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PERSISTENT CURRENTS IN TWISTED TORIMADE OF CHIRAL NANOTUBES�M. Marga«ska and M. SzopaInstitute of Theoretial Physis, University of SilesiaUniwersyteka 4, 40-007 Katowie, Poland(Reeived Otober 24, 2000)Mesosopi metal rings an arry persistent urrents driven by a on-stant magneti �eld. The geometrial struture of a toroidal arbon nan-otube an be haraterized by four independent parameters. We derive theformula for persistent urrents driven by a onstant Bohm�Aharonov typeof �eld perpendiular to the plane of the torus. The dependenies of theurrents on the hirality, twist and irumferene of the torus are disussed.PACS numbers: 03.75.Fi1. Persistent urrents in a metal ringThe existene of persistent urrents is one of the most beautiful proofsthat there are plenty interesting phenomena in the physis of mesosopisystems, whih are impossible in marosopi solid state physis. In a small(of an order of a few �m) metal ring, threaded by a onstant magneti �ux(like in Bohm�Aharonov e�et) urrents appear, with no varying magneti�elds or any eletri potential. The idea that suh urrents might exist omesfrom Büttiker et al. [1℄, and was further explored by Gefen et al. in [2℄.Sine we are dealing with a losed system, the very �rst step is to de�nethe boundary onditions. For the wave funtion of an eletron on a ring ofirumferene L, the most omfortable way of de�ning them is to onsiderthe system as one-dimensional and periodi with period L: (L) = exp�i2� ��0� (0); (1)� Presented at the XXIV International Shool of Theoretial Physis �TransportPhenomena from Quantum to Classial Regimes�, Ustro«, Poland, September 25�Otober 1, 2000. (427)



428 M. Marga«ska, M. Szopawhere � is the magneti �ux through the ring and �0 is the �ux unit,�0 = h=e. The system is one-dimensional, with the Bohm�Aharonov e�etduly taken into aount. Our job is to investigate the possible urrents inthe ring. As the system is �nite, the momentum is quantized. The n-thmomentum state arries the urrent:In = �evnL = � eL 1~ �En�kn = � e~L �En�� ���kn = ��En�� : (2)The formula above is valid for any losed system, provided that the boundaryonditions are of the form (1). The simplest Hamiltonian is su�ient tounderstand the nature of persistent urrents, so we will work in the freeeletron approximation, and in a gauge in whih the vetor potential doesnot enter diretly in the Hamiltonian. If our ring is free from impurities andthere is no external potential V (x), the energy and the urrent of the n-thstate are En = ~22m �2�L �n+ ��0��2 ; (3)In = �2�e~mL2 �n+ ��0� : (4)The result above is not surprising, an eletron with a nonzero momentumalways arries a urrent, but usually the urrents arried by all the eletronsin the system anel out, so there is no marosopi urrent. Here they donot anel out, and this is easier to understand when we look at the Fig. 1.
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Fig. 1. The left �gure is the plot of general energy versus momentum relation in aring with no magneti �ux inside � note that the states are arranged in perfetsymmetry on both sides of the E axis. The seond �gure shows the general shapeof the dispersion relation in the system with the magneti �ux swithed on andequal � = 0:3�0.



Persistent Currents in Twisted Tori Made of Chiral Nanotubes 429When the magneti �ux is present in the system, the states on the pos-itive momentum side go up, the states on the negative side slide down, andthe urrents (proportional to the slope of En at the kn point) on both sidesdo not anel out any more. When T = 0, all oupied states have the sameweight, and the total urrent in the system is a funtion periodi in �=�0,with period 1, given by the formula (f. [3℄):I(�) = �2�e~NmL2 ( ��0 ; for N odd and � 12 � ��0 < 12��0 � 12 ; for N even and 0 � ��0 < 1 :The plots of the urrent for N odd and N even are presented in the Fig. 2.
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Fig. 2. The left plot orresponds to a system with N even, the right one to Nodd, where I0 = �e~NmL2 . The sudden leaps in the urrent are due to some statesbeing shifted above the Fermi level, thus beoming unavailable, while their negativeounterparts are lowered into the spetrum of available states at exatly the same�ux. 2. The struture of a nanotubeA nanotube basially is just a strip of graphene sheet, rolled up, withopposite edges glued. (We see already that a boundary ondition will beneessary.) When we want to lose it into a torus, we bend it and glue theopposite edges one again. (Another boundary ondition appears.)We work here in the basis and approximation used by González et al. inthe Ref. [4℄. T 1 and T 2 are vetors generating the honeyomb lattie, givenin our basis by T 1 = p3ex and T 2 = p32 ex + 32ey. Both the irumfereneof the nanotube Ln and the irumferene of the torus Lt an be expressedas linear ombinations of these two vetors, with parameters m1, m2, p1and p2: Ln = m1T 1 +m2T 2; Lt = p1T 1 + p2T 2: (5)We annot roll this strip in any arbitrary way, but only so that the �gluing�edges orrespond exatly. The nanotorus is thus uniquely de�ned by four



