Ay)Q/Toe—Az/ro (22)

with tg = 2¢t. Here Ax, Ay, Az are differences of the two atom coordinates.
In Eq. (22) ¢ denotes the angle between a projections to zy plane of a
vector joining the pair of carbon atoms and a vector connecting the NTs’
axes. Above phenomenological form of the hopping is motivated by the axial
NTs’ arrangement and takes into account hopping dependence of the angle
between the carbon p orbitals. The hopping decay length ro = 0.45 and
to = 2t were chosen to reproduce typical values of the interplane hopping
parameters in graphite.
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Using the above parameter values we calculated the band shifts due to
the intertube hopping interactions for several NT arrangements. The results
did depend on the angle between the vertical symmetry plane of the NTs
and the triangular lattice unit vector. This was due to the fact that only few
of the carbons from different N'Ts contribute significantly to the band shift
((Tkg) g4 (Trg) gg») and band coupling ((7kq) 45) Parameters, and a slight
change of the angle modified the hopping substantially. In our numerical
calculation we set the angle ¢ to the value which maximized the pseudogap.

For the considered values of rg we found that the k-dependence of the
band shift and band coupling parameters can be neglected while their ¢-
dependence has to be taken into account. The general form of the parameters
can be, to a good approximation, written as

(qu)w = pl(}u) cos(qyz) +pr2”) COS (%x + qy> —I-pl(ﬁ,) cos (%x - qy) . (23)

The contribution from the on-site potential, dg, can be considered in
similar way as the diagonal terms of 7 for s = 0 if we drop the e%4 factor.
In result they do not depend on the wave vectors k,q. The BB contribu-
tion, @pg, is equal this time to AA one and, for positively definite dg 4,
significantly greater than AB contribution, Q@ 45. This is because of the al-
ternating factors which appear in a formula for Q4 but not in Q44 nor in
@pBp- The only effect of Q44 and @ pp on the band structure is a uniform
shift of the bands. This can be accounted for by renormalizing a chemical
potential. We therefore drop Qa4 and @pp from the subsequent analysis.

Finite AB coupling could have important qualitative effect on the band
structure as it removes degeneracy of the A and B band at the FS and opens
a gap in the spectrum [24]. Q4p contribution is given by

Qup = ?E{U [er (6n—5)érNt(_1)n7T]

U [:H (6"_5)g]\]_a HW] } (—1)". (24)

In above U(¢) is a potential function and ¢ is an angle which defines po-
sition of the consecutive carbon atoms in the unit cell. U(¢) is periodic
in the argument ¢ with a period 27 and not 27 /6 as could be expected
for a triangular lattice. This is because the selfconsistent field created by
neighboring N'Ts has not symmetry of the triangular lattice for general N'Ts’
arrangement. U(¢) can be defined by its coefficients in Fourier expansion.
One can easily see that non vanishing of the L.h.s. of Eq. (24) for (Ng, N,)
NT requires finite value of the Fourier component with ¢ = 4N,m for some
integer m. One expects that the component accounting for the symmetry of
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the triangular lattice (¢ = 12,24,36) are dominating here. In consequence
a rope composed of NTs with N, = 3,6,9... may be quantitatively differ-
ent from the other ones exhibiting more pronounced gap at the FS. The
possible value of this additional contribution is (as inferred from the energy
difference of the inequivalent sites in graphite) of order of 0.02 eV. Except
the (3,3),(6,6),(9,9)... NTs, it can be probably neglected as compared to
intertube hopping contributions.

The solution for the band spectrum resulting from the considered band
coupling terms takes a form

5 [(Ti) a + (Thg) ]

+ %\/[(77611)33 — (Tkg) ga + zek]Q +4(Teg) ap (Tkg) pa s (25)

+ _
E., =

where €, = t(1 — 2 cos(k/2)) is the spectrum of AA band of an isolated NT.
We have used the above formula to calculate the density of states in the two
band system, using the tetrahedron method [23]. The results are presented
in Fig. 6.

p(w)]t|

0 I I
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Fig.6. Density of states for the system of the two bands, described by Eq. (25)
in the rope of (10,10) nanotubes for g = 0.4. The substantial overlapping of the
bands near the FS leads to a finite DOS at w = 0. The Fermi level for the undoped
rope is here p = 0.00154.