430 M. Marga«ska, M. Szopaparameters: m1, m2 orresponding to the gluing of a nanotube, and p1, p2de�ning the gluing of the nanotube to make a torus. We shall refer to it asthe (m1;m2)�(p1; p2) torus. The meaning of these parameters is illustratedby the Fig. 3.
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Fig. 3. The struture of a graphene sheet and the path of the (3; 1)� (�3; 6) torus(m1 = 3, m2 = 1, p1 = �3, p2 = 6).Note that Ln and Lt do not have to be perpendiular � the torus is thentwisted, but this is allowed. In fat, most of the experimentally obtainedtori are twisted, as we gather from the paper by Ceulemans et al. (Ref. [5℄).Upon trying out di�erent ways of rolling a nanotube, we meet with afew ases so speial that they got given names. The �rst is the one whenm2 = 0, thereby produing a �zigzag� struture along the irumferene ofthe tube. The seond is m1 = m2, whih has a harateristi �armhair�struture along the irumferene.It turns out that every armhair nanotube and the zigzag tubes with m1divisible by 3 are metalli. This is due to a spei� property of the energyspetrum of the graphene sheet, whih in the tight-binding approximationis given by the formula:E(k) = �vuut1 + 4 os2 p32 kx!+ 4 os p32 kx! os�32ky� (6)and, when plotted, looks like a double rown, of whih we only show thelower part, orresponding to the `�' sign in the equation (6). The existene
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kxFig. 4. This is the negative part of the honeyomb lattie dispersion relation, plot-ted against kx and ky. A very interesting feature of this spetrum is that it doesnot have Fermi surfae � or rather, the Fermi surfae is limited to six points atthe peaks of the rown. Also, only two of these points are independent. This willturn out to be very important when we will alulate the onduting properties ofthe nanotubes.of Fermi points only, instead of a whole Fermi surfae, is the very feature re-sponsible for di�erent onduting properties of di�erently folded nanotubes.As an be seen after performing some areful alulations, only the tubeswhih satisfy the relation (m1 � m2)jmod3 = 0 have Fermi points amongtheir allowed momentum states (f. Ref. [6℄). The armhair (m1 = m2) and�triple zigzag� (m1 = 3k;m2 = 0 ) tubes are just speial ases of this generalrule.By imposing the nanotube boundary ondition on our graphene sheetwe redued the momenta spetrum to a set of lines (whih may or may notross the Fermi points). When we glue it into a torus, we impose the seondboundary ondition, and the set of allowed momentum states beomes justa set of points. Here again, we an make our torus either in suh a waythat Fermi points belong to the spetrum, or in suh that they do not. Itturns out that when both (m1 �m2)jmod3 = 0 and (p1 � p2)jmod3 = 0, thetori are metalli. When the m's ful�ll this ondition but the p's do not,the torus is a narrow-gap semiondutor. Why? Beause the tori whih arestable (and without topologial defets, whih would spoil our Hamiltonian)are muh longer than they are wide. Therefore the momentum states aremore narrowly spaed along the momentum lines orresponding to the Lt



432 M. Marga«ska, M. Szopadiretion, than the Ln diretion. So, one they are on a momentum linewhih passes through a Fermi point, they an miss it only by very little.When the nanotube is not metalli, we have wide-gap semiondutors, whihare beyond the sope of our paper.3. Persistent urrents in toroidal nanotubesWe take now our torus and thread it with a line of magneti �ux. Whaturrent will the Bohm�Aharonov e�et produe? Finding an answer tothis question an proeed along similar lines as before, in the ase of one-dimensional metalli ring � with a few important di�erenes:� the energy is given by a di�erent formula;� the system is 2-dimensional, therefore there are two boundary ondi-tions to be taken into aount;� the number of eletrons is always even and, more preisely, equal2(m1p2 � p1m2).Let us deal with these points in the proper order. The formula for energyis the same as in ase of the �at graphene sheet and was given in the previoussetion. The boundary onditions for k arek �Ln = 2�ln ) p32 (2m1 +m2)kx + 32m2ky = 2�ln;k �Lt = 2�(lt + ��0 ) ) p32 (2p1 + p2)kx + 32p2ky = 2�(lt + ��0 ): (7)Sine the �ux in�uenes only the motion along the torus, it enters intothe seond ondition, but not the �rst one. From these equations we analulate urrents assoiated with every state. The resulting formula hasthe following, rather ompliated shape:In = 2�m1p2 �m2p1 f2m2 os�(�) sin�(�) +m2 os �(�) sin�(�)�(2m1 +m2) os�(�) sin �(�)g �1 + 4 os2 �(�) + 4 os�(�) os �(�)��1=2 ;(8)where �(�) = �(p2ln �m2(lt + �))m1p2 � p1m2 ;�(�) = �(�(2p1 + p2)ln + (2m1 +m2)(lt + �)m1p2 � p1m2 :



Persistent Currents in Twisted Tori Made of Chiral Nanotubes 433This formula for the persistent urrent, in the speial ases of the zigzag andarmhair nanotubes, has been found by Lin and Chuu in the Ref. [7℄. Inour system we have one unbound (or �-) eletron per lattie site, thereforethe Fermi level lies at E = 0. The summation over all states in the �rstBrillouin zone gives the total urrent in the torus at zero temperature. Thisurrent depends on four parameters � two of them de�ne the nanotubeand the remaining two de�ne the torus. We want to hek the urrents'dependenies on:� the hirality of the nanotube (m1=m2);� the twist with whih we glue together the edges of the tube in orderto obtain the torus (the angle between Ln and Lt), proportional tom1(2p1+p2)+m2(p1+2p2)p(m21+m1m2+m22)(p21+p1p2+p22) ;� the irumferene of the torus, p3(p21 + p1p2 + p22).Fig. 5 illustrates the dependene of the urrent on the hirality of the orig-inal nanotube. One should understand, though, that a nanotube is not aontinuous objet and it is impossible to keep �xed its length and hirality,while hanging only the twist. So, when we say �we ompare the nanotubesof the same length and hirality and varying twist�, it must be understoodthat the length will also vary � albeit very slightly. Out of the three mainfeatures of the torus, the most important turns out to be the hirality ofthe nanotube whih made it. One we �x m1 � m2 = 3k, the urrent isrelatively big and has the harateristi �sawtooth� shape, always rossingthe �=�0 axis at integer and half-integer values of �=�0 (see Fig. 5 (b), (e)).The urrent depends on the expliit di�erene (p1 � p2)jmod3. If p1 � p2is not divisible by 3, it is a zigzag rossing the �=�0 axis also at 1/3 and2/3, if it is divisible by 3 it has no additional zero points. (See Fig. 6.)While we keep (p1 � p2)jmod3 onstant, we an still play with p1 and p2separately, varying the irumferene and twist of the torus. The urrentis then inversely proportional to the irumferene of the torus (see Fig. 7)and it has no essential dependene on the twist. When the tube itself is notmetalli, the urrent is sinusoidal and de�nitely smaller (as an be seen onthe Fig. 5(a), () and (d)), for any value of p1�p2. It does not depend muhon the p1�p2, but it dereases strongly with inreasing irumferene of thetorus.These e�ets an be understood by analysing the struture of the Bril-louin zone. There are two main fators in�uening the amplitude of theurrent. First, the number of states shifted through the edge of the Bril-louin zone with inreasing magneti �ux: if many states are shifted at oneout of the Brillouin zone while their ounterparts appear on the opposite side



434 M. Marga«ska, M. Szopa
�=�0I=I0 �=�0I=I0

0.2 0.4 0.6 0.8 1

-7.5·10-10
-5·10-10

-2.5·10-10

2.5·10-10
5·10-10

7.5·10-10 (a)

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

(b)

�=�0I=I0 �=�0I=I0
0.2 0.4 0.6 0.8 1

-2·10-11

-1·10-11

1·10-11

2·10-11 (c)

0.2 0.4 0.6 0.8 1

-6·10-9
-4·10-9
-2·10-9

2·10-9
4·10-9
6·10-9 (d)

�=�0I=I0
0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

(e)