One sees a noticeable reduction in the density of states near the center
of the band system. A common feature of the present calculation and of the
cited works [24,26] is existence of the direct gap for (almost) all g vectors
near k = 27/3. While the order of magnitude of the emerging gap is in a
reasonable agreement with the first principles band structure calculation of
Delaney and coworkers [24] a reduction of DOS is however less significant
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than in the cited work. This is due to the fact that the individual sub-
bands overlap substantially in the present calculation. The results for the
band structure near FS are also somewhat different from the ones obtained
within the full model including all 40 bands, where the values of the band
gap are quite close to the two band case. Most important consequence of
including the other bands is an effective modification of the band shift term
for the symmetric (B) band (the dominating band shift parameter). One
may hope to improve the agreement between the present calculation and the
first principles ones [24,26] by choosing the parameters p,, in Eq. (23) as
phenomenological ones, while keeping the form of the band shift and band
coupling terms as given by Eq. (23) (we stress that the only adjustable pa-
rameter in the present calculation are the intertube hopping %, the distance
AR and the hopping decay length 7).

In conclusion we note that the intertube interactions remove the de-
generacy at the FS, create the pseudogap and at the same time introduce
substantial asymmetry near the FS. As will be shown below, this asymme-
try may influence substantially the thermopower if the Fermi energy stays
within the range of 0.03¢ ~ 0.1 eV of the band center.

3.2. Conductivity and TEP of ropes of NTs

Intertube interaction considerably complicate calculation of the trans-
port properties of the rope. In the case of strong defects we have to include
the intraband as well as the interband scattering for many bands far from
the Fermi surface, and the two-band model is certainly inadequate in this
case. The use of the Boltzmann transport theory with the energy dependent
collision scattering time is not justified which make difficult all the numerical
evaluation of TEP. Here we restrict ourselves to a calculation of the transport
properties assuming that the relatively numerous weak defects dominate the
scattering. We concentrate on the effects of the modification of the band
structure due to the intertube interactions. The collision relaxation time
may be estimated in this case with a help of the Born approximation as in
Eq. (14), with the only difference that the density of states is now modified
by the intertube interactions.

In order to compute the conductivity using the Boltzmann transport the-
ory it is convenient to introduce a squared velocity density function defined
by

5 - Ep 2
Pv? ,a N”NL Z kq qu, ( 6)
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Using p,2, the conductivity at 7' = 0 may be calculated as

o(w) =€ > ppea)Tn). (27)

a=A,B

The squared velocity density computed with a help of the tetrahedron method,
is presented as a function of the Fermi level in the Fig. 7 near u = 0.

0 I I
01 -005 0 005 0.1
/[t

Fig.7. Squared velocity density function contributions from the two conducting
bands (for the direction of nanotube axis).

The two branches of this function overlap at p = 0, but their sum exhibits
a significant minimum at g = 0. The decrease of the total velocity density is
only partially compensated by the increase of the relaxation time resulting
from the decreased density of states near the pseudogap minimum. In result,
the conductivity at g = 0 is reduced by about 25% with respect to the
original value for the individual NTs (see Fig. 8).

The changes of o(u) take place in a relatively small interval of p values,
what leads to considerable values of logarithmic derivative of ¢ and poten-
tially large TEP at room temperatures (see Fig. 9). From the shape of the
pseudogap itself (Fig. 6) one would expect a transition from the strongly
hole like behavior of TEP (for p < 0), to the electron like one, with increase
of the Fermi level. The situation is however more complex, which is due to
modification introduced by the energy dependence of the relaxation time.
In result, the thermopower may change the sign several times within the
pseudogap region. One should not take the values shown in Fig. 9 too liter-
ally, however. The subtle details of the relaxation time in real systems may
depend on a form and a strength of the defect potential or presence of other
mechanisms of electron scattering. Besides, disorder in relative arrangement
of N'Ts forming ropes may obliterate rather sharp pseudogap features [25] or
lead to cancellation of the contributions from the hole-like and electron-like
regions.
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Fig.8. Conductivity at 7" = 0 K in the vicinity of the pseudogap as a function
of the Fermi level, for relaxation time 7(u) computed in the Born approximation,
assuming weak defects.
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Fig.9. Asin Fig. 8, but the derivative of logarithm of the conductivity at 7' = 0 K.