Fig. 5. The examples of normalised persistent urrents II0 versus ��0 in tori madewith nanotubes of di�erent hiralities, with approximately the same length andtwist. The tori whose urrents are presented here are (a) (4; 0) � (�30; 60), (b)(4; 1)�(�39; 60), () (4; 2)�(�44; 55), (d) (4; 3)�(�51; 55) and (e) (4; 4)�(�50; 49).Also, we keep �xed (p1 � p2)jmod3 = 0.of the hexagon, the urrent is strong. Seond, the distane of the shiftedstates from the Fermi points. The states lose to the �Fermi peaks� arry thegreatest urrents, so if they are present, the overall urrent is signi�antlygreater than when we shift even many states, but far from the peaks.The ase of the metalli tube ((m1�m2)jmod3=0), when (p1�p2)jmod3=0as well, is the one where the onditions are most favourable for the persistenturrents. The Fermi points belong to the momentum spetrum at � = 0,and when we swith on the �ux, many states at one ross the edge of the�rst Brillouin zone.When the tube is metalli, but p1 � p2 6= 3k, there are many states butthey lie only lose to the Fermi points: at 1/3 or 2/3 from them, hene thespei� zigzag shape of I(�). Both ases are illustrated on the Fig. 6. When
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Fig. 6. Current versus �ux of the tori (4; 1) � (�30; 60), (4; 1) � (�31; 60), and(4; 1) � (�32; 60). They all have the same nanotube hirality and similar irum-ferene and twist, but their values of (p1 � p2)jmod3 are di�erent.
�=�0I=I0 �=�0I=I0

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.02

-0.01

0.01

0.02

�=�0I=I0
0.2 0.4 0.6 0.8 1

-0.002

-0.001

0.001

0.002

Fig. 7. The persistent urrent I=I0 for the tori (4; 1)�(�30; 60), (4; 1)�(�300; 600)and (4; 1)� (�3000; 6000). They all have the same hirality and twist, while theirirumferene varies by a fator of 10 and 100.the tube is not metalli, Fermi points lie far from the allowed momentumstates, so even when quite many of them ross the edge of the Brillouin zone,the e�et is not big.



436 M. Marga«ska, M. Szopa4. ConlusionsWe have shown that at the half-�lling, i.e. when the number of freeeletrons in the nanotorus is equal to the number of its atoms, the mainfator determining the strength of the persistent urrents is the hiralityof the onstituent nanotube. The ondition for the enhanement of theurrent oinides with the riterion for the metaliity of the nanotube,(m1 � m2)jmod3 = 0. Within this ondition, if in addition the twist pa-rameters obey (p1 � p2)jmod3 = 0, the urrents are paramagneti for small�=�0 and have sawtooth-shaped plots like in a single metalli ring with oddnumber of eletrons. Otherwise, for (p1 � p2)jmod3 6= 0 the amplitude re-mains similar, but the urrents are diamagneti for small �=�0 and behavelike the urrents in a single ring with odd number of eletrons. Instead ofone, two jumps of the urrent our, at �=�0 = 1=3 and �=�0 = 2=3. Whenvarying the irumferene of the torus while keeping the hirality and twistunhanged we observe inverse proportionality of the urrent to the irumfer-ene. In ase when the onstituent nanotube is not metalli, the amplitudeof the urrent drops signi�antly and no jumps are observed any more. Itbeomes sinusoidal with the applied �eld and both paramagneti and dia-magneti urrents are observed for small �=�0. The twist of the torus, when(p1�p2)jmod3 is �xed, seems to have no signi�ant in�uene on the urrents.This work was supported by the Polish State Committee for Sienti�Researh (KBN) grant. REFERENCES[1℄ M. Büttiker, Y. Imry, R. Landauer, Phys. Lett. 96A, 365 (1983).[2℄ H.F. Cheung, Y. Gefen, E.K. Riedel, W.H. Shih, Phys. Rev. B37, 6050 (1988).[3℄ M. Szopa, E. Zipper, Strongly Correlated Eletron Systems and High T Su-perondutivity, eds. E. Zipper, R. Ma«ka, M. Ma±ka, World Sienti� 1990.[4℄ J. González, F. Guinea, M.A.H. Vozmediano, Int. J. Mod. Phys. B7, 4331(1993).[5℄ A. Ceulemans, L.F. Chibotaru, S.A. Bovin, P.W. Fowler, J. Chem. Phys. 112,4271 (2000).[6℄ N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992);R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60,2204 (1992).[7℄ M.F. Lin, D.S. Chuu, Phys. Rev. B57, 6731 (1998).