Quite generally one may expect large absolute values of TEP and a
change of sign of TEP (for small enough T) in a relatively small range
of doping, Az ~ 2 x 1073, Beyond the region of the pseudogap (i.e. for
|| > 0.2 V) the logarithmic derivative of the conductivity quickly goes to
the value obtained for the individual NT and the intertube interactions will
not influence significantly the TEP.

4. Conclusions

In this paper we discussed influence of electron and hole doping on trans-
port properties of the nanotube ropes within the framework of the tight
binding model. We assumed that the defects dominate the charge carrier
scattering, and the only effect of introducing the electron or hole donors into
the system is the shift of the Fermi level.
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The neglect of the usual electron—phonon scattering contribution may
be justified by the weakness of electron—phonon coupling in the nanotubes,
leading to estimated mean-free path of 14 pum at room temperature (this
is at least order of magnitude more than the average NT length) [27]. The
consideration of the doping within a rigid band approximation is by no
means obvious and should be critically evaluated with a help of ab initio
computations including presence of doping ions. On the basis of our results
one has to conclude that the increase of conductance of rope due to doping
cannot be understood as a result of the simple increase of the number of the
conducting bands at the Fermi level, assuming that weak defects determine
the conductance. As we showed (see Sec.2.2 and Fig. 4), the conductance
of the single N'T' decreases in this case, due to the decrease of the relaxation
time. A trivial possibility is that the experimentally found increase of o
is a consequence of increase of number of conducting N'Ts in the sample,
due to shift of u to the conducting bands of the originally semiconducting
NTs. An additional mechanism for the increase of o may be provided by
the better screening of the charged defects, due to an increased number of
the charge carriers. The importance of this mechanism may be confirmed
by the absence of conductance fluctuations in the doped NT rope, as well as
the vanishing of the low temperature resistivity upturn in doped mats [11].
The quantitative explanation of the doping dependence of o will therefore
have to take the doping dependence of the screening into account.

The complexity of the experimentally studied systems makes difficult a
quantitative comparison of the TEP with results of our computations. In
the experimentally studied systems, one may expect a noticeable hole-like
contribution to the TEP in mats, coming from the intrinsically semiconduct-
ing small-gap NTs, if the Fermi level is lowered by the oxygen adsorbed at
the NT’s surface. In the similar way, the electron-like TEP obtained in the
degassed ropes [13], may be understood if we take into account a possible ex-
istence of electron donors (e.g. transition metal atoms), left uncompensated
in the sample after removing the oxygen.

One would need a more precise control of the position of the Fermi level
than currently available in experiments, to verify a possibility that the large
value of TEP is a consequence of the intertube interactions. In particular, if
we were to see the transition from the hole-like to electron-like TEP within
the pseudogap, we would need to control the oxygen concentration to at least
0.001 accuracy (measured as a ratio of oxygen to carbon atoms). On the
other hand, the negatively charged oxygen molecules may lead to formation
of the quasibound (or quasilocalized) states in the central two-band region
of the NTs. This is suggested by ab initio computations made for nitrogen
substitutional impurity [28], which showed formation of a very clear qua-
sibound state (from its position it can be described by a local defect with
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Eq4/|t| ~ —2 within our model). As we showed above, the existence of the
quasibound states leads to the minimum of the conductance within the two-
band region and may explain transition from the hole-like to electron-like
TEP with the Fermi level crossing the position of the quasibound state.
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